Exceptional representations of Weyl groups

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/j.jalgebra.2015.11.003</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Nov 22 10:48:54 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/114679</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-NonCommercial-NoDerivs License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-nd/4.0/</td>
</tr>
</tbody>
</table>
EXCEPTIONAL REPRESENTATIONS OF WÉYL GROUPS

G. Lusztig

1.1. Let W be a finite, irreducible Coxeter group and let S be the set of simple reflections of W; let $l : W \to \mathbb{N}$ be the length function. Let $\text{Irr} W$ be a set of representatives for the isomorphism classes of irreducible representations of W over \mathbb{C}, the complex numbers. Let $\mathcal{A} = \mathbb{C}[v, v^{-1}], \mathcal{A}' = \mathbb{C}[v^2, v^{-2}]$ (v an indeterminate). We have $\mathcal{A}' \subset \mathcal{A} \subset K \supset K' \supset \mathcal{A}'$ where $K = \mathbb{C}(v), K' = \mathbb{C}(v^2)$. Let H be the Hecke algebra over \mathcal{A} associated to W; thus H has generators $T_s(s \in S)$ and generators $(T_s + 1)(T_s - v^2) = 0$ for $s \in S, T_sT_s' \cdots = T_s'T_sT_s' \cdots$ for $s \neq s'$ in S (both products have m factors where m is the order of ss' in W). Let H' be the \mathcal{A}'-subalgebra of H generated by $T_s(s \in S)$; note that $H = \mathcal{A} \otimes_{\mathcal{A}'} H'$. Let $H_K = K \otimes_{\mathcal{A}} H, H_{K'} = K' \otimes_{\mathcal{A}'} H'$ so that $H_K = K \otimes_{K'} H_{K'}$. It is known [L2] (see also 1.2 below) that the algebra H_K is canonically isomorphic to the group algebra $K[W]$. Hence any $E \in \text{Irr} W$ can be viewed as a simple H_K-module E_v. We say that E is ordinary if E_v is obtained by extension of scalars from an $H_{K'}$-module; otherwise, we say that E is exceptional. Let $\text{Irr}_0 W$ (resp. $\text{Irr}_1 W$) be the set of all $E \in \text{Irr} W$ which are ordinary (resp. exceptional).

We define a subset $\mathcal{E} W$ of $\text{Irr} W$ as follows. If W is not of type E_7, E_8, H_3, H_4, we set $\mathcal{E} W = \emptyset$. If W is of type E_7, E_8, H_3, H_4, then $\mathcal{E} W$ consists of 2^a representations of dimension 2^b where $2^a = 2$ for $E_7, H_3, 2^a = 4$ for E_8, H_4 and 2^{a+b} is the largest power of 2 that divides the order of W; thus 2^b is 512, 4096, 4, 16 respectively.

When W is crystallographic we have $\text{Irr} W - \mathcal{E} W \subset \text{Irr}_0 W$ (see [BC]) and $\mathcal{E} W \subset \text{Irr}_1 W$ (a result of Springer); hence $\text{Irr} W - \mathcal{E} W = \text{Irr}_0 W$ and $\mathcal{E} W = \text{Irr}_1 W$. The same holds when W is not crystallographic. (The fact $\mathcal{E} \subset \text{Irr}_1 W$ for W of type H_3 was pointed out in [L2]. The fact that any $E \in \text{Irr} W - \mathcal{E}$ is ordinary for W of type H_4 can be seen from the fact that, according to [AL], E can be realized by a W-graph which is even (in the sense that the vertices can be partitioned into two subsets so that no edge connects vertices in the same subset).

In this paper we try to understand various consequences in representation theory of the existence of exceptional representations.

1.2. Let $\{c_w; w \in W\}$ be the basis of H which in [KL] was denoted by $\{C'_w; w \in W\}$. Let \preceq_{LR}, \preceq_L be the preorders on W defined in [KL] and let \sim_{LR}, \sim_L be
the corresponding equivalence relations on W (the equivalence classes are called the two-sided cells and left cells respectively). For $x, y \in W$ we write $c_x c_y = \sum_{z \in W} h_{x,y,z} c_z$. For $z \in W$ there is a unique number $a(z) \in \mathbb{N}$ such that for any x, y in W we have $h_{x,y,z} = \gamma_{x,y,z}^{-1} v^{a(z)} \mod v^{a(z) - 1} \mathbb{Z}[v^{-1}]$ where $\gamma_{x,y,z} \in \mathbb{N}$ and $\gamma_{x,y,z}^{-1} > 0$ for some x, y in W. Moreover, $z \mapsto a(z)$ is constant on any two-sided cell. (See [L5].) Let J be the C-vector space with basis $\{ t_w; w \in W \}$. It has an associative C-algebra structure given by $t_x t_y = \sum_{z \in W} \gamma_{x,y,z}^{-1} t_z$; it has a unit element of the form $\sum_{d \in D} t_d$ where D is a subset of W consisting of certain involutions (that is elements with square 1). (See [L5].) Let $h \mapsto h^\dagger$ be the algebra automorphism of H such that $T_s^\dagger = -T_s^{-1}$ for $s \in S$. Now the A-linear map $H \rightarrow A \otimes J$ given by $c_x^\dagger \mapsto \sum_{d \in D, z \in W, d \sim_L z} h_{x,d,z} t_z$ induces an algebra isomorphism $H_K \rightarrow K \otimes J$ and (by specializing $v = 1$) an algebra isomorphism $C[W] \rightarrow J$ hence an algebra isomorphism $K[W] \rightarrow K \otimes J$. (See [L5].) Now if $E \in \text{Irr} W$ then E_v in 1.1 is obtained as follows. We first view $K \otimes E$ as a $K \otimes J$-module E_∞ via the isomorphism $K[W] \rightarrow K \otimes J$ above and then view E_∞ as an H_K-module E_v via the isomorphism $H_K \rightarrow K \otimes J$. Note that for $x \in W$ we have

\[(a) \quad \text{tr}(c_x^\dagger, E_v) = \sum_{d \in D, z \in W, d \sim_L z} h_{x,d,z} \text{tr}(t_z, E_\infty).\]

We show:

(b) If $x \in W$ satisfies $x^2 = 1$, or more generally, if $x \sim_L x^{-1}$ then there exists $E \in \text{Irr} W$ such that $\text{tr}(t_x, E_\infty) \neq 0$.

It is enough to show that $\sum_{E \in \text{Irr} W} \text{tr}(t_x, E_\infty) \text{tr}(t_x^{-1}, E_\infty) \neq 0$. The last sum is equal to the trace of the K-linear map $K \otimes J \rightarrow K \otimes J$, $\xi \mapsto t_x \xi t_x^{-1}$ (we use that $t_w \mapsto t_w^{-1}$ defines an isomorphism of the algebra $K \otimes J$ onto the algebra with opposed multiplication) hence it is equal to $\sum_{u, u' \in W} \gamma_{x,u,u'^{-1}} \gamma_{u',x^{-1},u'^{-1}}$. Thus it is enough to show that the last sum is $\neq 0$. Now each term in the last sum is in \mathbb{N} hence it is enough to show that for some u, u' we have $\gamma_{x,u,u'^{-1}} \gamma_{u',x^{-1},u'^{-1}} > 0$. We take $u = x^{-1}$ and $u' = d$ where d is the unique involution in X such that $x \sim_L d$. It is enough to show that $\gamma_{x,x^{-1},d} \gamma_{d,x^{-1},x} > 0$. But the last product is 1 since $x \sim_L d \sim_L x^{-1}$ so that $\gamma_{x,x^{-1},d} = 1, \gamma_{d,x^{-1},x} = \gamma_{x^{-1},x,d} = 1$. (See [L5].) This proves (b).

1.3. If $E \in \text{Irr} W$ then there is a unique two-sided cell c such that $t_x : E_\infty \rightarrow E_\infty$ is nonzero for some $x \in c$. This gives us a (surjective) map $E \rightarrow c$ from $\text{Irr} W$ to the set of two-sided cells; its fibre at a two-sided cell c is denoted by $\text{Irr}^c W$. One checks that if some $E \in \text{Irr}^c W$ is exceptional then any $E \in \text{Irr}^c W$ is exceptional; in this case we say that c is exceptional. If some $E \in \text{Irr}^c W$ is ordinary, we say that c is ordinary. An involution x in W is said to be ordinary (resp. exceptional) if $l(x) = a(x) \mod 2$ (resp. $l(x) = a(x) + 1 \mod 2$). Note that any two-sided cell c contains some ordinary involution (for example, $c \cap D$ is a nonempty set consisting of ordinary involutions). We show:

(a) If c is an ordinary two-sided cell, then for any $x \in c$ such that $x \sim_L x^{-1}$ we have $l(x) = a(x) \mod 2$. In particular, any involution in c is ordinary.
By 1.2(a) we can find $E \in \text{Irr}W$ such that $\text{tr}(t_x, E_{\infty}) \neq 0$. By definition we have $E \in \text{Irr}^cW$ hence E is ordinary; since $v^l(x) C^+_x \in H'$, it follows that $\text{tr}(v^l(x) C^+_x, E_v) \in C(v^2)$. Using this and 1.2(a) we deduce

$$(b) \quad v^l(x) \sum_{d \in \mathcal{D}, z \in \mathcal{W}, d \sim_L z} h_{x,d,z} \text{tr}(t_x, E_{\infty}) \in C(v^2).$$

Let a_0 be the value of the a-function on c. For z,d in the last sum such that $\text{tr}(t_z, E_{\infty}) \neq 0$ we have $z \in c$ hence $a(z) = a_0$ and $h_{x,d,z} = \gamma_{x,d,z-1} v^{a_0}$ plus a \mathbb{Z}-linear combination of strictly smaller powers of v; moreover we have $\gamma_{x,d,z-1} = \gamma_{z-1,x,d}$ and this is 1 if $z = x$ and d is the unique element of \mathcal{D} such that $d \sim_L x$ and is 0 otherwise. Thus (b) becomes

$$v^l(x) v^{a_0} \text{tr}(t_x, E_{\infty}) + \text{lin.comb.of strictly smaller powers of } v \in C(v^2).$$

Since $\text{tr}(t_x, E_{\infty}) \in \mathbb{C} - \{0\}$ it follows that $l(x) + a_0 \in 2\mathbb{Z}$ and (a) follows.

We now show:

(c) If c is an exceptional two-sided cell, then c contains both ordinary and exceptional involutions. More precisely, any left cell in c contains exactly one ordinary involution and exactly one exceptional involution.

Let n_c (resp. \tilde{n}_c) be the number of ordinary (resp. exceptional) involutions in c. Let $c' = w_0 c$ where w_0 is the longest element of W. Then c' is again an exceptional two-sided cell. In type E_7 or H_3 we have $c' = c$. Since w_0 is central in W and of odd length, for any involution x in c, $w_0 x$ is again an involution in c and x is ordinary if and only if $w_0 x$ is exceptional; thus we have $n_c = \tilde{n}_c$. In type E_8 or H_4 we have $c' \neq c$; more precisely the value of the a-function on c has a different parity than that on c'. Since w_0 is central in W and of even length, for any involution x in c, $w_0 x$ is an involution in c' and x is ordinary if and only if $w_0 x$ is exceptional; thus we have $n_c = \tilde{n}_{c'}$ and $\tilde{n}_c = n_{c'}$.

Note that Irr^cW consists of two elements of dimension m_c where m_c is the number of left cells in c. It is known that if Γ is any left cell in c then Γ carries a W-module structure isomorphic to the direct sum of the two representations in Irr^cW. In type E_7, E_8, using [L3, 12.15], we deduce that $\Gamma \cap \Gamma^{-1}$ has exactly two elements (a similar result can be proved in type H_3, H_4). The unique element of $\Gamma \cap \mathcal{D}$ is one of these two elements and is an ordinary involution. Also any involution in Γ is contained in $\Gamma \cap \Gamma^{-1}$. We see that $n_c \geq m_c \geq \tilde{n}_c$. In type E_7, H_3 we have $n_c = \tilde{n}_c$ hence $n_c = m_c = \tilde{n}_c$; we see that (c) holds in this case. In type E_8, H_4 we have $n_c \geq \tilde{n}_c$ (and similarly $n_{c'} \geq \tilde{n}_{c'}$). Using $n_c = \tilde{n}_{c'}$ and $\tilde{n}_c = n_{c'}$ we deduce $n_c = \tilde{n}_{c'} = \tilde{n}_c = n_{c'} = m_c = n_{c'}$; we see that (c) holds in this case.

1.4. In this subsection we assume that W is crystallographic. Let G be a simple algebraic group over an algebraic closure k of a finite field F_q with q elements with a fixed split F_q-structure such that the Weyl group of G is W in 1.1. The variety \mathcal{B} of Borel subgroups of G has a natural F_q-structure with Frobenius map $F : \mathcal{B} \rightarrow \mathcal{B}$.

EXCEPTIONAL REPRESENTATIONS OF WEYL GROUPS
For each \(w \in W \) let \(\mathcal{O}_w \) be the \(G \)-orbit on \(B \times B \) (diagonal action) indexed by \(w \) and let \(X_w \) be the closure in \(B \) of the variety \(\{ B \in B ; (B, F(B)) \in \mathcal{O}_w \} \) of [DL]. Now \(G(\mathbb{F}_q) \) acts naturally on the \(l \)-adic intersection cohomology spaces \(IH^i(X_w) \). An irreducible representation of \(G(\mathbb{F}_q) \) is said to be unipotent if it appears in the \(G(\mathbb{F}_q) \)-module \(IH^i(X_w) \) for some \(w, i \). Let \(\mathcal{U}_q \) be the a set of representatives for the isomorphism classes of unipotent representations of \(G(\mathbb{F}_q) \). Let \(\rho \in \mathcal{U}_q \). By [L3, 3.8], for any \(\rho \in \mathcal{U}_q \), any \(z \in W \) and any \(j \in \mathbb{Z} \) we have

\[
(\rho : IH^j(X_z))_{G(\mathbb{F}_q)} = \text{coefficient of } v^j \text{ in } (-1)^j \sum_{E \in Irr W} c_{\rho, E} \text{tr}(v^{l(z)}c_z, E(v))
\]

where \(c_{\rho, E} \) are uniquely defined rational numbers and \(\text{tr}(v^{l(z)}c_z, E(v)) \in A \). Moreover, by [L3, 6.17], given \(\rho \) as above, there is a unique two-sided cell \(c_{\rho} \) of \(W \) such that \(c_{\rho, E} = 0 \) whenever \(E \notin Irr^{c_{\rho}}W \). For a two-sided cell \(c \) we write \(\mathcal{U}_q^c = \{ \rho \in \mathcal{U}_q ; c_{\rho} = c \} \). We see that for any \(\rho \in \mathcal{U}_q^c \), any \(z \in W \) and any \(j \in \mathbb{Z} \) we have

\[
(\rho : IH^j(X_z))_{G(\mathbb{F}_q)} = \text{coefficient of } v^j \text{ in } (-1)^j \sum_{E \in Irr^{c_{\rho}}W} c_{\rho, E} \text{tr}(v^{l(z)}c_z, E(v)).
\]

To any \(\rho \in \mathcal{U}_q \) we associate a sign \(\epsilon_{\rho} \in \{ 1, -1 \} \) by the following requirement: if \(\rho \) appears in \(IH^j(X_z) \) with \(z \in W, j \in \mathbb{Z} \) then \(\epsilon_{\rho} = (-1)^j \); this is well defined by [L3, 6.6]. We say that \(\rho \in \mathcal{U}_q \) is ordinary (resp. exceptional) if \(\epsilon_{\rho} = 1 \) (resp. \(\epsilon_{\rho} = -1 \)). We show:

(b) If \(c \) is an ordinary two-sided cell then any \(\rho \in \mathcal{U}_q^c \) is ordinary. If \(c \) is an exceptional two-sided cell, then \(\mathcal{U}_q^c \) consists of two ordinary and two exceptional representations.

Assume first that \(c \) is ordinary. Since \(\text{tr}(v^{l(z)}c_z, E(v)) \in A' \) for \(E \in Irr^{c_{\rho}}W, z \in W \), we see from (a) that for any \(\rho \in \mathcal{U}_q^c \) we have \((\rho : IH^{j}(X_z))_{G(\mathbb{F}_q)} = 0 \) if \(j \) is odd. Thus \(\rho \) is ordinary. Assume next that \(c \) is exceptional. Then \(\mathcal{U}_q^c \) consists of four representations of which two appear in \(IH^0(X_1) \) hence are ordinary and the other two appear in \(IH^7(X_2) \) where \(z \) is an element of length 7 in \(W \).

1.5. Let \(S_i \) be the \(i \)-th symmetric power of the reflection representation of \(W \) and let \(S = \bigoplus_i S_i \), a commutative algebra over \(\mathbb{R} \). Let \(I \) be the ideal of \(S \) generated by the \(W \)-invariant elements of \(S \) of degree \(> 0 \). Let \(\bar{S} = S/I \) and let \(\bar{S}_i \) be the image of \(S_i \) in \(\bar{S} \). Note that \(\bar{S}_i \) is a \(W \)-module. For any \(E \in Irr W \) we set \(P_E = \sum_{i \geq 0}(E : S_i)X^i \in \mathbb{N}[X] \). We note the following property:

(a) If \(E \) is ordinary then \(P_E \) is palindromic. If \(E \) is exceptional then \(P_E \) is not palindromic.

(A polynomial \(P(X) \in \mathbb{C}[X] \) is said to be palindromic if there exists \(u \in \mathbb{N} \) such
that $P(X^{-1}) = X^{-u}P(X)$. When W is crystallographic this has been noted in [BL]. When W is dihedral or of type H_3 this is easily verified. When W is of type H_4 this follows from [CL]. We will now give an explanation for why (a) holds assuming that W is crystallographic.

Let c be the two-sided cell such that $E \in \text{Irr}^c W$. It is known that \mathcal{U}_q^c (see 1.4) can be naturally indexed by a set independent of q so that when $\rho \in \mathcal{U}_q^c$, the dimension of q can be regarded as a polynomial δ_ρ in q with rational coefficients; more precisely, we have $d_\rho(X) = e^{-1} X^{a_0}(X - 1)^s f(X)$ where $e \in \mathbb{Z}_{>0}$, $a_0 \in \mathbb{N}$ depends only on c, not on ρ, $s \in \mathbb{N}$ is such that $\epsilon_\rho = (-1)^s$ and f is a product of cyclotomic polynomials $\Phi_r(X)$ with $r \geq 2$. Also the degree of the polynomial $X^{a_0}(X - 1)^s f(q)$ is a number A_0 depending only on c, not on ρ. It follows that $d_\rho(X^{-1}) = (-1)^s X^{-a_0 - A_0} d_\rho(X)$.

We now assume that c is ordinary. Then we have $\epsilon_\rho = 1$ for each ρ as above (hence s is even), see 1.4(b). From [L3, 4.23] it is known that $P_E(X)$ is a constant linear combination of polynomials $d_\rho(X)$ with $\rho \in \mathcal{U}_q^c$. Since $d_\rho(X^{-1}) = X^{-a_0 - A_0} d_\rho(X)$ for each ρ it follows that $P_E(X^{-1}) = X^{-a_0 - A_0} P_E(X)$.

1.6. In this subsection we assume that W is crystallographic. Let c be a two-sided cell. Let E_c be the special representation in $\text{Irr}^c W$ (see [L3]). For each left cell Γ in c let $[\Gamma]$ be the W-module carried by Γ. Let $[[c]]$ be the W-module carried by the set of involutions in c defined in [LV]. We have the following result.

(a) Assume that c is ordinary. There is a unique $E \in \text{Irr}^c W$ such that E appears in $[\Gamma]$ for every Γ as above and E appears in $[[c]]$, namely $E = E_c$.

If W is of classical type, then it is known that $[[c]]$ is a sum of copies of E_c and that E_c appears in each $[\Gamma]$ with multiplicity one. Hence (a) holds in this case. We now assume that W is of exceptional type. If c is not the two-sided cell containing E of dimension 4480 (in E_8) or 12 (in F_4) or 2 (in G_2) then there is exactly one E which appears in each $[\Gamma]$ namely E_c and E_c appears in $[[c]]$, see [L4]; hence (a) holds in this case. We now assume that c is the two-sided cell containing E of dimension 4480 (in E_8) or 12 (in F_4) or 2 (in G_2). Then there are exactly two E which appear in each $[\Gamma]$ namely E_c and the E of dimension 7168 (in E_8) or 16 (in F_4) or 2 (non-special) in G_2, see [L4]. Now one verifies that E_c appears in $[[c]]$ but 7168 (in E_8) or 16 (in F_4) or 2 (non-special) in G_2 do not appear in $[[c]]$. Hence (a) holds in this case.

Note that if c is exceptional then there are exactly two $E \in \text{Irr}^c W$ such that E appears in $[\Gamma]$ for every Γ as above and E appears in $[[c]]$; one of them is $E = E_c$.

Let sgn be the sign representation of W. The following result has been noted in [L1].

(b) If c is ordinary then $E_c \otimes \text{sgn}$ is a special representation. If c is exceptional then $E_c \otimes \text{sgn}$ is not a special representation.

Note that the first statement of (b) can be deduced from (a) applied to $w_0 c$ (an ordinary two-sided cell) since if Γ' is a left cell in $w_0 c$ then $[\Gamma'] \cong [\Gamma] \otimes \text{sgn}$ for some left cell in c and $[[w_0 c]] \cong [[c]] \otimes \text{sgn}$ (this follows from the inversion formula in [L6]).
References

Department of Mathematics, M.I.T., Cambridge, MA 02139