Redox Switchable Thianthrene Cavitands

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1055/s-0036-1588659</td>
</tr>
<tr>
<td>Publisher</td>
<td>Thieme Publishing Group</td>
</tr>
<tr>
<td>Version</td>
<td>Original manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Feb 08 19:23:41 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/114719</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Redox Switchable Thianthrene Cavitands

<table>
<thead>
<tr>
<th>Journal:</th>
<th>SYNTHESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>Draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Ong, Wen ; MIT, Chemistry Bertali, Federico; Universita degli Studi di Parma, Chemistry Dalcanale, Enrico; Universita degli Studi di Parma, Chemistry Swager, Timothy; MIT, Chemistry</td>
</tr>
<tr>
<td>Keywords:</td>
<td>calixarenes, supramolecular chemistry, redox active, physical organic, host-guest systems</td>
</tr>
</tbody>
</table>

Abstract:

A redox activated vase-to-kite conformational change is reported for a new resorcinarene-based cavitand appended with four quinoxaline-fused thianthrene units. In its neutral state, the thianthrene-containing cavitand was shown by 1H NMR to adopt a closed vase conformation. Upon oxidation the electrostatic repulsion among the thianthrene radical cations promotes a kite conformation in the thianthrene-containing cavitand. The addition of acid produced a shoulder feature below 300 nm in cavitand’s UV-Vis spectrum that we have assigned to the vase-to-kite conformation change. UV-Vis spectroelectrochemical studies of the cavitand revealed a development of a similar shoulder peak consistent with the oxidation-induced vase-to-kite conformation change. To support that the shoulder peak is diagnostic for a vase-to-kite conformation change, a model molecule constituting a single quinoxaline wall of the cavitand was synthesized and studied. As expected UV-Vis spectroelectrochemical studies of the cavitand arm did not display a shoulder peak below 300 nm. The oxidation-induced vase-to-kite conformation is further confirmed by the distinctive upfield shift in 1H chemical shift of the methine signal.
Redox Switchable Thianthrene Cavitands

Wen Jie Ong
Federico Bertani
Enrico Dalcanale
Timothy M. Swager

* Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
b Department of Chemistry, University of Parma and INSTM RU, Parco Area delle Scienze 17/A, Parma 43124, Italy

Abstract A redox activated vase-to-kite conformational change is reported for a new resorcinarene-based cavitand appended with four quinoxaline-fused thianthrene units. In its neutral state, the thianthrene-containing cavitand was shown by 1H NMR to adopt a closed vase conformation. Upon oxidation the electrostatic repulsion among the thianthrene radical cations promotes a kite conformation in the thianthrene-containing cavitand. The addition of acid produced a shoulder feature below 300 nm in cavitand’s UV-Vis spectrum that we have assigned to the vase-to-kite conformation change. UV-Vis spectroelectrochemical studies of the cavitand revealed a development of a similar shoulder peak consistent with the oxidation-induced vase-to-kite conformation change. To support that the shoulder peak is diagnostic for a vase-to-kite conformation change, a model molecule constituting a single quinoxaline wall of the cavitand was synthesized and studied. As expected UV-Vis spectroelectrochemical studies of the cavitand revealed a shoulder feature below 300 nm. The oxidation-induced vase-to-kite conformation is further confirmed by the distinctive upfield shift in 1H chemical shift of the methine signal.

Key words redox active - thianthrene - resorcinarene cavitands - electrochemical switching - conformation change

Since the first reported synthesis of quinoxaline-bridged resorcinarene cavitand by Cram and co-workers in 1982, the diversity and complexity in both the structures and functionalities of cavitand derivatives have expanded dramatically. To date, cavitands have found utility as switches, receptors, sensors, catalysts, molecular hosts, molecular grippers and solid-phase microextractors. Many of these applications hinge on the ability of quinoxaline-bridged cavitands to adopt, often in response to an external stimulus, two spatially well-defined conformations: closed “vase” and open “kite” forms.

Resorcinarene cavitands with four quinoxaline bridges are known to undergo vase-kite conformational switching induced by changes in temperature, pH and metal ion concentration. To harness the unique conformational switching properties of these cavitands in electronic devices, we have sought to effect the vase-kite conformation by redox reactions. In 2006, Diederich reported electrochemical molecular switching using a tetraphiafulvalene (TTF)-bridged resorcinarene cavitand. The incorporation of electroactive TTF groups in quinoxaline-based cavitands is synthetically challenging and changes in the cyclic voltammetry and differential pulse voltammetry spectra were used as evidence for electrochemically-induced vase-to-kite conformation change. More recently, the same group developed quinone-based, redox-active resorcinarene cavitands that utilize intramolecular hydrogen bonding, which is only present in the reduced hydroquinone state, to stabilize the vase conformation. While all such a system successfully demonstrated the viability of redox switchable cavitands, the deployment of quinone-based cavitands in electronic devices is limited by the need for an external proton source (e.g. a protic solvent). Moreover, electrochemical kinetics requiring coupled delivery of protons is often sluggish. To circumvent these problems, Peris and co-workers recently reported a tetraferrocenyl-resorcinarene cavitand as a redox-switchable host for ammonium salts. However, this cavitand remains in vase conformation in both the neutral and +4 oxidation states.

Hence, there is still a need for redox-active resorcinarene cavitands that are readily synthesized and undergo rapid electrochemically-induced vase-kite conformation changes. Herein, we report the synthesis and conformational switching properties of a novel resorcinarene-based cavitand featuring four quinoxaline-fused thianthrene units (Figure 1).

Figure 1 Structure of thianthrene-containing cavitand 1

Thianthrene has been studied extensively for its redox activity, and a peculiar aspect of its redox chemistry is the geometric changes that accompany oxidation (Figure 2). In its neutral state, thianthrene is a bent molecule with a fold angle of 128° between the two planes of benzene rings. The folded structure appears to be favored in the neutral state to avoid repulsion between occupied 3p_{\pi} (sulfur) - \pi_{\pi} (benzene) orbitals. Upon oxidation, both
the radical cation and the dication are planar with a fold angle of \(\sim 180^\circ \) (Figure 2).\(^{18}\) We hypothesized that neutral 1 will adopt the vase conformation and with oxidation electrostatic repulsion among the thianthrene radical cations will favor the kite conformation (Figure 3). The combination of the thianthrene and cavitand conformational changes has the prospect to endow these systems with new electroactive complexing properties.

For electrochemical actuation cavitand 1 should be 1) in the vase conformation while in a neutral state at room temperature, and 2) convert to the kite conformation upon oxidation. Vase-to-kite conformation changes can be monitored by the distinctive methine chemical shift from ca. 5.5 ppm (vase conformation) to ca. 3.8 ppm (kite conformation),\(^{21}\) and by a change in the UV-Vis spectrum.\(^{11}\) Therefore, we sought to validate the abovementioned two criteria using both \(^1\)H NMR and UV-Vis spectroscopy.

The methine signal for cavitand 1 in neutral state at room temperature was 5.20 ppm and hence, based on literature data, 1 is in vase conformation. Quinoxaline-based cavitands are known to undergo vase-to-kite conformation change upon protonation and at low temperatures. Hence, we treated 1 with trifluoroacetic acid (TFA) and also did variable temperature studies. With addition of TFA the thianthrene-containing cavitand 1 adopts the kite conformation, as evident from the 5.20 ppm methine signal (vase conformation) shifting to 3.90 ppm (kite conformation) (Figure 4). Similarly, we observe a gradual upfield shift in the methine proton resonance with decreasing temperature (see Supporting Information).

To demonstrate electrochemical switching, thianthrene-containing cavitand 1 was synthesized (Scheme 1). Dibromo-thianthrene 2 was synthesized from an S\(_\text{Ar}\) reaction between benzene-1,2-dithiol and 1,2-dibromo-4,5-difluorobenzene as previously reported.\(^{19}\) Using a modified procedure,\(^{20}\) palladium-catalyzed Buchwald-Hartwig amination of 2 with benzophenone imine yielded diimine 3, which upon acidic hydrolysis followed by basic work-up afforded diamine 4. The condensation reaction of 4 with oxalic acid gave diol 5, which was in turn subjected to thionyl chloride to give dichloride 6, a key intermediate to this synthesis. Finally, cavitand 1 was obtained by S\(_\text{Ar}\) reaction of 6 with resorcinarene (R = C\(_6\)H\(_{13}\)). This six-step synthesis is accomplished in an overall yield of 28%.
Treatment with TFA produced a shoulder peak below 300 nm in the UV-Vis spectra of 1 (Figure 5), which led us to hypothesize that the vase-to-kite conformation change is responsible for the development of this shoulder peak. Compound 1 can also be oxidized electrochemically (Figure 6) and UV-Vis spectroelectrochemical measurements conducted above the oxidation peak potential (Figure 7) revealed the development of a similar shoulder peak below 300 nm. Again this is consistent with 1 undergoing a vase-to-kite conformation change upon oxidation. The peaks at 262 nm and 374 nm decrease in intensity, presumably as a result of the consumption of 1 by oxidation.

To provide further evidence that 1 undergoes a vase-to-kite conformation change upon oxidation, 7, which constitutes a single quinoxaline wall of 1, was synthesized (Scheme 2). A low concentration of starting materials was required to produce 7, presumably at higher concentrations the SwAr reaction produces oligomers.
In the absence of the resorcinarene framework, the single cavitand wall 7 should not have the vase-to-kite signatures of the shoulder peak in the UV-Vis spectra. Indeed, the UV-Vis spectra of 7 under different TFA concentrations and spectroelectrochemical studies did not display the shoulder peak below 300 nm (see Supporting Information). As a result, we are confident that this UV-Vis spectroscopic feature is specific to the cavitand and its vase-to-kite conformation change. We observe a new peak at 313 nm, corresponding to the newly formed radical cation of 7, and a reduction in peak intensities at 264 nm and 363 nm, similar to 1.

Although UV-Vis spectroscopy provided some evidence for vase-to-kite conformation change upon oxidation, the most definitive evidence is provided by NMR analysis of chemically oxidized cavitand 1. Nitrosyl tetrafluoroborate (NOBF₄) has been previously reported to oxidize thianthrene, generating the thianthrene radical cation tetrafluoroborate, and we treated cavitand 1 with NOBF₄ in deuterated chloroform. However, detecting definitive changes in the methine’s chemical shift is potentially complicated by the fact that the oxidized material contains radical cations. Oxidation of the quinoxaline wall 7 showed spectrum wherein the methylene chemical shift was largely unaffected (Figure 8). The observed splitting is presumably due to the two methylene protons having slightly different chemical environments after oxidation. Subjecting cavitand 1 to the same oxidation conditions provided a definitive change in methine chemical shift from 5.20 ppm (vase conformation) to 3.71 ppm (kite conformation) (Figure 9). EPR spectra of both oxidized 1 and 7 showed a single signal with giso = 2.0075 and 2.0076 respectively, suggesting the formation of radical cations from the chemical oxidation. Given that we were able to measure the NMR spectra on this system suggests that the radical cations are sufficiently removed from the methine protons such that they are not dramatically broadened.

In summary, we have successfully demonstrated that cavitand 1 undergoes vase-to-kite conformation change upon oxidation. Thianthrene cavitands represent an attractive scaffold for the formation of new functional supramolecular structures with switchable conformations. Our ongoing studies will focus on generating related functional thianthrene-containing cavitands with applications in electronics and separations.

The experimental section has no title; please leave this line here.

NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts were reported in ppm and referenced to residual solvent peaks (CDCl₃: δ 7.26 ppm for 1H, δ 77.16 ppm for 13C, DMSO: δ 2.50 ppm for 1H, δ 39.52 ppm for 13C). UV-Vis spectra were obtained using a diode array spectrometer. Electrochemical measurements were carried in a three-electrode cell configuration consisting of a quasi-intental Ag wire reference electrode submerged in 0.01 AgNO₃ / 0.1 M tetrabutylammonium hexafluorophosphate (TBAPPF₆) in anhydrous CH₂Cl₂ with TBAPPF₆ as supporting electrolyte, a Pt button (1.6 mm in diameter) electrode as the working electrode, and a Pt coil as the counter electrode. The ferrocene/ferroacenium (Fc/Fc⁺) redox couple was used as an external reference. EPR spectra were obtained operating as the X-band with 100 kHz modulation at room temperature. All air and water sensitive synthetic manipulations were performed under an argon atmosphere using standard Schlenk techniques. Anhydrous DMF and 1,2-dichloroethane were purchased from Aldrich as Sure-Seal Bottles and used as received. CH₂Cl₂ and toluene were purified by passage through two alumina columns of an Innovative Technologies purification system. All other chemicals were of reagent grade and used as received.

Procedures

2,3-Dibromothianthrene (2)
To a 3-neck flask containing a solution of triethylamine (0.55 mL) in anhydrous DMF (5 mL), 1,2-benzenediethiol (0.75 mL, 6.53 mmol) in DMF (3 mL) were added via different syringes drop by drop at room temperature under argon. The reaction mixture was then stirred overnight at 80 °C. After cooling down to room temperature, the reaction mixture was then concentrated in vacuo and added to CH2Cl2 (50 mL) and the solution was washed with 1 M HCl solution and water. It was then dried with MgSO4 and the solvent was removed in vacuo. The crude product was further purified by gel column chromatography eluting with hexane/CH2Cl2 = 6/1 to yield 2.

Yield: 1.20 g (59%); white powder; mp 159−161 °C.

1H NMR (400 MHz, CDCl3) δ: 7.71 (s, 2H), 7.47 (dd, 2H, J = 5.8, 3.3 Hz), 7.27 (dd, 2H, J = 5.8, 3.3 Hz).

13C NMR (100 MHz, CDCl3) δ: 136.8, 134.7, 132.7, 129.1, 128.3, 123.8.

1,1'-二-(Thianthrene-2,3-diyl)bis(1,1-diphenylmethanimine) (3)

A solution of anhydrous toluene with Pd(OAc)2 (0.167 g, 0.920 mmol) and rac-BINAP (0.75 g, 1.26 mmol) in anhydrous DMF (120 mL). The reaction mixture was stirred at room temperature for 30 mins and then concentrated in vacuo. The reaction mixture was then stirred under reflux overnight. After cooling to room temperature, the reaction mixture was filtered and the residue was collected and dried to give 3.

Yield: 1.79 g (92%); light brown powder; mp >300 °C.

1H NMR (400 MHz, CDCl3) δ: 7.58 (d, 4H, J = 5.8, 3.4 Hz), 7.36 (dd, 2H, J = 5.8, 3.4 Hz), 7.27 (s, 2H).

13C NMR (100 MHz, CDCl3) δ: 154.9, 134.6, 128.9, 128.4, 128.3, 126.0, 114.7.

HRMS (DART): m/z [M+H]+ calculated for C41H34N6OS5: 928.9954; found: 928.9934.

2,3-二氯苯并[5,6]1,4-二噻嗪[2,3-g]喹啉 oxaline (6)

To a slurry of 5 (1.79 g, 5.86 mmol) and thionyl chloride (1.3 mL, 17.6 mmol) in anhydrous 1,2-dichloroethane (100 mL) was added 8 drops of anhydrous DMF. The reaction was stirred under reflux overnight. After cooling to room temperature in vacuo, the crude product was purified by gel column chromatography eluting with hexane/toluene = 1/1 to toluene to afford 6.

Yield: 1.69 g (85%); bright yellow powder; mp 275−277 °C.

1H NMR (400 MHz, CDCl3) δ: 8.09 (s, 2H), 7.53 (dd, 2H, J = 5.8, 3.4 Hz), 7.32 (dd, 2H, J = 5.8, 3.4 Hz).

13C NMR (100 MHz, CDCl3) δ: 145.9, 140.5, 140.0, 133.8, 129.1, 128.6, 126.3.

HRMS (ESI): m/z [M]+ calculated for C41H34Cl8O2S5: 335.9344; found: 353.9355.

Thianthrene-containing cavitation (1)

To a Schlenk flask containing resorcinarene (R = C6H4)12 (0.167 g, 0.202 mmol) and KOH (0.419 g, 3.03 mmol) under argon was added anhydrous DMF (20 mL). After stirring the reaction at room temperature for 20 mins, 6 (0.300 g, 0.890 mmol) was added and the reaction was stirred overnight at 85 °C. After cooling to room temperature, the reaction mixture was poured into 1 M HCl solution. The residue was collected, dissolved in CH2Cl2, and filtered to remove orange residue. The filtrate was collected and concentrated to give the crude product. The crude product was purified by recrystallization (DCM/EthOH) to afford 1.

Yield: 0.272 g (71%); yellow powder; mp >300 °C.

1H NMR (400 MHz, CDCl3) δ: 7.92 (s, 2H), 7.91 (s, 4H), 7.52 (dd, 8H, J = 5.8, 3.6 Hz), 7.19 (dd, 8H, J = 5.8, 3.4 Hz), 5.20 (s, 4H), 2.20 (dd, 8H, J = 14.2, 7.5 Hz), 1.41−1.28 (m, 8H), 0.89 (s, 12H, J = 6.8 Hz).

13C NMR (100 MHz, CDCl3) δ: 152.6, 151.9, 139.0, 138.2, 135.1, 134.6, 129.0, 128.1, 121.6, 121.3, 117.9, 35.1, 32.4, 31.9, 29.4, 27.8, 22.8, 14.2.

HRMS (MALDI): m/z [M]+ calculated for C76H46Cl4O10S4: 1884.47; found: 1884.57.

5/(6/Benzo[5,6]1,4-dithiino[2,3-g]dibenzo[5,6,8,9]1,4-dioxin o[2,3-b]quinoxaline (7)

To a Schlenk flask containing bis(2-hydroxyphenylimidazole) (59.3 mg, 0.297 mmol) and K2CO3 (164 mg, 1.19 mmol) under argon was added anhydrous DMF (120 mL). The reaction mixture was stirred at room temperature for 20 mins before 6 (100 mg, 0.297 mmol) was added. The reaction was then heated to 85 °C and stirred overnight. After cooling to room temperature, the crude mixture was concentrated in vacuo and precipitated into a 1 M HCl solution. The suspension was filtered and the resulting crude solid was purified by recrystallization (CHCl3/EthOH) to obtain 7.

Yield: 40 mg (29%); yellow powder; mp >300 °C.

1H NMR (400 MHz, CDCl3) δ: 7.58 (s, 2H), 7.48 (dd, 8H, J = 5.8, 3.4 Hz), 7.35−7.33 (m, 2H), 7.25 (dd, 2H, J = 5.8, 3.4 Hz), 7.17−7.15 (m, 6H, 4.1 s, 2H).

13C NMR (100 MHz, CDCl3) δ: 150.9, 148.9, 136.9, 135.3, 134.9, 132.0, 131.2, 129.0, 128.0, 127.4, 125.8, 125.5, 121.6, 30.0.

HRMS (DART): m/z [M+H]+ calculated for C41H34O11S5: 2470.0726; found: 2465.0711.

Acknowledgment
This work was supported by the National Science Foundation (NSF) Center for Energy Efficient Electronics Science (E3S) (Award ECCS-0939514). W.J.O. acknowledges the support of Agency for Science, Technology and Research (A*STAR), Singapore for a graduate scholarship. F.B. thanks FIRB RINAME (RBAP114AMK) for financial support.

Supporting Information
YES
Primary Data
NO

References

(1) New address: F. Bertani, School of Chemistry, University of Tokyo, Department of Applied Chemistry, Japan.
Redox Switchable Thianthrene Cavitands

Wen Jie Ong,a Federico Bertani,b Enrico Dalcanale,b Timothy M. Swagera,*

aDepartment of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

bDepartment of Chemistry, University of Parma and INSTM RU, Parco Area delle Scienze 17/A, Parma 43124, Italy

E-mail: tswager@mit.edu

Supporting Information

List of Contents

1H and 13C NMRs of Compounds ..2
Plot of temperature against methine chemical shift of 1 ...9
UV-Vis spectrum of 7 at different TFA concentrations..10
Spectroelectrochemistry of 7...11
EPRs of Chemically Oxidized 1 and 7 ..12
1H NMR of 2 in CDCl$_3$
1H NMR of 3 in CDCl$_3$

13C NMR of 3 in CDCl$_3$
1H NMR of 4 in DMSO-d_6

13C NMR of 4 in DMSO-d_6
1H NMR of 5 in DMSO-d_6

13C NMR of 5 in DMSO-d_6
1H NMR of 6 in CDCl$_3$

13C NMR of 6 in CDCl$_3$
^{1}H NMR of 1 in CDCl$_3$

^{13}C NMR of 1 in CDCl$_3$
1H NMR of 7 in CDCl$_3$

13C NMR of 7 in CDCl$_3$
Plot of temperature against methine chemical shift of 1 in CDCl₃
UV-Vis spectrum of 7 in CH$_2$Cl$_2$ at different TFA concentrations
Spectroelectrochemistry of 7 in CH$_2$Cl$_2$
EPR of Chemically Oxidized 1

EPR of Chemically Oxidized 7