Encoding of vinylidene isomerization in its anion photoelectron spectrum

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>DeVine, Jessalyn A. et al. "Encoding of vinylidene isomerization in its anion photoelectron spectrum." Science 358, 6361 (October 2017): 336-339 © 2017 The Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1126/science.aao1905</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Association for the Advancement of Science (AAAS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Nov 01 19:52:02 EDT 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/115219</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Title: Encoding of vinylidene isomerization in its anion photoelectron spectrum

Authors: Jessalyn A. DeVine,† Marissa L. Weichman,† Benjamin Laws, Jing Chang, Mark C. Babin, Garikoitz Balerdi, Changjian Xie, Christopher L. Malbon, W. Carl Lineberger, David R. Yarkony, Robert W. Field, Stephen T. Gibson, Jianyi Ma, Hua Guo, Daniel M. Neumark

Affiliations:
1Department of Chemistry, University of California, Berkeley, California 94720, United States.
2Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia.
3Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610067, China.
4Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid (Unidad Asociada I+D+I CSIC), 28040 Madrid, Spain.
5Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States.
6Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.
7JILA and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, United States.
8Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
9Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

*Correspondence to: majianyi81@163.com, dneumark@berkeley.edu
†These authors contributed equally to this work.

Abstract: Vinylidene-acetylene isomerization is the prototypical example of a 1,2-hydrogen shift, one of the most important classes of isomerization reactions in organic chemistry. This reaction was investigated with quantum state specificity by high-resolution photoelectron spectroscopy of the H_2CC^- and D_2CC^- anions and quantum dynamics calculations. Peaks in the photoelectron spectra are considerably narrower than in previous work and reveal subtleties in the isomerization dynamics of neutral vinylidene, as well as vibronic coupling with an excited state of vinylidene. Comparison with theory permits assignment of most spectral features to eigenstates dominated by vinylidene character. However, excitation of the ν_6 in-plane rocking mode in H_2CC leads to appreciable tunneling-facilitated mixing with highly vibrationally-excited states of acetylene, leading to broadening and/or spectral fine structure that is largely suppressed for analogous vibrational levels of D_2CC.
One Sentence Summary: Experiment and theory are combined to reveal the quantum state-specific dynamics of the 1,2-hydrogen shift from vinylidene to acetylene, the prototype of one the most important isomerization mechanisms in organic chemistry.

Main Text: The 1,2-hydrogen shift is the simplest bond-breaking isomerization reaction in organic chemistry (1), and the prototypical example of this process is the isomerization of vinylidene (H₂CC) to acetylene (HCCH). Vinylidene, the smallest unsaturated carbene (2), has been implicated as a transient intermediate in many chemical processes (3-6), but is of particular interest as a high-energy form of acetylene (7). From the perspective of chemical physics, the H₂CC⇌HCCH isomerization (Fig. 1) is a benchmark unimolecular reaction; the small number of atoms allows application of sophisticated theoretical methods to describe the isomerization dynamics (8-13), and the interplay between theory and experiment has provided a great deal of insight into this reaction (14, 15). The low barrier (~0.1 eV, see Figure 1) for vinylidene isomerization (8, 10) is responsible for extensive tunneling interactions with acetylene states, and over the past several decades considerable effort has been invested in probing this isomerization from both sides of the barrier. On the acetylene side, Field and co-workers (15, 16) have searched for spectroscopic signatures of vinylidene in highly vibrationally excited levels of HCCH, where the minimum energy isomerization path lies along the local-bending vibrational coordinates. Alternatively, the vinylidene well can be accessed directly by photodetachment of the vinylidene anion (H₂CC⁻), and several research groups have used this approach to probe the spectroscopy and dynamics of neutral H₂CC (17-21).

Figure 1. Energy diagram for the neutral vinylidene-acetylene isomerization. Energies (in eV, relative to HCCH) and geometries were obtained from Ref. (21). Experimental energies for the anions of both isomers are shown in gray; the H₂CC⁻ value was obtained from the present work, whereas the HCCH⁻ value was estimated from electron scattering experiments (28). The CH—CH Jacobi coordinate system used to describe the isomerization is shown as an inset.
Previous photodetachment-based experiments have led to differing views regarding the timescale on which vinylidene isomerizes to acetylene. In an anion photoelectron spectroscopy study, Ervin et al. (18) observed that transitions to the \tilde{A}_1 state of H$_2$CC were considerably broader than those arising from detachment to the higher-lying \tilde{B}_2 state, for which the barrier to isomerization is significantly larger. The extra broadening of ground-state band features was attributed to isomerization on a sub-picosecond timescale. In contrast, later Coulomb explosion imaging (CEI) experiments by Vager (19) indicated that neutral H$_2$CC formed by anion photodetachment is stable on at least a microsecond timescale. It should be noted that lifetime is an ill-defined concept in such a system, as both acetylene and vinylidene are bound species whose eigenstates cannot form a true continuum. However, individual eigenstates may have varying degrees of mixing between zeroth-order states of the two isomers, especially near and above the isomerization barrier. This mixing has been explored in quantum dynamical simulations of the anion photoelectron spectrum starting with work by Bowman (10), who found the simulated spectrum to be dominated by sharp peaks associated with isolated vinylidene eigenstates.

The aim of the current work was to experimentally characterize individual vibrational eigenstates of vinylidene and to understand the vibrational mode dependence of mixing with acetylene. To this end, we measured photodetachment spectra of H$_2$CC$^-$ and D$_2$CC$^-$ anions at higher resolution than previous work (18) using two complementary experimental methods, high-resolution photoelectron imaging (HR-PEI) (22) and slow electron velocity-map imaging of cryogenically-cooled anions (cryo-SEVI) (23). The experiments are supplemented by full-dimensional quantum dynamics calculations on a highly accurate ab initio-based potential
energy surface, carried out previously for the H$_2$CC-HCCH system ($12, 24$) and expanded here by covering larger sections of configuration space in both isomeric regions.

The combination of experiment and theory shows that photodetachment directly accesses eigenstates that are mostly localized in the vinylidene well. The H$_2$CC and D$_2$CC isotopologues both undergo vibronic coupling to a high-lying vinylidene electronic state, which results in the appearance of nominally Franck-Condon (FC) forbidden transitions to neutral vibrational levels with excitation along non-totally-symmetric (b_2) modes. Most notable is the vibronic coupling-induced observation of features involving odd quanta of excitation in the in-plane rocking (v_6) mode, which, for the H$_2$CC isotope, mixes strongly with the local-bending modes in the acetylene well. Isomerization is largely encoded in the spectra of vibrational states that involve excitation of this mode.

The experiments reported here used velocity-map imaging (VMI) detection schemes to measure the electron kinetic energy (eKE) distribution and photoelectron angular distribution (PAD) that result from electron photodetachment of mass-selected anions. The VMI spectrometer used in the HR-PEI measurements (fig. S1) was optimized to provide 0.7 to 25 cm$^{-1}$ resolution over a wide range of eKE, so that a single photon energy ($h\nu$) could be used to obtain vibrationally-resolved spectra with reliable intensities and PADs. The cryo-SEVI spectrometer (fig. S2) provided higher resolution (sub-meV) over a narrower range of eKEs, assisted by cooling the anions to ~10 K prior to detachment to reduce spectral congestion arising from anion rotational and vibrational excitation. Together, the HR-PEI and cryo-SEVI techniques yield a more complete picture of the photoelectron eKE spectrum and PADs than when used separately.
The cryo-SEVI spectra of H$_2$CC$^-$ and D$_2$CC$^-$ (Fig. 2A) and the HR-PEI spectrum of H$_2$CC$^-$ (Fig. 2B) display photoelectron intensity versus electron binding energy (eBE), where eBE = $hv - eKE$. All three spectra are dominated by the vibrational origin (A) and show transitions to vibrational levels up to \sim4000 cm$^{-1}$ above the vinylidene vibrational ground state.

Figure 2. Vinylidene photoelectron spectra. A. Cryo-SEVI spectra of H$_2$CC$^-$ (top) and D$_2$CC$^-$ (bottom), as well as theoretical results for both isotopologues (red). The blue traces represent overview spectra while the black traces are higher resolution composite spectra; see section A of SM for more details. For clarity, all traces have been scaled by a factor of 2 following the break in the overview after peak A. B. HR-PEI spectrum of H$_2$CC$^-$. The image used to construct the spectrum is shown as an inset. C. PADs of various spectral features obtained from the HR-PEI H$_2$CC$^-$ spectrum. The solid line shows a Hanstorp p-orbital detachment fit to the anisotropy parameter of peak A (29). Error bars correspond to one standard deviation of the anisotropy parameter obtained from the fitting process. D. Region I of the H$_2$CC$^-$ photoelectron spectrum showing the underlying structure revealed by cryo-SEVI. The anisotropy parameter obtained from the HR-PEI spectrum is also shown to illustrate the variation in angular distribution across this region. Vertical dashed lines show how peaks a and b line up with the anisotropy parameter.
PADs are readily obtained from photoelectron images (SM section B), an example of which is shown in Fig. 2B. For each peak, the PADs yield the anisotropy parameter (\(\beta\)), which by definition falls between -1 and 2. These limits correspond to perpendicular and parallel detachment, respectively (25). Figure 2C shows \(\beta\) for several peaks as a function of eKE, obtained from HR-PEI measurements at several photon energies. The PADs extracted from the cryo-SEVI spectra (fig. S3) are in agreement with the HR-PEI results; with the exception of features B, I, and K, all peaks in the cryo-SEVI spectra of both isotopologues have \(\beta < 0\) for eKEs below 1 eV, and peaks B, I, and K show distinctly positive \(\beta\) values at these kinetic energies.

The enhanced resolution of cryo-SEVI is evident in the considerably narrower linewidths in Fig. 2A compared to previous photoelectron spectra (18), and a direct comparison is shown in fig. S4. The linewidths of the vibrational origins and most of the other peaks are \(~10\) cm\(^{-1}\) and \(~30\) cm\(^{-1}\) in the H\(_2\)CC\(^-\) and D\(_2\)CC\(^-\) spectra, respectively, suggesting that these features are predominantly transitions that terminate in single eigenstates. These linewidths are primarily determined by the underlying rotational contours (fig. S5) and, as discussed previously (21) and in section C of SM, reflect the differing nuclear spin statistics for H and D atoms. In contrast to the previously published spectrum, the majority of features do not display significant broadening relative to the previously observed excited state features (21). However, there are several anomalously broadened and irregular regions (B, C and I) in the H\(_2\)CC\(^-\) cryo-SEVI spectrum, discussed in more detail below.

Comparison to the theoretical spectra in Fig. 2A (red traces) and figs. S6-7 allows unambiguous assignment of nearly all experimentally observed peaks, as shown in Table 1.
These assignments are particularly clear for D$_2$CC, where discrepancies between theory and experiment are <10 cm$^{-1}$ for all features, excluding peak G. From the rotational contours of the 00_0 bands, we obtain electron affinities (EAs) of 0.4866(8) and 0.488(2) eV for H$_2$CC and D$_2$CC, respectively, as described in section C of the SM. These EAs lie within the error bars of the previously reported values ($[^{18}]$) of 0.490(6) and 0.492(6) eV, respectively; they reflect our enhanced resolution and the ability to partially resolve the rotational structure of the band origins. Most of the remaining features in the two spectra can be attributed to FC-allowed transitions involving totally-symmetric (a_1) neutral vibrational levels, which, within the Born-Oppenheimer approximation, are the only transitions that can appear in the theoretical spectra for detachment from the anion vibrational ground state. Features B and I are nominally assigned to the FC-forbidden 60_0 and mixed 5^1_0 and $1^0_0 6^1_0$ transitions, both involving b_2-symmetric vibrational levels of neutral vinylidene.

These FC-forbidden transitions are attributed to Herzberg-Teller (HT) coupling to an excited electronic state with B_2 symmetry (SM sections B and C). The 3B_2 state has been predicted to lie about 4 eV above the $^3X^e\!A_1$ state (26). We have observed detachment to this state (fig. S8), finding its term energy to be $T_0 = 3.997(3)$ eV with respect to the $^3X^e\!A_1$ state and its anisotropy parameter to be positive. The derivative coupling between the $^3X^e\!A_1$ and 3B_2 states has been calculated near the vinylidene minimum (section E in SM), and the interaction between these states is found to be localized largely along the v_6 mode, with a minor contribution from the v_5 mode. Peaks B and I also exhibit positive anisotropy parameters (Fig. 2C), in contrast to all of the FC-allowed features, consistent with HT coupling between the two electronic states (27). Moreover, as discussed in section C of SM, the rotational selection rules
for photodetachment differ for the FC-allowed ($\Delta K_a = \pm 1$) vs. HT-allowed ($\Delta K_a = 0$) transitions, leading to the narrower rotational profiles of peaks B and I (7 and 16 cm$^{-1}$ fwhm, respectively) in the D$_2$CC$^-$ SEVI spectrum relative to the FC-allowed transitions.

Overall, the D$_2$CC$^-$ cryo-SEVI spectrum is what would be expected for a well-behaved, stable molecule, albeit one that exhibits HT coupling with an excited electronic state. The same is true for much of the H$_2$CC$^-$ spectrum, with the exception of features B, C, and I. Features B and C, assigned to the 6^1_0 and 6^2_0 transitions, appear in the cryo-SEVI spectrum as broad, weak features, even at high resolution (black trace, Figure 2A). The spectral broadening indicates participation of multiple eigenstates, each of which carries some vinylidene oscillator strength. Figure 2D shows that feature I, in the vicinity of the calculated 5^1_0 and $1^1_06^1_0$ transitions, resolves

![Figure 3](image.png)

Figure 3. Calculated wavefunctions for neutral vibrational levels of H$_2$CC. Wavefunctions of the 0^0, 6^2, and 5^1 states are shown along the θ_1 and θ_2 directions of the CH–CH Jacobi coordinates, with the coordinate r_0 taking the equilibrium value of H$_2$CC (top) or HCCH (bottom) and the wavefunctions summed over the remaining coordinates. The acetylene component is dominated by local-bender states along the θ_1, $\theta_2 \sim 180^\circ$ axes. The two-dimensional potential energy surface is superimposed, in which the $\theta_1=\theta_2 = 180^\circ$ well corresponds to HCCH.
into a cluster of five closely-spaced, narrow peaks (a-e, energies in table S1). Comparison with the HR-PEI angular distribution reveals notable variation in the anisotropy parameter across this series of peaks, with a considerably lower β value for peak ‘a’ than peaks ‘b-e’. In addition, the intensity of peak ‘a’ decreases more slowly than the other features as the photon energy is lowered. Both observations indicate variation of the partial wave contributions to photodetachment across region I, suggesting that the electronic characters of the final eigenstates are highly variable.

To understand how the isomerization mechanism is encoded in the neutral eigenstates, and to gain additional insights into the experimental spectra, we turn to the calculated wavefunctions for the lowest two FC-allowed vibrational eigenstates populated by photodetachment of H$_2$CC$^-$ anions (0^0 and 6^2) and a state allowed only by HT coupling (5^1). Using the CH—CH Jacobi coordinates shown in the inset of Fig. 1, the wavefunctions are plotted in Fig. 3, superimposed on a contour plot of the potential energy surface. In the top and bottom panels, the distance between CH centers-of-mass (r_0) is constrained to either the vinylidene or acetylene equilibrium value, respectively, so that the bending wavefunctions are shown for both the vinylidene and acetylene wells. For the ground vinylidene state (0^0), there is very little acetylene character, indicating strong localization in the vinylidene well. However, excitation of the in-plane rocking mode of vinylidene (6^2) introduces appreciable acetylene character, featuring highly excited states in the local-bending coordinates (local-benders), evidenced by the large number of nodes along the angular coordinates (θ_1, θ_2) (15).

The plots in Fig. 3 and S9 also show that the neutral 5^1 state mixes with the 1^16^1 state through an anharmonic interaction, giving region I its intensity through the ν_6-dominated HT
coupling. This interaction is enhanced by the energy-lowering of the 1^16^1 state relative to the sum of the v_1 and v_6 fundamentals, due to the strong inter-mode anharmonicity between the stretching and rocking modes. The other peaks in Feature I could be due to higher b_2 states such as 5^16^2 and other nearby FC-allowed transitions.

Fig. 3 shows that this mixed $5^1 \sim 1^16^1$ state exhibits appreciable acetylene character along the local-bending coordinates, with similar nodal structure as is seen for the 6^2 state. This result links the spectroscopy of vinylidene to its isomerization dynamics; the minimum energy isomerization pathway follows the rocking normal mode of vinylidene, which ultimately connects with the local-bending vibrational states of acetylene. Indeed, the acetylenic contributions to the 6^2 and $5^1 \sim 1^16^1$ eigenfunctions involve strong admixtures of the local-bending excitation, which has been extensively probed by spectroscopic studies of highly excited acetylene (15). For D$_2$CC, the extent of mixing with DCCD is negligible, presumably owing to the much narrower eigenfunctions resulting in suppressed tunneling. The wavefunctions for other H$_2$CC and D$_2$CC states can be found in figs. S9-11.

Chemically, isomerization entails the breaking and formation of bonds within a molecule. To understand the dynamics of the 1,2-hydrogen shift in this system, one needs to quantum mechanically simulate transitions between various vibrational eigenstates that have different amplitudes of the zeroth-order vinylidene (1) and acetylene (2) basis states:

$$\Psi_{n}^{(\text{neutral})} \approx c_{n}^{(1)}\psi_{n}^{(1)} + c_{nm}^{(2)}\psi_{m}^{(2)}.$$

The extent of mixing, which encodes the isomerization, depends on the energy difference between $\psi_{n}^{(1)}$ and $\psi_{m}^{(2)}$ as well as the strength of the interaction matrix element between the two. As mentioned above, the acetylene states involved in the mixing
are mostly the local-benders, which have a much smaller density of states than the total density of acetylene vibrational states. The spectral intensity of a peak in the photoelectron spectrum is primarily determined by \(I_n \approx |c_n^{(1)}|^2 |\langle \psi_n^{(1)} | \Psi^{(\text{ion})} \rangle|^2 \). The vinylidene weights, \(|c_n^{(1)}|^2 \), can be approximately extracted from the calculated H\(_2\)CC and D\(_2\)CC eigenfunctions and are listed in Table 1. For H\(_2\)CC, only those final states with \(\nu_6 \) excitation mix strongly with HCCH, whereas for D\(_2\)CC, the mixing with DCCD is much smaller due to the narrower wavefunctions.

The cryo-SEVI and HR-PEI spectra, with the supporting theoretical analysis, offer insights into the vinylidene-acetylene isomerization and its influence on the vinylidene photoelectron spectrum. Most neutral vibrational states formed via photodetachment are dominated by vinylidene character for both isotopologues, an observation consistent with the main conclusion of the CEI experiment (19) and the calculations by Bowman (10). However, H\(_2\)CC states in which the \(\nu_6 \) mode is excited show non-negligible acetylene character, which manifests as spectral broadening and/or fine structure for this isotopologue. Excitation of this mode can occur through FC-allowed transitions (6\(^2\)\), vibronic coupling via an excited state of vinylidene (6\(^1\)), or anharmonic coupling between ground state vibrational levels (5\(^1\) \(\rightarrow \) 1\(^6\)\(^1\)). This spectroscopic result implies that in the range of excitation energies probed here, the isomerization of vinylidene to acetylene is highly state-specific and is promoted by excitation of the \(\nu_6 \) mode. Significantly less coupling to acetylene is observed for D\(_2\)CC, which suggests that isomerization of D\(_2\)CC is considerably less facile even when the \(\nu_6 \) mode is excited. These insights provide a quantum mechanical foundation for understanding the 1,2-hydrogen shift reaction.
References:

Acknowledgments: The experimental part of this research was funded by the Air Force Office of Scientific Research (No. FA9550-16-1-0097 to D.M.N.) and the Australian Research Council Discovery Project (No. DP160102585 to S.T.G.). M.L.W. thanks the National Science Foundation for a graduate research fellowship. Experimental data are available upon request from dneumark@berkeley.edu (cryo-SEVI) and stephen.gibson@anu.edu.au (HR-PEI). Theoretical work was funded by the National Natural Science Foundation of China (No. 91441107 to J.M.), the Air Force Office of Scientific Research (No. FA9550-15-1-0305 to H.G.), and the National Science Foundation (No. CHE-1361121 to D.R.Y.). R.W.F. gratefully acknowledges the Department of Energy, Office of Science, Chemical Sciences Geosciences and Biosciences Division of the Basic Energy Sciences Office (No. DE-FG0287ER13671).
Table 1. Peak positions (cm\(^{-1}\)), experimental and theoretical shifts from the vibrational origin (cm\(^{-1}\)), and assignments for the \(\text{H}_2\text{CC}^-\) and \(\text{D}_2\text{CC}^-\) ground state photoelectron spectra. Shifts were extracted from the cryo-SEVI scans, and HR-PEI peak positions for \(\text{H}_2\text{CC}^-\) are shown for comparison. Cryo-SEVI peak positions were extracted from the high-resolution (black) traces in Figure 2A unless otherwise noted. Uncertainties in peak positions correspond to one-\(\sigma\), obtained from a Gaussian fit to the experimental trace.

<table>
<thead>
<tr>
<th>Peak</th>
<th>(\text{H}_2\text{CC}^-)</th>
<th>(\text{D}_2\text{CC}^-)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR-PEI</td>
<td>eBE</td>
<td>Shift</td>
</tr>
<tr>
<td>A</td>
<td>3940(60)</td>
<td>3935(7)</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>--</td>
<td>4190(50)*</td>
<td>255</td>
</tr>
<tr>
<td>C</td>
<td>4400(90)</td>
<td>4402(52)†</td>
<td>470</td>
</tr>
<tr>
<td>D</td>
<td>5120(60)</td>
<td>5103(5)</td>
<td>1168</td>
</tr>
<tr>
<td>E</td>
<td>5570(50)</td>
<td>5597(4)</td>
<td>1662</td>
</tr>
<tr>
<td>F</td>
<td>6250(80)</td>
<td>6240(70)†</td>
<td>2305</td>
</tr>
</tbody>
</table>
| G | 6740(70) | 6780(60)† | 2845 | 2822.0 | 97 | 6339(18) | 2398 | 2468.0 | 2\(_1\) 2\(_0\)
| H | 6950(50) | 6943(12)† | 3008 | 3013.7 | 82 | 6216(7) | 2275 | 2276.9 | 99 | 5\(_0\) |
| I | 3117.6 | 68 | 3117.6 | 68 | 2389.9 | 95 | 1\(_0\) 6\(_1\)
| J | 7008(14) | 3067 | 3059.7 | 1\(_3\) 0\(_0\)
| K | 8130(70) | 8125(41)† | 4190 | 4218.4 | 7065(12) | 3124 | 3125.5 | 3\(_0\) 5\(_0\) |

*Peak position obtained by fitting the highlighted region B in Figure 2A to a single Gaussian.
† These features did not maintain sufficient intensity near-threshold to appear in high-resolution cryo-SEVI scans, and thus the eBEs are obtained from the lower-resolution overview scans (blue traces) in Figure 2A.
‡ Reported position corresponds to feature b in Fig. 2D.

Supplementary Materials:

Materials and Methods
Supplementary Text
Figures S1 to S12
Tables S1 to S3
References (30-62)
Supplementary Materials:

A. Experimental methods

a. High-resolution photoelectron imaging (HR-PEI)

A schematic of the HR-PEI setup is shown in Figure S1, with the major components labeled. Further details of the apparatus are given in Ref. (22). Vinylidene anions are produced by passing pure ethylene gas through a pulsed valve, which then undergoes supersonic expansion into a high-voltage discharge. Negative ions are extracted, accelerated to 500 eV, and focused into an ion gating, bunching, and potential re-referencing unit (3θ). The ions are separated by m/z over a 2m time-of-flight (TOF) region, and an electrostatic gate selects the mass packet of interest. This ion packet is directed to the interaction region of a VMI electrostatic lens, where it is crossed with a detachment laser beam.

Several laser configurations were used to obtain the HR-PEI data presented in this work, employing a Continuum Powerlite 9010 Nd:YAG laser either alone or as a pump for a Sunlite EX optical parametric oscillator (OPO). The photoelectron spectrum in Figure 2B was measured using the fundamental output of the Nd:YAG laser (1064nm). The anisotropy parameters in Figure 2C were determined using a number of photon energies; energies of 20247, 17271, 16155, 15649, and 15244 cm\(^{-1}\) were obtained by using the third harmonic (355nm) of the Nd:YAG laser to pump the OPO, and additional data points were obtained by directly using the third harmonic and fundamental output of the Nd:YAG laser (28169 and 9398 cm\(^{-1}\), respectively).

The VMI lens is a modified version of the original concept of Eppink and Parker (31). Photodetached electrons are velocity-mapped to a 75mm diameter microchannel plate/phosphor screen detector (Burle). The MCP screen is gated to ensure that unwanted events from untargeted ions and neutral species are not detected. Images from the phosphor are captured by a 2048×2048 pixel monochrome CCD camera (PCO 2000), and each camera frame is transferred to a computer at the 10 Hz laser repetition rate. Camera frames are processed in real time to identify events, which are centroided and binned into a rectangular pixel-grid image. This image may be of arbitrary pixel number, with a larger image pixel number providing finer detail at the expense of greater statistical uncertainty in the individual pixel intensities. The accumulated image is circularized by an angular-dependent radial scaling determined through a comparison of adjacent radial intensity profiles (32, 33). In this work, the radial correction to reduce image distortion is applied to the raw (x,y)-centroid data prior to forming the velocity-map image, eliminating any requirement for image pixel intensity interpolation.

The photoelectron velocity distribution is obtained from the velocity-mapped image by an inverse Abel transformation, which is based on the algorithm of Hansen and Law (34) and described in more detail on the PyAbel website (33). For the low-distortion HR-PEI images, all quadrants are equivalent and may be combined to improve the statistical accuracy of the inverse Abel transform and, hence, the photoelectron spectrum and photoelectron angular distributions. Energy calibration is obtained using a single scaling factor (i.e., eKE = a \(R^2\), where R is the radius in pixels), to align the origin peak with the known electron affinity of vinylidene (18).
The relative kinetic energy resolution is approximately constant for VMI experiments. The HR-PEI spectrometer achieves sub-cm⁻¹ resolution for slow electrons detached from atomic species. In this study, a more quantitative comparison comes from a parallel measurement of the photoelectron spectrum of O₂⁻, which has a similar electron affinity (3613 cm⁻¹) to vinylidene. A rotational model band decomposition gives a rotational linewidth of 10.1(1) cm⁻¹ for the ν’ = 2 transition, for detachment at 9398 cm⁻¹.

The experimental anisotropy parameters in Figure 2C are obtained by fitting Eq. (0), explained in more detail in Section B, to radially-integrated transition intensities. For a single quadrant of a given image, the intensity variation is linear in \(P_2(\cos \theta) \), with slope equal to \(\beta \times \) intercept. The most accurate anisotropy parameter determinations occur for the stronger transitions.

b. Cryo-SEVI

The cryo-SEVI method has been described previously in detail (23, 35, 36), and a layout of the machine is shown in Figure S2A. As described in the cryo-SEVI study of electronically excited vinylidene (21), anions are formed by supersonic expansion of a precursor gas mix (trace N₂O, C₂H₄ or C₂D₄, and He) through an Even-Lavie valve (37) equipped with a pulsed filament ionizer. Injection of electrons from the ionizer results in dissociative electron attachment to N₂O, forming O⁻ which proceeds to react with C₂H₄ (99.5%, Praxair) or C₂D₄ (99%, Sigma Aldrich) to form H₂CC⁻ or D₂CC⁻ (38). The ions are guided through a radiofrequency (rf) hexapole ion guide and rf quadrupole mass filter and then deposited into a rf octupole ion trap held at 5 K and filled with a buffer gas mixture of 20% H₂ in He (23). Ions are stored in the trap for ~40 ms, during which they undergo collisions with the buffer gas resulting in thermalization with the cryogenically-cooled trap. Ions are then extracted into an orthogonal Wiley-McLaren time-of-flight mass spectrometer (39) and focused into the interaction region of a VMI spectrometer (31), where they are photodetached by a tunable laser.

In this work, several different laser schemes have been used for photodetachment. The overview spectra in Figure 2A (blue traces) were obtained using the fundamental output of an Nd:YAG laser (1064 nm, 9398 cm⁻¹). The higher-resolution scans (black traces) were taken using a home-built IR difference frequency generation (IR-DFG) setup covering the mid-IR (1.3-4 µm, 2500-7692 cm⁻¹), which is similar in design to the setup described by Lineberger and co-workers (39). Further details of the IR-DFG setup are reported below. The IR laser wavelengths for the high resolution traces were chosen in order to maximize direct detachment; there are narrow vibrational anion resonances in the vicinity of the origin band that undergo autodetachment (20), leading to photoelectron spectra that vary strongly with photon energy. The photon energies used in Figure 2A do not access these resonances. To observe detachment to the \(B^0B_2^- \) electronic state, the third harmonic of an Nd:YAG laser (355 nm, 28169 cm⁻¹) was used to pump the tunable dye laser, the output of which was then frequency-doubled yielding tunable UV light (255-280 nm, 35714-39216 cm⁻¹).

Following photodetachment, the VMI lens projects and focuses the detached electron Newton spheres onto a 2D detector comprising two chevron-stacked microchannel plates coupled to a phosphor screen. The back of the phosphor screen is photographed by a CCD camera with each laser shot (41). Each photograph is analyzed for single electron events, the
centroids of which are calculated and binned in a grid sufficiently fine to ensure that resolution is not limited by pixel size (42). The radial and angular photoelectron velocity distributions are reconstructed from the accumulated images using the Maximum Entropy Velocity Legendre Reconstruction (MEVELER) method (43). The photoelectron spectrum (in eKE) is obtained from the resultant radial distribution, and subsequently converted to eBE by energy conservation (eBE = hv – eKE); photoelectron angular distributions will be discussed in Section B of this document, and are shown for several features in the cryo-SEVI spectra of both isotopologues in Figure S3.

The spectrometer is calibrated using SEVI images of the well-characterized photodetachment transitions of atomic anions. For the ground state electronic band, images of O^- (44) were obtained using the tunable red dye laser light aligned through the machine to be perfectly collinear with the DFG light. For detachment to the F^0B_2 excited state, Cl^- was used as a calibrant (45). Figure S4 shows a direct comparison between the cryo-SEVI H2CC^- spectrum and the spectrum reported by Lineberger and co-workers (18), showing the good agreement and improved resolution in the current results.

i. Infrared difference frequency generation (IR-DFG)

The IR-DFG setup is shown schematically in Figure S2B. A dye laser pumped by the 532 nm second harmonic of a pulsed, injection-seeded Nd:YAG laser produces red light (590-840 nm). This is mixed with residual 1064 nm Nd:YAG fundamental light in a non-linear LiNbO_3 DFG crystal, producing mid-IR light with a frequency corresponding to the difference between the Nd:YAG fundamental and dye laser frequency. Tunability is achieved by varying the wavelength of the dye laser output.

The LiNbO_3 DFG crystal used in this work is 16×11×30 mm in size, is cut at 56º (Sirah Lasertechnik, DFM-2400-T), and can produce 1.3-2.5 µm DFG light using 590-750 nm dye laser light. The crystal is placed in a motorized rotating mount with its optical axis parallel to the laser table. As this crystal is designed for a type-I nonlinear process, the red dye laser light must be polarized horizontally (extraordinary to the crystal optical axis) while the 1064 nm and DFG light must be polarized vertically (ordinary to the crystal optical axis). As it was found that the 1064 nm light leaves the Nd:YAG laser with poorly defined elliptical polarization, a combination of two thin film polarizers and one half-wave plate is used to prepare a vertically polarized 1064 nm beam with tunable power. As the dye laser output is vertically polarized, an achromatic half-wave plate is used to prepare horizontally polarized red light.

DFG output at a given wavelength is optimized by slowly rotating the LiNbO_3 DFG crystal angle while monitoring the IR intensity on a sensitive pyroelectric detector. A LiNbO_3 compensating crystal rotates in an opposite direction to the DFG crystal, so the beam path is unchanged for phase matching conditions at different wavelengths.

All optics downstream of the DFG crystal are made of CaF_2 or MgF_2 to minimize absorption of mid-IR light. CaF_2 mirrors coated for 1064 nm and 600-900 nm light dump the initial wavelengths and transmit the DFG light. The DFG light is aligned through the SEVI machine using CaF_2 prisms, and is focused into the interaction region using a cylindrical CaF_2 lens with a 0.5 m focal length. The vacuum chamber windows are MgF_2.
B. Photoelectron angular distributions and vibronic coupling

The photoelectron angular distribution (PAD) associated with each photodetachment feature can be extracted from a given VMI image, and is given by

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{tot}}{4\pi} [1 + \beta P_2(\cos \theta)].$$

(0)

Here, σ_{tot} is the total detachment cross section for the transition in question, $P_2(x)$ is the second-order Legendre polynomial, θ is the angle of the photoelectron’s velocity vector with respect to the laser polarization axis, and β is the anisotropy parameter, ranging from -1 (perpendicular detachment) to +2 (parallel detachment). The value of β is directly related to the angular momentum of the outgoing photoelectron and thus reflects the electronic character of the detached anion molecular orbital ($22^2, 29^2, 46^2$).

The MEVELER method used to reconstruct cryo-SEVI images (43) provides as output the projections of the reconstructed velocity-map image onto the zeroth and second-order Legendre polynomials as a function of radial distance, or equivalently, eKE. The zeroth-order projection (Q_0) contains the photoelectron spectrum, whereas the second-order projection (Q_2) contains the angular information. Given these, the anisotropy parameter β is given by

$$\beta = \frac{\int_{R_1}^{R_2} Q_2(R) dR}{\int_{R_1}^{R_2} Q_0(R) dR}$$

(0)

where R_1 and R_2 are limits set so that the integration is carried out over the peak of interest. Calculated β values at several detachment energies for key features in the cryo-SEVI spectra of both isotopologues are presented in Figure S3. Alternatively, a plot of β versus eBE for a single photon energy, such as that shown in Figure 2D, can be constructed by performing the integration on an interpolation of the (discrete) MEVELER output, with the limits of integration defined by the spacing between data points.

As can be seen in Figures 2C and S3, most features observed in the ground state band of both isotopologues have perpendicular ($\beta < 0$) anisotropies at moderate kinetic energies, and isotropic ($\beta \sim 0$) PADs for low eKEs. These features are well-reproduced by theory as shown for the 0_0 detachment spectrum in Figures S6-7. However, peak I in the spectra for both isotopologues, as well as peak B in the D$_2$CC$^-$ spectrum, show distinctly positive anisotropies. The shifts of peaks B and I from the vibrational origins are in excellent agreement with the values predicted by theory for detachment to the 6^1 and 5^1 neutral levels, respectively (see Table I).

The anomalous anisotropies of these regions are attributed to detachment to FC-forbidden b_2-symmetric vibrational levels activated through vibronic coupling. Let $|a\rangle$, $|b\rangle$ be two
vibronic states with vibrational symmetries $\Gamma^\text{vib}_a \cdot \Gamma^\text{vib}_b$ and electronic symmetries $\Gamma^\text{elec}_a \cdot \Gamma^\text{elec}_b$. These states can couple provided

$$\Gamma^\text{vib}_a \otimes \Gamma^\text{vib}_b \otimes \Gamma^\text{elec}_a \otimes \Gamma^\text{elec}_b \Rightarrow \Gamma_{TS},$$

where Γ_{TS} is the totally symmetric representation in the relevant molecular point group (47). If only one of these states has nonzero FC-overlap with the anion ground state (i.e. $\langle \text{anion}|a\rangle = 0$, $\langle \text{anion}|b\rangle \neq 0$), then the FC-forbidden transition can appear in the photoelectron spectrum through the borrowed FC-allowed character, and its detachment characteristics (in particular, the PAD) will match those of the FC-allowed transition.

Following the $s + p$ model developed by Sanov and co-workers (48), detachment from the vibrational ground state of χ^eB_2 anionic vinylidene can only result in positive anisotropies if the neutral state has B_2 vibronic symmetry, suggesting that features B and I correspond to the b_2-symmetric 6^1 and 5^1 vibrational levels in χ^eB_1 vinylidene ($\Gamma^\text{vib}_\text{neutral} = b_2, \Gamma^\text{elec}_\text{neutral} = A_1$). As these transitions are FC-forbidden, there must be some coupling of these states to one or more FC-allowed ($\Gamma^\text{vib}_\text{neutral} = a_1$) states which satisfies Eq. (0). Thus, the state(s) giving FC-intensity to regions B and I must be totally symmetric vibrational levels in a B_2-symmetric electronic state.

The lowest singlet vinylidene electronic state satisfying this is the χ^eB_2 state, which we find to have a term energy of 3.997(3) eV in agreement with previous theoretical calculations (26). Detachment to this electronic state of H$_2$CC, shown in Figure S8, shows the same distinctly positive anisotropy observed for regions B and I in the ground state band, consistent with the assignment of the regions of anomalous anisotropies as arising from vibronic coupling to this excited state. This assignment is confirmed by the derivative coupling calculations that will be described in Section E of this document.

C. Rotational contours

a. Linewidths and rotational selection rules

In contrast to the vinylidene photoelectron spectrum of Lineberger and co-workers (18), the vinylidene ground state cryo-SEVI spectra do not show anomalous broadening (relative to the rotational temperatures extracted from excited state bands) for the majority of spectral features. Figure S5A compares the vibrational origins obtained for the $\chi^\text{eB}_1 A_1 \leftarrow \chi^\text{eB}_2 B_2$ band reported in the present work to those obtained for the $\chi^\text{eB}_1 A_1 \leftarrow \chi^\text{eB}_2 B_2$ transition previously reported from the Berkeley cryo-SEVI lab (21). A more quantitative treatment of the rotational contours is provided in the following section; as can be seen, the rotational envelopes are qualitatively similar for both electronic bands represented in Figure S5A, and this similarity indicates that detachment from rotationally cold vinylidene anions to the neutral $\chi^\text{eB}_1 A_1$ ground state does not result in features “broadened” by rapid isomerization to acetylene. Peak widths for other features in the ground state bands of both isotopologues are quite similar to the respective
origins, with the exception of FC-forbidden features in the D$_2$CC$^-$ cryo-SEVI spectrum (B and I) that appear due to vibronic coupling and have substantially narrower widths (see Table I). As shown below, this difference in lineshape is a result of different rotational selection rules for these transitions.

Let l be the angular momentum of a photoelectron generated by detachment from an anion state with rovibronic symmetry $\Gamma_{\text{anion}}^\text{rve} = \Gamma_{\text{anion}}^\text{rot} \otimes \Gamma_{\text{anion}}^\text{vib} \otimes \Gamma_{\text{anion}}^\text{elec}$ to form a neutral state with symmetry $\Gamma_{\text{neutral}}^\text{rve}$. The general selection rule for this detachment transition is given by (49)

$$\Gamma_{\text{anion}}^\text{rve} \otimes \Gamma_{\text{neutral}}^\text{rve} \Rightarrow \begin{cases} \Gamma^*, l \text{ even} \\ \Gamma_{TS}, l \text{ odd} \end{cases} \quad (0)$$

where Γ^* and Γ_{TS} are the antisymmetric and totally symmetric representations, respectively, within the relevant molecular point group. In the case of vinylidene (C_{2v}), Γ^* and Γ_{TS} are A_2 and A_1, respectively. For Franck-Condon (FC) allowed detachment from vibrationally cold vinylidene anions (i.e. $\Gamma_{\text{neutral}}^\text{vib} = \Gamma_{\text{anion}}^\text{vib} = a_1$ and $\Gamma_{\text{anion}}^\text{elec} = B_2$), this becomes

$$\Gamma_{\text{anion}}^\text{rot} \otimes \Gamma_{\text{neutral}}^\text{rot} \otimes \Gamma_{\text{neutral}}^\text{elec} \Rightarrow \begin{cases} B_1, l \text{ even} \\ B_2, l \text{ odd} \end{cases} \quad (0)$$

The symmetry of the rotational wavefunction of vinylidene (an asymmetric top) is classified by the parity (even, e, or odd, o) of the two quantum numbers K_a and K_c. As addressed in the previous analysis of the vinylidene rotational contours (21), the cryo-SEVI resolution is only sufficient to discern rotational branches corresponding to changes in K_a due to the relative magnitudes of vinylidene’s rotational constants; for H$_2$CC (D$_2$CC), $A \sim 10$ (5) cm$^{-1}$, whereas $B, C \sim 1$ (<1) cm$^{-1}$ (11, 21). For even values of K_a, the rotational symmetry is either A_1 ($K_aK_c = ee$) or A_2 (eo), and for odd K_a the rotational symmetry is either B_1 (oo) or B_2 (oe) (50). For the FC-allowed features in the ground state band ($\Gamma_{\text{neutral}}^\text{elec} = A_1$), this results in the following possibilities for rotational transitions:

<table>
<thead>
<tr>
<th>even l</th>
<th>odd l</th>
</tr>
</thead>
<tbody>
<tr>
<td>ee ⇐ oe</td>
<td>ee ⇐ oo</td>
</tr>
<tr>
<td>eo ⇐ oo</td>
<td>eo ⇐ oe</td>
</tr>
<tr>
<td>oe ⇐ ee</td>
<td>oe ⇐ eo</td>
</tr>
<tr>
<td>oo ⇐ eo</td>
<td>oo ⇐ ee</td>
</tr>
</tbody>
</table>

Regardless of l, the selection rule requires that K_a must change in parity (odd ΔK_a) for FC-allowed transitions in the $\tilde{X}^{\tilde{a}}A_1 \leftarrow \tilde{X}^{\tilde{b}}B_2$ electronic band.

For a near-prolate rotor, $\Delta K_a = 0, \pm 1$ transitions are expected to dominate the rotational profile, depending on the specific electronic states involved. Thus, we take the rotational selection rule for FC-allowed transitions in the ground state band to be $\Delta K_a = \pm 1$. The low temperatures extracted from the previous vinylidene rotational contours suggests that the vast
majority of anions will occupy the lowest rotational level allowed by their nuclear spin state (ortho, o, or para, p); following the requirement that the total internal wavefunction must be antisymmetric (symmetric) upon hydrogen (deuterium) interchange, \(o-H_2CC^- \) (\(p-D_2CC^- \)) is restricted to even \(K_a \), whereas \(p-H_2CC^- \) (\(o-D_2CC^- \)) is restricted to odd \(K_a \). Thus, the majority of anions are in the \(K_a = 0 \) (\(o-H_2CC^- \), \(p-D_2CC^- \)) or \(K_a = 1 \) (\(p-H_2CC^- \), \(o-D_2CC^- \)) states, and the rotational envelopes for FC-allowed transitions will be dominated by the \(1 \leftarrow 0 \) and \(0,2 \leftarrow 1 \) transitions, which appear as three separate peaks spaced by \(\sim 2 \alpha \). The relative intensities of these transitions are governed by nuclear spin statistics analogous to those of \(H_2 \) (\(D_2 \)), which in the present case imply a 3:1 (1:2) ratio of the \(K_a = 0:K_a = 1 \) population for \(H_2CC^- \) (\(D_2CC^- \)). Since most of the \(H_2CC^- \) anions are in their \(K_a = 0 \) level, the single \(1 \leftarrow 0 \) branch dominates, whereas for \(D_2CC^- \) the \(0 \leftarrow 1 \) and \(2 \leftarrow 1 \) transitions are both prominent, resulting in a broader rotational profile for \(D_2CC \) as observed in Figure S5A.

As discussed in the main text, several features (B and I) in the ground-state band of the \(D_2CC^- \) spectrum are FC-forbidden but vibronically-allowed via coupling to the high-lying \(B^0B_2 \) excited state. The rotational selection rules for these features are based on the borrowed \(B_2 \) electronic character of these vibrational levels, and so deviate from those described above. Detachment to a \(B_2 \) electronic state results in the following possibilities for rotational transitions:

\[
\begin{array}{cc|cc}
\text{even } l & \text{odd } l &
\begin{array}{c}
\text{ee} \\
\text{eo} \\
\text{oo}
\end{array} &
\begin{array}{c}
\text{ee} \\
\text{eo} \\
\text{oo}
\end{array}
\end{array}
\]

Thus, regardless of \(l \), symmetry requires an even change in \(K_a \), so \(\Delta K_a = 0 \) transitions dominate the rotational profile. From the above considerations of anion temperature and nuclear spin statistics, the two expected rotational transitions are \(0 \leftarrow 0 \) and \(1 \leftarrow 1 \), which have the same energy to within \(<1 \text{ cm}^{-1} \), resulting in a single rotational branch. For \(D_2CC \), this is the source of the narrower observed peaks for transitions B and I. This difference is illustrated in Figure S5B, which shows peaks A and B from the \(D_2CC^- \) cryo-SEVI spectrum.

b. Rotational fits for the vibrational origins

A more quantitative analysis of the rotational lineshapes of peak A for both isotopologues was carried out by fitting the rotational contours using the PGOPHER software (51). This program calculates the full rotational spectrum for excitation of a state characterized by rotational temperature \(T \) to a final state with excitation energy \(E \); in this case, the initial and final states are the anion and neutral vibrational ground states of vinylidene. The resultant stick spectrum is convoluted with a Gaussian function of width \(w \). Rotational constants (see Table S2 for values used) and vibronic symmetries for both states are specified, as are the point group of the molecule and the statistical weighting of ee/o/eo versus oo/oe rotational levels.

The fit results are shown as red dashed lines in Figure S5. The agreement with experiment is generally good, particularly for the \(H_2CC \) isotopologue, and gives a temperature of 17.0(6) K for \(H_2CC^- \) in reasonable agreement with from the results from a similar analysis of the excited state bands (21). The excitation energy from the fitting procedure give an electron affinity of
0.4866(8) eV for this isotopologue, where the uncertainty is given by the full-width at half-maximum (fwhm) of the Gaussian convolution. This is an order-of-magnitude improvement in accuracy as compared to the EA obtained by Ervin and co-workers (18) – 0.490(6) eV – whose error bars correspond to the instrumental resolution of their experiment.

For the deuterated isotopologue, the extracted excitation energy gives an electron affinity of 0.488(2) eV for D$_2$CC. The convolution width and ion temperature parameters yielded by the fitting procedure – 14(1) cm$^{-1}$ and 27(2) K, respectively – are larger than is typically expected for the cryo-SEVI technique. This suggests a minimal amount of broadening (<1 meV) relative to the excited state band; given the lack of acetylene character in the calculated wavefunction for the 00 level of D$_2$CC, we take the source of this to be experimental in nature.

The most likely source of the relatively large fitted ion temperature is rf heating of ions in the octupole trap, which results in incomplete thermalization of the ions with the buffer gas (32). This is particularly an issue when operating with a large amount of ions in the trap, leading to space-charge effects which push ions towards regions where the effective potential is nonzero. While efforts were taken to tune source conditions and ion optics such that the trap was not overloaded, this often introduced great instability in the ion signal and, due to time limits imposed by the expense of the deuterated precursor (C$_2$D$_4$), some compromise needed to be made – particularly for the high-resolution scans of peak A, where detachment signal was at a minimum. Thus, it is entirely possible that the scans represented in the high-resolution peak A trace in Figure 2A correspond to detachment from ions that were not fully thermalized in the ion trap.

Working with large ion signals introduces the potential for too many detachment events with a single laser shot, which can cause anomalous broadening of peaks in the spectrum due to the inability of the centroiding algorithm to distinguish between electron events which overlap on the phosphor screen. However, this issue can always be mediated by decreasing the laser power, and so is not expected to contribute to the lineshape of the band origin in the D$_2$CC$^-$ cryo-SEVI spectra.

D. Quantum dynamics calculations

The quantum dynamics calculations described here must treat both the acetylene and vinylidene isomers, and thus careful consideration is necessary to ensure that an optimal coordinate system is used. The bond-length/bond-angle Hamiltonian has a complex kinetic energy operator, which is difficult to handle numerically. While preserving atomic permutation symmetry, the HH-CC Jacobi coordinates are optimal for neither acetylene nor vinylidene. The (2+1) Radau-Jacobi coordinates used in our previous work (24) are optimal for vinylidene, but not for acetylene, and cannot take advantage of the permutation symmetry in the system. Hence, the calculations reported here use the CH-CH Jacobi coordinate system, which preserves the CH-CH permutation symmetry. It is optimal for acetylene, but not quite so for vinylidene. As a result, a large basis/grid is still required to cover both isomers, which makes the computation quite demanding, especially for D$_2$C$_2$.

26
The CH-CH Jacobi coordinates are denoted as \((r_0, r_1, r_2, \theta_1, \theta_2, \phi)\). As shown in Figure 1 in the main text, \(r_0\) is distance between the centers-of-mass of the two CH moieties, \(r_1\) and \(r_2\) are the two C-H bond lengths, \(\theta_1\) (\(\theta_2\)) is the angle between vectors \(\vec{r}_1\) (\(\vec{r}_2\)) and \(\vec{r}_0\), and \(\phi\) is the relative dihedral angle between the \(\vec{r}_1\) and \(\vec{r}_2\) vectors. The rotationless (\(J=0\)) Hamiltonian in the diatom-diatom Jacobi coordinate system is given as follows (\(\hbar = 1\)):

\[
\hat{H} = \sum_{i=0}^{2} \left(-\frac{1}{2\mu_i} \frac{\partial^2}{\partial r_i^2} \right) + \sum_{i=0}^{2} \frac{j_i^2}{2\mu_i r_i^2} + V(r_0, r_1, r_2, \theta_1, \theta_2, \phi),
\]

where \(\mu_0 = (m_C + m_H)/2, \mu_1 = \mu_2 = m_mC/(m_C + m_C)\), \(\hat{j}_i\) and \(\hat{j}_2\) are the angular momentum operators for \(r_1\) and \(r_2\), respectively, and \(\hat{j}_0 = (\hat{j}_1 + \hat{j}_2)^2\). \(V\) is the potential energy function developed by Han, Li, and Guo (12). The coordinates and Hamiltonian are defined analogously for D\(_2\)C\(_2\) by replacing the H atoms in H\(_2\)C\(_2\) with deuterium.

The Hamiltonian is discretized using a mixed grid-basis representation. The radial coordinates \(r_1\) and \(r_2\) are represented by DVR (discrete variable representation) grids and \(r_0\) by PODVR (potential optimized DVR) (53), while the angular degrees of freedom are expressed in terms of associated Legendre functions. The real Chebyshev propagation is used to determine the energy levels and the wavefunctions (54):

\[
\Psi_k = 2\hat{H}_r \Psi_{k-1} - \Psi_{k-2}, \quad k \geq 2
\]

with \(\Psi_1 = \hat{H}_r \Psi_0\) and \(\Psi_0 = \Psi_1\). The Hamiltonian in Eq. (0) was scaled to the spectral range of (-1,1) via \(\hat{H}_s = (\hat{H} - H^-)/H^-\). The spectral medium and half width \((H^\pm = (H_{\text{max}} \pm H_{\text{min}})/2)\) are determined by the spectral extrema, \(H_{\text{max}}\) and \(H_{\text{min}}\), which can be estimated easily from the discretized Hamiltonian. The initial wave packets (\(\Psi_j\)) on the neutral PES are anion vibrational eigenfunctions assuming photodetachment to be a vertical transition (Condon approximation). The anion wavefunctions are obtained by diagonalizing the Hamiltonian in Eq. (0) using the Lanczos method on the anion PES (24). In order to preserve the CH-CH permutation symmetry, the initial wave packets were symmetrized by exchanging the \(\vec{r}_1\) and \(\vec{r}_2\) vectors (55). A large basis set (\(8 \times 10^4\) for H\(_2\)CC and \(2 \times 10^9\) for D\(_2\)C\(_2\)) and a relatively long propagation (20,000 Chebyshev steps) are used to obtain convergent energy levels for both isomers (with an uncertainty of 2.0 \(\text{cm}^{-1}\)). The parameters used in the calculations are listed in Table S3.

The energy spectrum is obtained from the discrete cosine Fourier transform of the Chebyshev autocorrelation functions, \(C_k \equiv \langle \Psi_0 | \Psi_k \rangle\) (56):

\[
S(E) = \frac{1}{\pi H} \frac{\sin \theta}{\sin \theta \delta_{k,0}} \sum_{k=0}^{2} (2 - \delta_{k,0}) \cos(k \theta) C_k,
\]
where $\theta = \arccos(E_s)$ is the Chebyshev angle, k is the Chebyshev order, and E_s is the scaled total energy corresponding to \hat{H}_s. Once the eigenvalues are determined, the corresponding eigenfunctions can be regenerated by rerunning the same propagation. For each eigenfunction, the assignment of vibrational quanta is based on inspecting the nodal structure of the wavefunction. Finally, the HCCH (or DCCD) weight is determined approximately by integrating the squared wavefunction in the range where both θ_1 and θ_2 are larger than 85° or are less than 60°. The other details of the calculations can be found in our previous work (24).

The calculated photoelectron spectra for detachment from the 5^1 state of H$_2$CC$^-$ and D$_2$CC$^-$ are shown in Figures S6 and S7, respectively. Photodetachment of this b_2 state of the anion leads to excitation of several b_2 vibrational states of the neutral vinylidene and their assignments are given in the figures. It is clear that the 5^1 and 1^16^1 states are quite close in energy for both isotopologues, consistent with the resonance formed by these two states.

In Figure S10, the 0^0, 6^2, and 5^1 wavefunctions of D$_2$CC are plotted in both the D$_2$CC and DCCD regions. Comparing with the analogous wavefunctions in Figure 3 of the main text, it is clear that deuteration significantly reduces the mixing with DCCD (see the vinylidene weights in Table I in main text). This is not surprising as the wavefunctions of deuterated vinylidene are much narrower, thus it is more difficult to access the isomerization barrier. The extent of mixing is however expected to rise with energy, leading to more significant mixing between the two isomers for vibrationally excited D$_2$CC.

In Figures S9 and S11, the 6^1, 3^1, 2^1, and 1^16^1 wavefunctions of H$_2$CC and D$_2$CC are presented. The smaller acetylene component in the D$_2$CC wavefunctions as compared to those of H$_2$CC is quite apparent, consistent with the calculated vinylidene weights listed in Table I. In addition, it is readily seen that the 1^16^1 wavefunction of H$_2$CC has a similar shape to that of the 5^1 state, suggesting significant mixing due to accidental near-degeneracy of the two states. Indeed, the energy difference between the two states is quite small (104 cm$^{-1}$ for H$_2$CC). This near degeneracy suggests a large intermodal anharmonicity ($x_{1,6}$) because the harmonic value of the 1^16^1 state is 133 cm$^{-1}$ higher than its actual energy. Coupling between the in-plane rocking and stretching is plausible due to the low isomerization barrier and the resultant large anharmonicity along the isomerization minimum energy path (12). The mixing is much less severe for D$_2$CC, evidenced by the clear and regular nodal structures of the two wavefunctions. Finally, the acetylene states that mix with the vinylidene states are of the local bender nature, which possess large number of nodes along the two angular coordinates (θ_1 and θ_2), suggesting that only the highly excited local bending states of acetylene are involved in the mixing of the two isomers. This is consistent with previous theoretical analysis of the acetylene vibrational spectrum (15, 57, 58).

E. Theoretical treatment of derivative coupling

In order to determine the derivative coupling between the ground and excited electronic states of vinylidene, ab initio calculations employing correlation-consistent polarized valence triple zeta (cc-pVTZ) basis sets on carbon and hydrogen with diffuse s(0.044020), p(0.035690),
and \(d(0.100000) \) functions added to carbon were performed. Molecular orbitals were optimized in a state-averaged multiconfiguration self-consistent field (SA-MCSCF) procedure averaging the four lowest states of a 2-orbital doubly-occupied space and a 7-orbital, 10-electron (all valence electron) active space. Energies and derivative couplings were computed at the multireference configuration single and double configuration interaction (MRSDCI) level, an expansion which adds to the SA-MCSCF reference space all single and double excitations out of that space. The MRSDCI expansion comprised 5,114,424 configuration state functions (CSFs). All calculations were performed using the COLUMBUS electronic structure suite (59).

The derivative coupling vector, given by

\[
f_{\alpha}^{i:j}(\mathbf{R}) = \left\langle \Psi_i^{\alpha}(\mathbf{r}; \mathbf{R}) \left| \frac{\partial}{\partial Q_\alpha} \right| \Psi_j(\mathbf{r}; \mathbf{R}) \right\rangle_r,
\]

was evaluated using analytic gradient techniques (60-62). Here, \(\Psi_i \) and \(\Psi_j \) are the electronic wavefunctions of adiabatic states \(i \) and \(j \), \(\mathbf{R} \) and \(\mathbf{r} \) represent nuclear and electronic coordinates, respectively, and \(Q_\alpha \) the \(\alpha \) internal coordinate. For the case at hand, where nuclear configurations with \(C_{2v} \) symmetry are considered, \(f_{\alpha}^{i:j}(\mathbf{R}) \) is nonzero provided the direct product of the irreducible representation carried by states \(\Psi_i \ (^1A_1) \) and \(\Psi_j \ (^1B_2) \) and nuclear coordinate \(Q_\alpha \) is \(A_1 \). Thus, \(\left\langle \Psi_i^{\alpha}(\mathbf{r}; \mathbf{R}) \left| \frac{\partial}{\partial Q_\alpha} \right| \Psi_j(\mathbf{r}; \mathbf{R}) \right\rangle_r \) is nonvanishing for \(b_2 \) vibrations, \(Q_5 \) (antisymmetric CH stretch) and \(Q_6 \) (in-plane rock) of vinylidene. When \(f_{\alpha}^{i:j} \) is computed for vinylidene, \(f_{\alpha}^{i:j} = -4.080516 \) is nearly 30 times larger in magnitude than \(f_{\alpha}^{i:j} = 0.14426998 \) and composes almost 100\% of the derivative coupling vector \(\left\| f_{\alpha}^{i:j} \right\| = 4.08304976 \); therefore, states \(\Psi_i \ (^1A_1) \) and \(\Psi_j \ (^1B_2) \) are strongly coupled by the in-plane rocking mode, \(v_6 \).

Figure S12A shows the derivative coupling vector \(f_{\alpha}^{i:j} \). The top panel of Figure S12B is a plot of the \(^1A_1 \) and \(^1B_2 \) states and their mean energy along the \(Q_6 \) coordinate. The bottom panel plots the differences of states \(^1A_1 \) and \(^1B_2 \) from the mean energy.
Figure S1. Schematic of the HR-PEI VMI spectrometer, segregated into three regions, as indicated. Ions are formed by a pulsed supersonic jet and pulsed discharge source (1) coupled to an electron gun (2). The resultant ion beam is skimmed (3) and passes through ion electrostatic acceleration optics (4) which direct anions to the gating, potential referencing, and bunching unit (5). The time-of-flight (TOF) region contains a number of ion optics which serve to steer and focus the beam, including two sets of electrostatic ion-beam deflectors (6, 8), an ion-beam Einzel lens (7), and stainless steel apertures (9). A potential referencing switch, electrostatic ion-beam deflectors and potential barrier (10) direct the ions into the interaction region of a VMI lens (11), where they are photodetached by a vertically-polarized laser beam (12). The resultant photoelectrons are velocity-mapped onto a 75mm multichannel plate and phosphor detector (13), which is photographed by a CCD camera (14) with each laser shot.
Figure S2. A. A schematic of the cryo-SEVI machine showing the different portions of the experiment. Each color block represents a separate differentially-pumped region. The cross-section of the radiofrequency octupole trap is reproduced from reference (23). B. The IR-DFG setup used to obtain the high-resolution traces in the vinylidene photoelectron spectrum. Vertically, horizontally, and circularly polarized light are indicated with v, h, and c, respectively. TFP = thin film polarizer, λ/2 = half-wave plate.
Figure S3. Photoelectron angular distributions of various features in the cryo-SEVI spectra of H$_2$CC$^-$ (solid markers) and D$_2$CC$^-$ (hollow markers), along with the β value calculated for detachment to the $\tilde{B}^1B_2^\prime$ neutral state of H$_2$CC.

Figure S4. Comparison of the high-resolution cryo-SEVI spectrum of H$_2$CC$^-$ (black) with the anion photoelectron spectrum reported previously (red) (18).
Figure S5. A. Comparison of rotational contours for the band origins in the $\tilde{X}^1A_1 \leftarrow \tilde{X}^1B_1$ and $\tilde{A}^1A_2 \leftarrow \tilde{X}^1B_1$ electronic bands in the cryo-SEVI vinylidene spectra. The red traces show fit rotational contours described in Section C for the \tilde{X}^1A_1 band and Ref. (21) for the \tilde{A}^1A_2 band. B. Comparison of the lineshape of peak A (0^0_0) to peak B (6^0_0) in the cryo-SEVI spectrum of D$_2$CC$^-$.

Figure S6. Calculated photoelectron spectra for detachment from the 0^0_0 (top) and 5^1_1 (bottom) states of H$_2$CC$^-$ to various vibrational levels of neutral H$_2$CC.
Figure S7. Calculated photoelectron spectra for detachment from the 0_0 (top) and 5_1 (bottom) states of D_2CC^- to various vibrational levels of neutral D_2CC.

Figure S8. Photoelectron spectrum of H_2CC^- obtained from the cryo-SEVI experiment showing detachment to the $B'B_2$ excited neutral state.
Figure S9. Wavefunctions of the 6^1, 3^1, 2^1, and 1^16^1 states of H$_2$CC.

Figure S10. Wavefunctions of the 0^0, 6^2, and 5^1 states of D$_2$CC.
Figure S11. Wavefunctions of the 6^1, 3^1, 2^1, and 1^16^1 states of D$_2$CC.
Figure S12. A. Vector representation of the derivative coupling between 1A_1 and 1B_2, $f^{f,3}$. B. (Top) plot of 1A_1 and 1B_2 state energies and their mean along the in-plane rocking mode, Q_6. (Bottom) plot of the deviation of each state from the mean energy. The $\text{H}_2\text{CC} \rightarrow \text{HCCH}$ transition state is located 0.913 Å along the Q_6 mode and features an electronic (ZPE-adjusted) barrier of 1639.5 (1005.8) cm$^{-1}$.
Table S1. Binding energies, peak widths, and shifts from the origin of features a-e underlying region I in the cryo-SEVI spectrum of H$_2$CC$^-$.

<table>
<thead>
<tr>
<th>Peak</th>
<th>eBE (cm$^{-1}$)</th>
<th>fwhm (cm$^{-1}$)</th>
<th>shift from A (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>6904</td>
<td>16</td>
<td>2966</td>
</tr>
<tr>
<td>b</td>
<td>6943</td>
<td>35</td>
<td>3005</td>
</tr>
<tr>
<td>c</td>
<td>7018</td>
<td>11</td>
<td>3080</td>
</tr>
<tr>
<td>d</td>
<td>7045</td>
<td>32</td>
<td>3107</td>
</tr>
<tr>
<td>e</td>
<td>7097</td>
<td>19</td>
<td>3159</td>
</tr>
</tbody>
</table>

Table S2. Rotational constants (in cm$^{-1}$) for the anion and neutral ground states of H$_2$CC and D$_2$CC. The constants for neutral D$_2$CC were obtained using the equilibrium geometry for neutral H$_2$CC reported in Ref. (12).

<table>
<thead>
<tr>
<th></th>
<th>anion</th>
<th>neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H$_2$CC$^-$ (21)</td>
<td>D$_2$CC$^-$ (21)</td>
</tr>
<tr>
<td>A</td>
<td>9.9227</td>
<td>4.9652</td>
</tr>
<tr>
<td>B</td>
<td>1.2166</td>
<td>1.0236</td>
</tr>
<tr>
<td>C</td>
<td>1.0837</td>
<td>0.8486</td>
</tr>
</tbody>
</table>

Table S3. Numerical parameters (in a. u.) used in wave packet calculations.

<table>
<thead>
<tr>
<th></th>
<th>HC–CH</th>
<th></th>
<th>DC–CD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid/basis ranges and sizes</td>
<td>$r_1, r_2 \in (1.42,5.78)$</td>
<td>$N_1 = N_2 = 26$</td>
<td>$r_1, r_2 \in (1.42,5.78)$</td>
<td>$N_1 = N_2 = 28$</td>
</tr>
<tr>
<td></td>
<td>$r_0 \in (0.8,3.2)$</td>
<td>$N_0 = 22$</td>
<td>$r_0 \in (1.35,3.0)$</td>
<td>$N_0 = 35$</td>
</tr>
<tr>
<td>Largest values of j_1, j_2 and m</td>
<td>38, 38, 38</td>
<td></td>
<td>42, 42, 42</td>
<td></td>
</tr>
<tr>
<td>Propagation steps</td>
<td>20,000</td>
<td></td>
<td>20,000</td>
<td></td>
</tr>
</tbody>
</table>