Erratum to: Non-global structure of the $O(s^2)$ dijet soft function

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Hornig, Andrew et al. "Erratum to: Non-global structure of the $O(s^2)$ dijet soft function." Journal of High Energy Physics 2017 (October 2017): 101 © 2017 The Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1007/JHEP10(2017)101</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer International Publishing AG</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Mar 10 03:32:48 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/114623</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Erratum: Non-global structure of the $\mathcal{O}(\alpha_s^2)$ dijet soft function

Andrew Hornig, a Christopher Lee, b Iain W. Stewart, b,c Jonathan R. Walsh d,e and Saba Zuberi d,e

a Department of Physics, University of Washington, Box 351560, Seattle, WA 98195, U.S.A.
b Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A.
c Center for the Fundamental Laws of Nature, Harvard University, 17 Oxford St., Cambridge, MA 02138, U.S.A.
d Theoretical Physics Group, Ernest Orlando Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., 366 LeConte Hall #7300, Berkeley, CA 94720, U.S.A.
e Center for Theoretical Physics, University of California, 366 LeConte Hall #7300, Berkeley, CA 94720, U.S.A.

E-mail: ahornig@uw.edu, clee137@mit.edu, iains@mit.edu, jwalsh@lbl.gov, szuberi@lbl.gov

Erratum to: JHEP08(2011)054

ArXiv ePrint: 1105.4628

The position space results in eqs. (3.30)-(3.32) of ref. [1] are correct, but there are typos in the coefficients extracted in the $x_1 \gg x_2$ limit of $t_2(x_1/x_2)$, so eq. (3.33) should read:

$$s_2^{[2]} = -\frac{2\pi^2}{3} C_F C_A, \quad s_2^{[1]} = 2 \left[C_F C_A \left(\frac{11\pi^2 - 3 - 18\zeta_3}{9} \right) + C_F T R_{n_f} \left(\frac{6 - 4\pi^2}{9} \right) \right].$$

$$s_2^{[0]} = -s_2^{[1]} \ln \left(2 - 4 C_F C_A f_N(1) - 4 C_F T R_{n_f} f_Q(1) + C_F C_A s_2^{[C_F C_A]} + C_F T R_{n_f} s_2^{[n_f]} \right).$$

Similarly, from taking the large $\ell_1 \gg \ell_2$ limit of the momentum space result in eq. (3.36), the coefficients in eq. (3.39) should read:

$$s_{2c}^{[0]} = -s_{2c}^{[1]} \ln \left(2 - 4 C_F C_A f_N(1) - 4 C_F T R_{n_f} f_Q(1) + C_F C_A s_{2c}^{[C_F C_A]} + C_F T R_{n_f} s_{2c}^{[n_f]} \right).$$

Open Access, © The Authors.
Article funded by SCOAP³, https://doi.org/10.1007/JHEP10(2017)101
Finally, there are constant terms that should be added to the μ-dependent part of the momentum-space soft function, which appear from the conversion of logarithms from position to momentum space, so eq. (3.43) should read:

$$
R_c(\ell_1^c, \ell_2^c, \mu) = -\frac{\alpha_s(\mu)C_F}{\pi} \left(\frac{L_1^2 + L_2^2 - \pi^2}{3} \right)
$$

$$
+ \frac{\alpha_s^2(\mu)}{(4\pi)^2} \left[8C_F^2(\ell_1^2 + \ell_2^2) + \left(\frac{88}{9}C_FC_A - \frac{32}{9}C_FT_{Rnf} \right)(L_1^3 + L_2^3)
+ \left(\frac{20\pi^2}{3}C_F^2 + C_FC_A \left(\frac{4\pi^2}{3} - \frac{268}{9} \right) + \frac{80}{9}C_FT_{Rnf} \right)(L_1^2 + L_2^2)
+ \left[64\zeta_3C_F^2 + C_FC_A \left(\frac{808}{27} - \frac{22\pi^2}{9} - 28\zeta_3 \right)
- C_FT_{Rnf} \left(\frac{224}{27} - \frac{8\pi^2}{9} \right) \right](L_1 + L_2) - \frac{C_F^228\pi^4}{45}
+ C_FC_A \left(\frac{352\zeta_3}{9} + \frac{268\pi^2}{27} - \frac{4\pi^4}{9} \right) - C_FT_{Rnf} \left(\frac{128\zeta_3}{9} + \frac{80\pi^2}{27} \right) \right].
$$

(3.43)

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References