Resonance Parameters with the Decays \(J^{++} \)
χ_{c1} and χ_{c2} Resonance Parameters with the Decays $\chi_{c1,c2} \rightarrow J/\psi \mu^+ \mu^-$

R. Aaij et al.∗
(LHCb Collaboration)

(Received 13 September 2017; revised manuscript received 12 October 2017; published 28 November 2017)

The decays $\chi_{c1} \rightarrow J/\psi \mu^+ \mu^-$ and $\chi_{c2} \rightarrow J/\psi \mu^+ \mu^-$ are observed and used to study the resonance parameters of the χ_{c1} and χ_{c2} mesons. The masses of these states are measured to be $m(\chi_{c1}) = 3510.71 \pm 0.04$ (stat) ± 0.09 (syst) MeV and $m(\chi_{c2}) = 3556.10 \pm 0.06$ (stat) ± 0.11 (syst) MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference $m(\chi_{c2}) - m(\chi_{c1}) = 45.39 \pm 0.07$ (stat) ± 0.03 (syst) MeV. The natural width of the χ_{c2} meson is measured to be $\Gamma(\chi_{c2}) = 2.10 \pm 0.20$ (stat) ± 0.02 (syst) MeV. These results are in good agreement with and have comparable precision to the current world averages.

DOI: 10.1103/PhysRevLett.119.221801

Studies of the properties and production of quarkonia at hadron colliders provide an important testing ground for quantum chromodynamics [1]. Measurements of the spectra test potential models [2], while the production rate can be calculated perturbatively in nonrelativistic effective field theories such as nonrelativistic QCD [3]. Most studies of χ_{c1} and χ_{c2} mesons at hadron colliders have exploited the radiative decays $\chi_{c1,c2} \rightarrow J/\psi \gamma$ with the subsequent decay $J/\psi \rightarrow \mu^+ \mu^-$. [4–8]. The branching fractions for these processes are large, allowing a signal to be observed despite a high background.

Recently, the BESIII Collaboration [9] reported the first observation of the electromagnetic Dalitz decays [10] of χ_{c0}, χ_{c1} and χ_{c2} mesons into the $J/\psi e^+ e^-$ final state. This Letter reports the first observation of the $\chi_{c1} \rightarrow J/\psi \mu^+ \mu^-$ and $\chi_{c2} \rightarrow J/\psi \mu^+ \mu^-$ decay modes, using $J/\psi \rightarrow \mu^+ \mu^-$ decays. These decays are used to measure the χ_{c1} and χ_{c2} masses together with the χ_{c2} natural width. The event topology with four muons in the final state provides a clean signature that is ideal for studies in hadron collisions.

This analysis uses the LHCb data set collected in pp collisions up to the end of 2016. The data collected at center of mass energies of 7 and 8 TeV correspond to integrated luminosities of 1 and 2 fb$^{-1}$ and are collectively referred to as run 1, while data collected at a center of mass energy of 13 TeV correspond to 1.9 fb$^{-1}$ and are referred to as run 2.

The LHCb detector is a single-arm spectrometer covering the pseudorapidity range $2 < \eta < 5$, described in detail in Refs. [11,12]. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector [13], a large-area silicon-strip detector upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [14] placed downstream of the magnet. The tracking system measures the momentum of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV (natural units with $c = \hbar = 1$ are used throughout this Letter). The momentum scale is calibrated using samples of $J/\psi \rightarrow \mu^+ \mu^-$ and $B^+ \rightarrow J/\psi K^+$ decays collected concurrently with the data sample used for this analysis [15–17]. The use of the large J/ψ data sample allows us to correct for variations of the momentum scale at the level of 10^{-4} or less that occur over time, while the use of the $B^+ \rightarrow J/\psi K^+$ decay allows the momentum scale to be determined as a function of the K^+ kinematics. The procedure is validated using samples of $K^0_S \rightarrow \pi^+\pi^-$, $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$, $\psi(2S) \rightarrow \mu^+\mu^-$ and other fully reconstructed b-hadron and $\Upsilon(nS), n = 1, 2, 3$ decays. Based upon these studies, the accuracy of the procedure is evaluated to be 3×10^{-4}. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [18]. The online event selection is performed by a trigger [19], which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The events used in this analysis are selected by a hardware trigger that requires one or two muons with transverse momentum p_T larger than 1.5 GeV. At the software trigger stage, a pair of oppositely charged muons with an invariant mass consistent with the known J/ψ mass [20] is required. In run 1, the full event information for selected events was stored. To keep the rate within the available bandwidth, it was necessary to require $p_T(J/\psi) > 3$ GeV. For run 2, a new data-taking scheme was introduced [21] allowing real-time alignment to be performed in the trigger [22] that, together with an increase in the online computing resources, made possible the full
track reconstruction in the online system [23,24]. Consequently, lower-level information could be discarded, reducing the event size and allowing all events selected at the hardware stage that contain a J/ψ candidate to be stored without any p_T requirement.

Offline, J/ψ candidates are combined to a pair of oppositely charged muons to form $\chi_{c1,2} \to J/\psi \mu^+\mu^-$ candidates. Several criteria are applied to reduce the background and maximize the sensitivity for the mass measurement. Selected muon candidates are required to be within the range $2 < \eta < 4.9$. Misreconstructed tracks are suppressed by the use of a neural network trained to discriminate between these and real particles. Muon candidates are selected with a neural network trained using simulated samples to discriminate muons from hadrons and electrons. Finally, to improve the mass resolution, a kinematic fit is performed [25]. In this fit, the mass of the J/ψ candidate is constrained to the known mass of the J/ψ meson [20], and the position of the $\chi_{c1,2}$ candidate decay vertex is constrained to be the same as that of the primary vertex. The χ^2 per degree of freedom of this fit is required to be less than four, which substantially reduces the background while retaining almost all the signal events.

In the simulation, pp collisions are generated using PYTHIA [26] with a specific LHCb configuration [27]. For this study, signal decays are generated using EVTGEN [28] with decay amplitudes that depend on the invariant dimuon mass $m(\mu^+\mu^-)$, using the model described in Ref. [29]. This model assumes that the decay proceeds via the emission of a virtual photon from a pointlike meson and is known to provide a good description of the corresponding dielectron mode [9]. Final-state radiation is accounted for using PHOTOS [30]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [31] as described in Ref. [32].

The signal yields and parameters of the $\chi_{c1,2}$ resonances are determined with an extended unbinned maximum likelihood fit performed to the $J/\psi \mu^+\mu^-$ invariant mass distribution. In this fit, the χ_{c1} and χ_{c2} signals are modeled by relativistic Breit-Wigner functions with Blatt-Weisskopf form factors [33] with a meson radius parameter of 3 GeV$^{-1}$. Jackson form factors [34] are considered as an alternative to estimate the uncertainty associated with this choice. The orbital angular momentum between the J/ψ meson and the $\mu^+\mu^-$ pair is assumed to be 0 (1) for the χ_{c1} (χ_{c2}) cases.

The relativistic Breit-Wigner functions are convolved with the detector resolution. Three resolution models are found to describe the simulated data well: a double-Gaussian function, a double-sided Crystal Ball function [35,36], and a symmetric variant of the Apollonios function [37]. The double-Gaussian function is used by the default model, and the other functions are considered to estimate the systematic uncertainty. The parameters of the resolution model are determined by a simultaneous fit to the χ_{c1} and χ_{c2} simulated samples. All the parameters apart from the core resolution parameter σ are common between the two decay modes. For all the models in the simulation, it is found that $\alpha \equiv \sigma_{c1}/\sigma_{c1} = 1.13 \pm 0.01$. This is close to the value expected, $\alpha = 1.11$, from the assumption that the resolution scales with the square root of the energy release.

The combinatorial background is modeled by a second-order polynomial function. The total fit function consists of the sum of the background and the χ_{c1} and χ_{c2} signals. The free parameters are the yields of the two signal components, the yield of the background component, the two background shape parameters, the χ_{c1} and χ_{c2} masses, σ^{c1}, and the natural width of the χ_{c2} resonance, $\Gamma(\chi_{c2})$. The other resolution parameters are fixed to the simulation values. Since the natural width of the χ_{c1} state $\Gamma(\chi_{c1}) = 0.84 \pm 0.04$ MeV [20] is less than the detector resolution ($\sigma^{c1} = 1.41 \pm 0.01$ MeV), this study has limited sensitivity to its value. By applying Gaussian constraints on the natural width of the χ_{c1} state (to the value from Ref. [20]) and α (to the value found in the simulation), the χ_{c2} width is determined in a data-driven way using the observed resolution for the χ_{c1} state.

The fit of this model to the full data sample is shown in Fig. 1, and the resulting parameters of interest are summarized in Table I. The fitted value of σ^{c1} is 1.51 ± 0.04 MeV, which agrees at the level of 5% with the value found in the simulation. Figure 2 shows the $m(\mu^+\mu^-)$ mass distribution for selected candidates where the background has been subtracted using the sPlot technique [38]. The data agree well with the model described in Ref. [29].

The dominant source of systematic uncertainty on the mass measurements comes from the knowledge of the

![FIG. 1. Mass distribution for selected $J/\psi \mu^+\mu^-$ candidates. The fit is shown in thick orange, the χ_{c1} and χ_{c2} signal components by the thin red solid curve, and the background component by the dashed blue curve.](221801-2)
TABLE I. Signal yields and resonance parameters from the nominal fit. No correction for final-state radiation is applied to the mass measurements at this stage.

<table>
<thead>
<tr>
<th>Fit parameter</th>
<th>Fitted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N((\chi_{c1}))</td>
<td>4755 ± 81</td>
</tr>
<tr>
<td>N((\chi_{c2}))</td>
<td>3969 ± 96</td>
</tr>
<tr>
<td>m((\chi_{c1})) [MeV]</td>
<td>3510.66 ± 0.04</td>
</tr>
<tr>
<td>m((\chi_{c2})) [MeV]</td>
<td>3556.07 ± 0.06</td>
</tr>
<tr>
<td>Γ((\chi_{c2})) [MeV]</td>
<td>2.10 ± 0.20</td>
</tr>
</tbody>
</table>

momentum scale. This is evaluated by adjusting the momentum scale by the \(3 \times 10^{-4}\) uncertainty on the calibration procedure and rerunning the mass fit. Uncertainties of 88 and 102 keV are assigned to the \(\chi_{c1}\) and \(\chi_{c2}\) mass measurements, respectively. A further uncertainty arises from the knowledge of the correction for energy loss in the spectrometer, which is known with 10% uncertainty. Based on the studies in Ref. [17], a 20 keV energy loss in the spectrometer, which is known with 10% uncertainty, arises from the knowledge of the correction for the momentum scale. This is evaluated by adjusting the momentum scale by the \(3 \times 10^{-4}\) uncertainty on the calibration procedure and rerunning the mass fit. Uncertainties of 88 and 102 keV are assigned to the \(\chi_{c1}\) and \(\chi_{c2}\) mass measurements, respectively. A further uncertainty arises from the knowledge of the correction for energy loss in the spectrometer, which is known with 10% uncertainty. Based on the studies in Ref. [17], a 20 keV energy loss in the spectrometer, which is known with 10% uncertainty, arises from the knowledge of the correction for energy loss in the spectrometer, which is known with 10% accuracy [12]. Based on the studies in Ref. [17], a 20 keV uncertainty is assigned.

The distortion of the line shape due to final-state radiation introduces a bias on the mass. This bias is evaluated using the simulation to be \(47 ± 7\) keV (29 ± 10 keV) for the \(\chi_{c1}\) (\(\chi_{c2}\)) where the uncertainty is statistical. The central values of the mass measurements are corrected accordingly, and the uncertainties are propagated.

Other uncertainties arise from the fit modeling and are studied using a simplified simulation. Several variations of the relativistic Breit-Wigner distribution are considered. Using Jackson form factors, modifying the meson radius parameter, and varying the orbital angular momentum, the observed \(\chi_{c1}\) (\(\chi_{c2}\)) mass changes by at most 15 (24) keV, which is assigned as a systematic uncertainty. Similarly, fitting with a double-sided Crystal Ball or Apollonios model, variations of 7 and 2 keV are seen for the \(\chi_{c1}\) and \(\chi_{c2}\) masses, respectively, and assigned as systematic uncertainties. Finally, varying the order of the polynomial background function results in a further uncertainty of 2 keV. The uncertainties due to the momentum scale and energy loss correction largely cancel in the mass difference. The assigned systematic uncertainties on the mass measurements are summarized in Table II.

The main uncertainty on the determination of the natural width of the \(\chi_{c2}\) is due to the knowledge of the detector resolution. This is accounted for in the statistical uncertainty, since the resolution scale is determined using the \(\chi_{c1}\) signal in the data. Similarly, the uncertainty on the knowledge of the \(\chi_{c1}\) width is propagated via the Gaussian constraint in the mass fit. By running fits with and without the constraint, the latter is evaluated to be 40 keV. Further uncertainties of 10 and 20 keV arise from the assumed Breit-Wigner parameters and resolution model, respectively. Other systematic uncertainties, e.g., due to the background model, are negligible. The stability of the results is studied by dividing the data into different running periods and also into kinematic bins and repeating the fit. None of these tests shows evidence of a systematic bias.

In summary, the decays \(\chi_{c1} \rightarrow J/\psi \mu^+ \mu^-\) and \(\chi_{c2} \rightarrow J/\psi \mu^+ \mu^-\) are observed and the mass of the \(\chi_{c1}\) meson together with the mass and natural width of the \(\chi_{c2}\) are measured. The results for the mass measurements are

\[
\begin{align*}
 m(\chi_{c1}) &= 3510.71 ± 0.04 ± 0.09 \text{ MeV}, \\
 m(\chi_{c2}) &= 3556.10 ± 0.06 ± 0.11 \text{ MeV}, \\
 m(\chi_{c2}) - m(\chi_{c1}) &= 45.39 ± 0.07 ± 0.03 \text{ MeV},
\end{align*}
\]

where the first uncertainty is statistical and the second is systematic. The dominant systematic uncertainty is due to the knowledge of the momentum scale and largely cancels in the mass difference. It can be seen in Table III that the measurements are in good agreement with and have comparable precision to the best previous ones, made using \(p\bar{p}\) annihilation at the threshold by the E760 [39] and E835 experiments [40] at Fermilab. They are considerably more precise than the best measurement based on the

TABLE II. Systematic uncertainties (in keV) on the mass and mass difference measurements.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>(m(\chi_{c1}))</th>
<th>(m(\chi_{c2}))</th>
<th>(m(\chi_{c2}) - m(\chi_{c1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Momentum scale</td>
<td>88</td>
<td>102</td>
<td>18</td>
</tr>
<tr>
<td>Energy loss correction</td>
<td>20</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Final-state radiation</td>
<td>7</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Resonance shape</td>
<td>15</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Background model</td>
<td><2</td>
<td><2</td>
<td><2</td>
</tr>
<tr>
<td>Resolution model</td>
<td>7</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Sum in quadrature</td>
<td>92</td>
<td>107</td>
<td>34</td>
</tr>
</tbody>
</table>
TABLE III. LHCb measurements, compared to previous measurements from Ref. [39] and the current world averages from Ref. [20]. The quoted uncertainties includes statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>LHCb measurement</th>
<th>Best previous measurement</th>
<th>World average</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m(\chi_{c1}))</td>
<td>3510.71 ± 0.10</td>
<td>3510.72 ± 0.05</td>
<td>3510.66 ± 0.07</td>
</tr>
<tr>
<td>(m(\chi_{c2}))</td>
<td>3556.10 ± 0.13</td>
<td>3556.16 ± 0.12</td>
<td>3556.20 ± 0.09</td>
</tr>
<tr>
<td>(\Gamma(\chi_{c2}))</td>
<td>2.10 ± 0.20</td>
<td>1.92 ± 0.19</td>
<td>1.93 ± 0.11</td>
</tr>
</tbody>
</table>

final-state reconstruction [41]. It should be noted that the world average for the \(\chi_{c1}\) mass has a scale factor of 1.5 to account for the poor agreement between the results [20]. The result for the \(\chi_{c2}\) natural width is

\[
\Gamma(\chi_{c2}) = 2.10 \pm 0.20 \text{(stat)} \pm 0.02 \text{(syst)} \text{ MeV}.
\]

It has similar precision to and is in good agreement with previous measurements [20].

The observations presented here open up a new avenue for hadron spectroscopy at the LHC. These decay modes can be used to measure the production of \(\chi_{c1}\) and \(\chi_{c2}\) states with a similar precision to the converted photon study presented in Ref. [6]. Importantly, it will be possible to extend measurements down to very low \(p_T(\chi_{c1,2})\) probing further QCD predictions [42–44]. In addition, measurements of the transition form factors [45] will provide input on the interaction between charmonium states and the electromagnetic field. With larger data samples, studies of the Dalitz decays of other heavy-flavor states will become possible. For example, the measurement of the transition form factor of the \(X(3872)\) via its Dalitz decay may help elucidate the nature of this enigmatic state [9].

We thank Jielei Zhang for useful discussions concerning Dalitz decays. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNI SW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We are indebted to the communities behind the multiple open-source packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO, ENIGMASS, and OCEUV, and Région Auvergne-Rhône-Alpes (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal, and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union, and the Leverhulme Trust (United Kingdom).

30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Yandex School of Data Analysis, Moscow, Russia
36 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37 Institute for High Energy Physics (IHEP), Protvino, Russia
38 ICCUB, Universitat de Barcelona, Barcelona, Spain
39 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40 Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
43 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
44 School of Physics and Astronomy, University of Liverpool, Liverpool, United Kingdom
45 Imperial College London, London, United Kingdom
46 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
47 University of Birmingham, Birmingham, United Kingdom
48 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
49 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50 Department of Physics, University of Warwick, Coventry, United Kingdom
51 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
52 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
53 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
54 Department of Physics, University of Oxford, Oxford, United Kingdom
55 National Research Centre Kurchatov Institute, Moscow, Russia
56 National Research Tomsk Polytechnic University, Tomsk, Russia
57 National Research Tomsk Polytechnic University, Tomsk, Russia
58 National Research Tomsk Polytechnic University, Tomsk, Russia
59 National Research Tomsk Polytechnic University, Tomsk, Russia
60 National Research Tomsk Polytechnic University, Tomsk, Russia
61 National Research Tomsk Polytechnic University, Tomsk, Russia
62 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
63 University of Chinese Academy of Sciences, Beijing, China
64 School of Physics and Technology, Wuhan University, Wuhan, China
65 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
66 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia
67 Institut für Physik, Universität Rostock, Rostock, Germany
68 National Research Centre Kurchatov Institute, Moscow, Russia
69 National Research Tomsk Polytechnic University, Tomsk, Russia
70 Instituto de Física Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
71 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands

† Deceased.
a Also at Università di Ferrara, Ferrara, Italy.
b Also at IFN-CNR National Nuclear Laboratory, Pisa, Italy.
c Also at Laboratoire Leprince-Ringuet, Palaiseau, France.
d Also at Università di Milano Bicocca, Milano, Italy.
e Also at Università di Modena e Reggio Emilia, Modena, Italy.
f Also at Novosibirsk State University, Novosibirsk, Russia.

Also at Novosibirsk State University, Novosibirsk, Russia.
8Also at Università di Cagliari, Cagliari, Italy.
9Also at Università di Bologna, Bologna, Italy.
10Also at Università di Roma Tor Vergata, Roma, Italy.
11Also at Università di Genova, Genova, Italy.
12Also at Scuola Normale Superiore, Pisa, Italy.
13Also at Università di Bari, Bari, Italy.
14Also at Università degli Studi di Milano, Milano, Italy.
15Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
16Also at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
17Also at Università di Padova, Padova, Italy.
18Also at Iligan Institute of Technology (IIT), Iligan, Philippines.
19Also at Hanoi University of Science, Hanoi, Viet Nam.
20Also at Università di Pisa, Pisa, Italy.
21Also at Università di Roma La Sapienza, Roma, Italy.
22Also at Università della Basilicata, Potenza, Italy.
23Also at Università di Urbino, Urbino, Italy.
24Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.