Columnar Liquid Crystallinity and Mechanochromism in Cationic Platinum(II) Complexes

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Krikorian, Markrete et al. “Columnar Liquid Crystallinity and Mechanochromism in Cationic Platinum(II) Complexes.” Journal of the American Chemical Society 136, 8 (February 2014): 2952–2955 © 2014 American Chemical Society
As Published	http://dx.doi.org/10.1021/ja4114352
Publisher	American Chemical Society (ACS)
Version	Author's final manuscript
Accessed	Sat Feb 02 00:27:20 EST 2019
Citable Link	http://hdl.handle.net/1721.1/114711
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Columnar Liquid Crystallinity and Mechanochromism in Cationic Platinum(II) Complexes

Markrete Krikorian,†§ Shuang Liu,†§ and Timothy M. Swager*,†

†Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, United States

Supporting Information Placeholder

ABSTRACT: Cationic square planar Pt(II) complexes are reported with high degrees of intermolecular association. These complexes display thermotropic columnar liquid crystalline behavior in spite of having only a single side chain. Crystals undergo mechanochromic transformations that can be reversed with solvent.

The directed assembly of molecules offers opportunities for the design of advanced materials using an expanding diversity of molecular shapes, intermolecular potentials, and dispersive forces. A widely successful application of molecular assembly has been the use of liquid crystalline molecules in the displays of common electronics (ie. LCDs). Although the success of liquid crystal technology in displays is unquestioned, its use in the creation of optimized high-performance electronic materials is largely unrealized. Natural candidate structures for these applications are planar organometallic complexes that can assemble into columnar phases generating extended intermetallic interactions. As part of our ongoing interest in developing metal organic electronically active materials, we designed novel cationic square planar platinum complexes and explored their intermolecular associations. We report herein that these compounds display environmentally sensitive Pt-Pt intermolecular interactions, which facilitate the formation of thermotropic columnar liquid crystalline phases as well as unique mechanochromic behavior in the crystal phase.

A common design principle for columnar thermotropic liquid crystals is to position side chains at locations such that in the melt these chains fill the space surrounding the columns. Implementation of this principle often requires multiple long alkyl chains attached to a single core; however, in materials having complementary shapes, dynamic correlations between nearest neighbor mesogens can also facilitate liquid crystallinity. Here, we have found that Pt-Pt interactions can act as the dominant attractive force in the formation of columnar hexagonal liquid crystals, resulting in discotic liquid crystalline compounds with only one short (–C₆H₁₁) alkyl chain. These Pt(II) complexes are one of only a few mesogens with a single side chain to exhibit robust liquid crystal formation. Furthermore, reports of thermotropic columnar liquid crystals with less than three side chains are rare.

The series of cationic platinum complexes 3 were prepared from Pt(II) precursor Pt(2-phenylpyridine)Cl(Et₂S)₃ 1 and pyridyl triazole ligand 2 (Scheme 1). Ligand 2 is readily prepared from an azide and alkyn and allowed for modulation of the single side chain. The synthesis of the cationic Pt(II) complexes was facilitated by silver salts, where the Ag(I) assisted in ligand exchange and also allowed for isolation of series 3 with varying counteranions. We hypothesized that the degree of coordination and hydrogen bonding properties of these ions would affect the intermolecular Pt-Pt interactions. To further characterize the behavior of the Pt(II) core, we performed 2D NMR analysis on 3aSbF₆. We found that all 3a compounds exist as a mixture of stereoisomers and ROESY analysis (see Figure S1 as an example) revealed that the dominant isomers are those shown in Scheme 1 with the C–Pt bond trans to the triazole nitrogen. The stereoisomer composition is dynamic and can vary with solvent (Figures S2–20). At 25 °C, the stereoisomer ratios (trans:cis) for 3aSbF₆ were found to be 1:0.17, 1:0.42 and 1:0.91 when dissolved in CH₂Cl₂, acetone, and DMSO, respectively.

Scheme 1. Synthesis and stereoisomer ratios
We were able to grow X-ray quality crystals of 3aBF₄ and the resulting structure is shown in Figure 1A. 3aBF₄’s space group is P2₁/c. The crystal structure shows that the cationic Pt(II) complexes favor an alternating dimer packing (Figure 1B), with a Pt–Pt distance of 3.64 Å. The BF₄ counteranions reside between columns of Pt(II) cations, and exhibit hydrogen bonding interactions with four different aryl protons from adjacent molecules (Figures S22–24, Tables S1–3). Notably, the square planar structure is distorted with a 25° torsion angle between the different ligand planes suggesting that these compounds have enhanced conformational flexibility thereby enhancing the dispersive forces compared to other more planar organometallic complexes,¹² an important aspect for metallomesogens.

Differential scanning calorimetry (DSC) revealed traces suggested liquid crystalline behaviour in several of the compounds. Specifically, series 3a displayed low enthalpy clearing transitions and modest supercooling.¹³ Through DSC analysis, we were able to gain insight on the role of the counteranion (Table 1). The clearing temperatures decrease in the order of 3aSbF₆ (219 °C) > 3aPF₆ (203 °C) > 3aBF₄ (164 °C) = 3aOTf (164 °C). This trend corresponds well with the solubilities of the compounds with 3aOTf being qualitatively the most soluble suggesting that the strength of the intermolecular interactions is responsible for this trend as the counteranion is bulkier and allows for weaker intermolecular interactions.¹⁴ Aside from the clearing transition temperatures, we observed significant differences in the DSC traces of the series 3a with each counteranion. Compound 3aSbF₆ exhibits the most classic behavior containing well defined transitions. In other cases DSC traces displayed similar clearing temperatures and small enthalpy transitions with cooling suggesting liquid crystallinity. In all cases our characterization of phases as liquid crystalline is based on a combined analysis of DSC, POM, and XRD data.

Using the DSC isotropic temperatures as a guide, we observed that the series 3a exhibited birefringence and surface textures characteristic of liquid crystals via polarized optical microscopy. We found that all compounds (3a) displayed temperature dependent surface anisotropy and classic textures of hexagonal columnar phases (Colₖ) (Figure 2). These textures include six-fold symmetry of the domains and rectilinear defects. As with the DSC traces, the 3aSbF₆ complex displayed the most robust liquid crystalline behavior.

Table 1. Phase transitions of complexes 3. ²⁸

<table>
<thead>
<tr>
<th>Compound</th>
<th>Phase</th>
<th>T°C (AH(kJ/mol))</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>3aSbF₆</td>
<td>K</td>
<td>173 (6.0)</td>
<td>Colₖ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 (3.3)</td>
<td>Col₁</td>
</tr>
<tr>
<td>3aPF₆</td>
<td>Colₖ (glass)</td>
<td>155 (-6.6)</td>
<td>Colₖ</td>
</tr>
<tr>
<td>3aBF₄</td>
<td>K</td>
<td>164 (13.4)</td>
<td>Colₖ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132 (3.7)</td>
<td>Col₁</td>
</tr>
<tr>
<td>3aOTf</td>
<td>Colₖ (glass)</td>
<td>163 (2.0)</td>
<td>Colₖ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>154 (2.0)</td>
<td>Col₁</td>
</tr>
<tr>
<td>3bSbF₆</td>
<td>K</td>
<td>220 (7.5)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>182 (5.7)</td>
<td>I</td>
</tr>
</tbody>
</table>

²⁸Phase nomenclature: K = crystal, Colₖ = columnar hexagonal mesophase, and I = isotropic liquid
²⁹Scan rate for all runs was 10 °C/min and phase transitions represent peak maxima and second/third runs.
³⁰We do not observe a clear transition by DSC for a glass transition to a solid form.

Figure 2. Polarized optical microscopy images of the Colₖ phase of 3aSbF₆. (A–C) 90° polarized (D) non-polarized generated by cooling from isotropic phase (2 °C/min) between glass substrates.

In agreement with the microscopy data above, variable temperature X-ray diffractograms show patterns characteristic of a Colₖ phase (Figure 3). Most notably, the dominant low angle features have a 1:1/√3:1/2 ratio in their d-spacing.¹⁵ The peak at 25.0° corresponds to diffuse scattering centered at 3.6 Å, which is consistent with the intermolecular spacing between neighboring platinum complexes within each column. This correlates well with the Pt–Pt distance in the crystal structure of 3.64 Å. We also see other diffuse wide angle scattering that is likely from the loose ordering of the aryl ligands along the column’s axis. The weak, broad nature of this peak is consistent with the presence of only a single alky group. Additionally, the value a that is geometrically derived from the packing (Figure S44) can approximate the inter-columnar distance (13.3 Å), which is in agreement with the single crystal structure (13.6 Å). X-ray diffraction studies on all four complexes...
show columnar spacings in the mesophase that are largely unaffected by the counteranions indicating that all compounds (3a) are liquid crystalline.

Figure 3. X-ray diffractogram of 3aOTf at 170 °C. The distances (in Å) are above the peaks and hk plane designations are in parentheses.

Given that robust liquid crystalline behavior was observed with a short –C₂H₅ chain, we were interested to see if a longer chain would enhance the liquid crystallinity. Complex 3bSbF₆ with a –C₁₂H₂₅ alkyl chain was prepared in a manner analogous to 3aSbF₆ (Scheme 1). Upon analysis of the DSC, polarized optical microscopy, and X-ray diffraction, we found that the –C₁₂H₂₅ chain drastically decreased the compound’s liquid crystallinity, which is rare but not unprecedented. Further effects of the contribution of the ligand and alkyl side chains on liquid crystallinity remain to be explored.

This series 3a exhibits solid-state phosphorescence as well as distinct color and luminescence changes upon heating or processing (Figure S48–49). We predicted that, as with the liquid crystalline behavior, these unique photophysical properties are due to the permutable Pt-Pt intermolecular interactions.

Supporting this hypothesis, the 3aSbF₆ complex displayed both the most robust liquid crystallinity and the most drastic optical changes. Figure 4 shows the mechanochromic response of 3aSbF₆. The yellow form (polymorph A) represents 3aSbF₆ recrystallized from CH₂Cl₂/hexanes, which can be readily converted into an orange-red form (polymorph B) by grinding with a pestle. The yellow form can be recovered by the addition of CH₂Cl₂ or heat (Figure 4A, Figure S50, Video S1). 3aSbF₆ in its ground red polymorph B can be transformed to yellow polymorph A upon initial heating and then back to polymorph B after complete melting, which is retained with cooling. Additionally, direct formation of the red polymorph B can be achieved by rapid precipitation from acetone.

Figure 4. Reversible Mechanochromism of 3aSbF₆: (A) Yellow crystals of 3aSbF₆ (upper left) were ground; the yellow emission was restored with a drop of CH₂Cl₂ (lower left). All images were obtained under UV radiation (365 nm). (B) Solid-state emission spectra of yellow crystals (green), ground solid (red), and solid annealed with CH₂Cl₂ after grinding (orange) (λₑₓ = 400 nm).

More quantitative photophysical characterization revealed that 3aSbF₆ is more emissive in the solid than in solution state. The yellow crystals of polymorph A exhibited broad and featureless emission (λₑₓ = 565 nm) in the range of 480–700 nm (Figure 4B). This turn-on of luminescence in the solid state is introduced by the self-assembly of 3aSbF₆ and is attributed to the excited triplet metal-metal-to-ligand charge transfer (²MLMLCT) states. The solid-state quantum yield of 3aSbF₆ reached up to 86%, which is on par with the best solid-state Pt(II) emitters reported. The red-colored polymorph B displayed bright red emission from 550–800 nm. We propose this emission is a combination of the trans and cis isomers, which exhibit different emission maxima at 635 and 660 nm due to aggregation in the solid state (see features in the red “grind” trace in Figure 4B). The reversibility is confirmed by the spectral overlap of the initial crystals and CH₂Cl₂-annealed sample (Figure 4B green and orange dashed traces). 3aSbF₆ is not visibly emissive in its liquid crystalline state, presumably as a result of thermally activated non-radiative pathways.

To further probe the Pt-Pt intermolecular interactions of 3aSbF₆, we doped this complex into different polymer matrices (6-8 % w/w relative to the polymer). Films of polystyrene (PS), polyethylene oxide (PEO), poly(methyl methacrylate) (PMMA) and poly(4-vinylpyridine) (P4VP) were prepared by spin-coating a solution of the polymer and 3aSbF₆. The photoluminescence spectra and images of the resulting films are depicted in Figure 5. 3aSbF₆ exhibits red emission in both PS and PEO, which are inert hosts. The composites with PMMA display 3aSbF₆-dependent responses, varying from yellow to orange as the concentration of the Pt complex increases. The PMMA/3aSbF₆ films also contain a small 490 nm emission shoulder, which matches the monomer emission of 3aSbF₆ observed in fluid solutions, suggesting incomplete aggregation. In contrast with the other polymer matrices, the P4VP films exhibit primarily green emission (λₑₓ = 481 nm) and well-defined vibrational splitting patterns indicating the presence of monomeric 3aSbF₆.

Figure 5. Polymer-doped 3aSbF₆ films: (A) Solid-state emission spectra of 3aSbF₆ in polymer matrices:

ACS Paragon Plus Environment
PS (red), PEO (magenta), PMMA (orange), and P4VP (green); (B) film color contrasts observed under UV radiation (365 nm).

The lack of aggregation in this latter composite can be attributed to the pyridyl groups of P4VP coordinating to the metal centers, thereby impeding intermolecular interactions. These results are consistent with our hypothesis that the unique properties of the series 3a are dependent on changes in the Pt–Pt interactions, which are readily affected by the degree of aggregation.

In summary, we have found that platinum complexes with cationic cores encourage strong intermolecular associations, which promote liquid crystalline and mechanochromic behavior. Despite not possessing multiple alkyl side chains, complexes of the 3a series formed discotic liquid crystals with columnar hexagonal packing. We attribute the liquid crystallinity to significant intermolecular Pt–Pt interactions and enhanced dispersive forces due to distortions from square planarity. In the crystal form, we identified two distinct polymorphs of 3aSbF6, which can be interconverted by mechanical force, melting, or solvent exposure. We expect that other cationic organometallic structures will display similarly strong intermolecular interactions and that this approach will have utility in creating other materials that are mechanically, thermally, and chemically responsive.

ASSOCIATED CONTENT

Supporting Information. Details of experimental procedures. Additional characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
tswager@mit.edu

Author Contributions

§M.K. and S.L. contributed equally to this work.

Funding Sources

This work was supported by the National Science Foundation DMR-1005810 and the Department of Defense NDSEG Fellowship Program 2291100. No competing financial interests have been declared.

ACKNOWLEDGEMENTS

The authors thank Peter Mueller for his help solving the single crystal X-ray structure, Ellen Stetten for her help editing the manuscript, Phil Rausswug for his direction in using the integrating sphere setup, Baltasar Bonillo Fernandez for his help with the video, Dorthe Ravnbaek for her assistance with powder diffraction data analysis, and Lionel Moh for his help with DSC measurements.

REFERENCES

(9) (a) An alternative approach to promote liquid crystallinity includes the use of weak coordination polymer instead of space-filling side chains. (b) Serrette, A. G.; Swager, T. M. Angew. Chemie Int. Ed. 1994, 33, 2342.

(17) These compounds exhibit phosphorescent emission in solution under Ar atmosphere. For a general reference on the emissive properties of this class of materials see: Highly Efficient OLEDs with Phosphorescent Materials; Yersin, H.; Wiley-VCH: Hoboken, 2008.

TOC Graphic