Measurement of the inclusive-isolated prompt-photon cross section in p[overline]p collisions using the full CDF data set

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.96.092003</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Apr 01 03:57:40 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/114802</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of the inclusive-isolated prompt-photon cross section in $p\bar{p}$ collisions using the full CDF data set

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, ICREA, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 University of California, Davis, Davis, California 95616, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
10 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
11 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
12 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
13 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
14 Duke University, Durham, North Carolina 27708, USA
15 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
16 University of Florida, Gainesville, Florida 32611, USA
17 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
18 University of Geneva, CH-1211 Geneva 4, Switzerland
19 Glasgow University, Glasgow G12 8QQ, United Kingdom
20 Harvard University, Cambridge, Massachusetts 02138, USA
21 Division of High Energy Physics, Department of Physics, University of Helsinki, FIN-00014, Helsinki, Finland; Helsinki Institute of Physics, FIN-00014 Helsinki, Finland
22 University of Illinois, Urbana, Illinois 61801, USA
23 The Johns Hopkins University, Baltimore, Maryland 21218, USA
24 Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
25 Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea; Ewha Womans University, Seoul, 120-750, Korea
26 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
27 University of Liverpool, Liverpool L69 7ZE, United Kingdom
28 University College London, London WC1E 6BT, United Kingdom
29 Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
30 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
31 University of Michigan, Ann Arbor, Michigan 48109, USA
32 Michigan State University, East Lansing, Michigan 48824, USA
33 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
34 University of New Mexico, Albuquerque, New Mexico 87131, USA
35 The Ohio State University, Columbus, Ohio 43210, USA
36 Okayama University, Okayama 700-8530, Japan
37 Osaka City University, Osaka 558-8585, Japan
38 University of Oxford, Oxford OX1 3RH, United Kingdom
39 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
40 University of Padova, I-35131 Padova, Italy
41 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
42 Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
43 University of Pisa, I-56127 Pisa, Italy
44 University of Siena, I-56127 Pisa, Italy
45 Scuola Normale Superiore, I-56127 Pisa, Italy
46 INFN Pavia, I-27100 Pavia, Italy
47 University of Pavia, I-27100 Pavia, Italy
A measurement of the inclusive production cross section of isolated prompt photons in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96$ TeV is presented. The results are obtained using the full Run II data sample collected with the Collider Detector at the Fermilab Tevatron, which corresponds to an
I. INTRODUCTION

The measurement of the cross section for the production of inclusive prompt photons (γ) in proton-antiproton ($p\bar{p}$) collisions is an important test of perturbative quantum chromodynamics, probing the parton distribution functions (PDFs), and the parton-to-photon fragmentation functions (FFs) [1–3]. In addition, prompt-photon production is a major background for many other standard model (SM) processes such as Higgs-boson decays into photon pairs ($H \rightarrow \gamma\gamma$) and in searches for non-SM physics with final states containing photons [4–6]. The term “prompt” identifies photons that are produced directly in the hard interaction and do not arise from hadron decays. In $p\bar{p}$ collisions, events with prompt photons with transverse energy E_T^γ [7] smaller than approximately 100 GeV are produced predominantly via quark-gluon Compton scattering $qg \rightarrow q\gamma$, while at higher energies, the quark-antiquark annihilation process $q\bar{q} \rightarrow \gamma\gamma$ plays a dominant role. In addition, prompt photons are produced by initial- and final-state radiation from partons; however, this contribution is suppressed by requiring the photon to be isolated. The first measurement of the prompt-photon production cross section in hadron collisions came from the CERN Intersecting Storage Rings pp collider, followed by measurements at the \SppS collider [8–11]. More recent prompt-photon measurements have been performed at the Fermilab Tevatron Collider by the CDF and D0 collaborations using $p\bar{p}$ collisions collected at a center-of-mass energy $\sqrt{s} = 1.8$ and 1.96 TeV [12–14] and at the CERN Large Hadron Collider by the ATLAS and CMS collaborations using pp collisions at $\sqrt{s} = 7$ [15–19], 8 [20], and 13 TeV [21]. This article presents a measurement of the inclusive cross section for isolated prompt photons over the range $30 < E_T^\gamma < 500$ GeV, based on the full data set collected by the Collider Detector (CDF) during Run II (2001–2011) of the Fermilab Tevatron Collider and corresponding to an integrated luminosity of 9.5 fb$^{-1}$ [22].

II. CDF II DETECTOR

The CDF II detector [23] is a general-purpose spectrometer at the Fermilab Tevatron collider. It has a cylindrical geometry with approximate forward-backward and azimuthal symmetry. It includes a charged-particle tracking system consisting of silicon microstrip detectors and a cylindrical open-cell drift chamber, designed to measure charged-particle trajectories (tracks) and momenta. The tracking system is contained within a 1.4 T axial magnetic field. It is surrounded by electromagnetic (EM) and hadronic calorimeters segmented in projective towers and used to identify and measure the energy and position of photons, electrons, hadrons, and clusters of particles (jets). The central calorimeters cover the region $|\eta| < 1.1$ and have electromagnetic transverse-energy resolution of $\sigma(E_T^\gamma)/E_T^\gamma = 13.5\%/\sqrt{E_T^\gamma}\text{(GeV)} \oplus 1.5\%$ and a tower segmentation of $\Delta\eta \times \Delta\phi \approx 0.1 \times 15^\circ$ in pseudorapidity-angular space [7]. At a depth corresponding approximately to the maximum energy density in the development of a typical EM shower, the EM calorimeters contain detectors that measure the transverse shower profile. The electromagnetic compartments of the calorimeter are equipped with a timing system measuring the arrival time of particles that deposit energy in each tower [24]. Drift chambers and scintillation counters located outside the calorimeters identify muons.

III. DATA AND SIMULATED SAMPLES

A. Event selection

Photons are reconstructed using clusters of (up to three) adjacent towers above threshold in the central EM calorimeter [25]. The pseudorapidity is restricted to the fiducial region $|\eta| < 1.0$. The data are collected using a three-level online event-filtering system (trigger) [26] that selects events with at least one EM cluster consistent with a photon in the final state. Since there can be multiple collisions in the same bunch crossing, the event primary vertex ($p\bar{p}$ interaction point) is chosen to be the one that results in the best balance of the p_T of the photon; the z position of the reconstructed primary vertex is required to be within 60 cm of the center of the detector. The photon transverse energy is corrected to account for nonuniformities in the calorimeter response and calibrated using electrons from reconstructed Z-boson decays [27]. Photon candidates are required to satisfy $E_T^\gamma > 30$ GeV and to meet requirements on calorimeter isolation [28], on track isolation [28], and on the ratio of the energy deposited in the hadronic calorimeter to the energy in the EM cluster [25]. If more than one prompt-photon candidate is reconstructed ($\approx 1\%$ of the photon events), that with the highest E_T^γ (leading photon) is chosen. Events with electrons from Z- and W-boson decays, which can be misidentified as...
photon transverse energy [7] of the event to be less than 80% of the transverse energy of the photon candidate. This requirement also reduces backgrounds arising from other sources that lead to energy imbalance, such as muons from cosmic rays that may emit bremsstrahlung radiation in the calorimeter and muons from beam-halo interactions with the beam pipe, which may in turn interact with the detector material producing photons. Finally, the EM signal timing is required to be consistent with the $\bar{p}p$ collision time [25]. The residual backgrounds from Z- and W-boson decays, cosmic rays, and the beam halo are expected to be less than 1% of the total sample. After applying all the selection criteria, 2.1×10^6 events remain in the $\gamma + X$ data sample. The dominant remaining backgrounds are due to jets misidentified as photons.

B. Simulated events

Simulated events from the PYTHIA Monte Carlo (MC) generator [29] are used in the background estimation and to evaluate the product of the detector acceptance (A) and the efficiency (ϵ) for signal events. Monte Carlo samples are generated with PYTHIA 6.216, a parton-shower generator at leading-order (LO) in the strong-interaction coupling, with the CTEQ5L PDFs [29]. The PYTHIA predictions include $2 \rightarrow 2$ matrix-element subprocesses. Higher-order QCD corrections are included by initial- and final-state parton showers. For the study of systematic uncertainties and for comparisons with the final results, events are also generated with the SHERPA 1.4.1 MC generator [30] with CT10 PDFs [31]. The SHERPA predictions include all the tree-level matrix-element amplitudes with one photon and up to three partons. This calculation features a parton-jet matching procedure to avoid an overlap between the phase-space descriptions given by the fixed-order matrix-element subprocesses and the showering and hadronization in the multijet simulation. The TUNE A [32,33] underlying event [34] model is used in the PYTHIA calculation. Monte Carlo events are passed through a GEANT-based simulation of the detector [35] and subjected to the same reconstruction and selection requirements as the data.

IV. SIGNAL FRACTION

After the event selection, the remaining background comes from the decays of hadrons (such as $\pi^0 \rightarrow \gamma\gamma$); they cannot be rejected on an event-by-event basis, so a statistical background-subtraction technique is used to measure the signal cross section. To evaluate the signal fraction, an artificial neural network (ANN) is defined using as input the shower-shape, transverse profile, and isolation variables [36]. The inclusive-photon simulation is matched to data by applying the same corrections as derived in Refs. [13,37]. Further, MC events are reweighted to the observed instantaneous luminosity profile to account for luminosity-dependent effects. The expected ANN output distributions (“templates”) for signal and background samples are constructed using PYTHIA inclusive-photon and dijet MC predictions, respectively. These templates are validated using the $Z \rightarrow e^+e^-$ and dijet data samples [37]. To estimate the prompt-photon rate, the ANN output distribution observed in data is fit to a linear combination of signal and background ANN templates, using a binned maximum-likelihood method that accounts for uncertainties on both data and templates [38].

A fit is performed in each E_T^γ bin, yielding prompt-photon fractions in the E_T^γ range from 30 up to 500 GeV, as shown in Fig. 1 for an example E_T^γ bin. Figure 2 shows the resulting signal fraction (photon purity) as a function of E_T^γ. The systematic uncertainty on the signal fraction is estimated by varying the fit configurations (i.e., different binning and different fitting method [41]) and the values of the ANN input variables within their uncertainties. The dominant uncertainty on the shape of the ANN templates originates from the modeling of calorimeter isolation energy. The overall systematic uncertainty on the signal fraction is estimated to be 8% at low E_T^γ, 6% at high E_T^γ, and 3% on average for the intermediate E_T^γ range $40 < E_T^\gamma < 300$ GeV.

FIG. 1. Observed ANN output distribution (points), the templates for signal and background processes, and the resulting fit of the templates to the data distribution, for events restricted to the photon transverse-energy bin 110–130 GeV. The left-hatched histogram (blue in color) represents the background, and the right-hatched histogram (red in color) represents the signal, normalized so that the scale of the sum of the templates equals the total number of data events.
V. CROSS SECTION MEASUREMENT

The differential cross section for the production of isolated prompt photons in a given phase-space bin is calculated as

$$\frac{d^2\sigma}{dE_T^{'d}\eta} = \frac{N_f^{'f}}{\Delta E_T^{'d} \Delta \eta} \times \epsilon$$,

where N is the number of data events in a given $E_T^{'d}$ bin after applying the full selection, $f^{'f}$ is the signal fraction, $\Delta E_T^{'d}$ is the width of the $E_T^{'d}$ bin, \mathcal{L} is the integrated luminosity, and ϵ is a correction factor. Since the cross section is measured for $|\eta^{'f}| < 1.0$, $\Delta \eta^{'f}$ is set to 2.0.

The factor ϵ combines corrections for acceptance, resolution effects, and efficiencies for selecting and reconstructing the photon to infer the results at the particle level (i.e., generator level). The correction is computed from the bin-by-bin fraction of simulated particle-level prompt photons in the reconstructed signal events, as determined by the PYTHIA MC calculation. The numerator is obtained by applying the same requirements to the PYTHIA-simulated events as those applied to data. The denominator is obtained by selecting generated particles [42] in the fiducial region, with $E_T^{'f} > 30$ GeV and the same energy isolation requirement as in the data. The photon efficiency is calibrated by comparing the selection efficiencies for $Z \rightarrow e^+e^-$ events in data and in simulation [37]. The data-to-simulation ratio is then used to correct the simulated photon efficiency.

The largest sources of systematic uncertainty for the factor ϵ arise from the photon energy scale at high $E_T^{'f}$ (≈6%) and from the MC generator choice (≈8%). The latter is determined by a comparison of results from the PYTHIA and SHERPA MC calculations. The overall systematic uncertainty on the factor ϵ is estimated to be approximately of 10%.

VI. THEORETICAL PREDICTIONS

The predicted prompt-photon production cross section is calculated using the fixed-order next-to-leading-order (NLO) program mcfm 6.8 including nonperturbative fragmentation at LO [43]. The calculation uses the MRST2008 NLO PDFs and the GdRG LO FFs [44]. The mcfm prediction is a parton-level calculation that does not include a model for the underlying event energy. This prediction is corrected for the nonperturbative effects of parton-to-hadron fragmentation and for underlying event energy. A correction factor $C_{UE} = 0.91 \pm 0.03$ is defined as the overall ratio of the cross section obtained using the PYTHIA MC generator, with and without modeling of both multiple-parton interactions and hadronization [13].

The nominal renormalization (μ_R), factorization (μ_F), and fragmentation (μ_f) scales are set to the photon transverse energy ($\mu_R = \mu_F = \mu_f = E_T^{'f}$). The scale uncertainty is evaluated by varying the three scales simultaneously between the extreme values $E_T^{'f}/2$ and $2E_T^{'f}$.

In addition to comparison with the perturbative-QCD prediction above, we also compare the measured cross section to predictions from the PYTHIA and SHERPA MC generators. Both are calculated at the particle level, meaning that the photon isolation energy is estimated using generated hadrons and the selection criteria are applied to the hadron jets and are directly comparable to our measurement.

VII. RESULTS

The differential cross section results for the production of isolated prompt photons are listed in Table I, together with statistical and systematic uncertainties. The systematic uncertainties on the differential cross section are determined by propagating the sources of uncertainty considered for $f^{'f}$ and ϵ. At low $E_T^{'f}$, the total systematic uncertainty is dominated by the uncertainties in the ANN-template modeling (≈16%), while the dependence of the ϵ factors on the event generator gives the dominant contribution (≈10%) to the uncertainty at intermediate and high $E_T^{'f}$. The uncertainty from the energy scale introduces an uncertainty on the measured cross section that varies between ≈3% and ≈8% as $E_T^{'f}$ increases. Finally, there is an additional 6% uncertainty on the integrated luminosity [45].

These results are compared with the theoretical predictions in Fig. 3. The ratio of the measured cross section over the predicted ones is shown in Fig. 4. The full error bars on the data points represent statistical and systematic uncertainties summed in quadrature. The inner error bars show statistical uncertainties only. The NLO predictions are shown with their theoretical uncertainties arising from the choice of factorization, renormalization, and fragmentation scales.
The NLO calculations agree with the data up to the highest E_T^γ-values considered. Observed cross sections are moderately larger than the central values for the NLO calculation for low E_T^γ but agree within the theoretical uncertainty of the NLO calculation.

The shape of the measured-cross section distribution is well described by both models. The PYTHIA prediction underestimates the observed cross section by more than a factor of 1.5 across the whole E_T^γ range. This is possibly due to the lack of higher-order terms in the PYTHIA photon + jet matrix elements. The SHERPA calculation is approximately 1.1 to 1.2 times larger than the observed cross section, nearly uniformly across the E_T^γ range. This calculation includes up to three jet emissions associated with the observed photon, but it is missing virtual corrections in the matrix elements of the subprocesses, which could possibly explain the discrepancy with data. Other possible reasons are related to nonperturbative QCD processes, such as mistuned fragmentation subprocesses leading to excessive rates of photon production through fragmentation.

VIII. CONCLUSIONS

A measurement of the differential cross section for the inclusive production of isolated prompt photons in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV is presented using the full data set collected with the CDF II detector at the Tevatron. The cross section is measured as a function of photon transverse energy E_T^γ in the central pseudorapidity region $|\eta| < 1.0$. The measurement spans the E_T^γ kinematic range from 30 to 500 GeV, thus extending the reach by 100 GeV from the previous CDF measurement [13]. Comparisons of our measurement to three theoretical predictions are discussed. Both PYTHIA and SHERPA predictions correctly describe the shape of the differential cross section. The PYTHIA generator predicts a smaller cross section compared to the...
data and the SHERPA prediction. The data are in good agreement with the fixed-order NLO MCFM calculation.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the European Union community Marie Curie Fellowship Contract No. 302103.

[7] A cylindrical coordinate system (r, θ, z) is used with origin at the geometric center of the detector; r is the radius from the nominal beam line, φ is the azimuthal angle, and the +z axis points along the incident proton beam direction. The polar angle θ with respect to the proton beam is used to define the pseudorapidity η = −ln(tan(θ/2)). Transverse energy and transverse momentum are defined as ET = E sin(θ) and pT = p sin(θ), respectively. The missing transverse energy is given by ΔET = ∑ Et/ni, where i is the calorimeter tower number and ̂ni is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower.
[22] The data set for this measurement corresponds to an integrated luminosity four times larger than that of the previously published CDF measurement [13].
[28] The calorimeter isolation is defined as the transverse-energy deposits in the EM calorimeter in the isolation cone minus the transverse energy in the EM cluster of the photon. The isolation cone is defined to have a radius R = √(Δη)² + (Δφ)² = 0.4. The track isolation is defined as the scalar sum of the transverse momenta of all tracks originating from the primary vertex of the event and lying within a cone of radius R = 0.4.

[34] The underlying event is that part of the event final state that cannot be directly associated with the primary hard 2 → 2 parton-parton scattering and consists of the beam remnants plus possible contributions from initial- and final-state gluon radiation and additional parton-parton interactions.

[38] As implemented in TFRACTIONFITTER, which is a class of the CERN ROOT analysis software [39,40]. The fit fractions are provided with an error estimate which takes into account both data and Monte Carlo statistical uncertainties. TFRACTIONFITTER errors are corrected based on pseudoexperiments [41].

[42] Generated particles are the stable particles, i.e., particles with a lifetime of at least 10 ps in events from MC generators, without any simulation of the interaction of these particles with the detector or any additional proton-antiproton interactions.

