Phase Transition in Protocols Minimizing Work Fluctuations

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.120.180605</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Mar 31 21:10:44 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/115323</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

Essential to any well-functioning thermodynamic engine is the rapid and reliable extraction of work at high thermodynamic efficiency. Accomplishing this goal requires both characterizing the optimal finite-time protocols that maximize the work extracted (or minimize the work dissipated) [1–4] and understanding the tradeoff (or lack thereof) with the engine efficiency [5–12]. Arguably, though, large power with high efficiency is only useful when the cycle-to-cycle fluctuations are small. Thus, it is equally important to characterize any tradeoffs with power fluctuations [9,13–15].

One place where universal statements about power fluctuations can be made is in autonomous thermodynamic heat engines—those driven by a constant flow of heat down a temperature gradient. For these stationary engines, the thermodynamic uncertainty relation [16–25] imposes a universal tradeoff between power, power fluctuations, and thermodynamic efficiency [26]. One might hope that such a universal tradeoff exists for nonautonomous thermodynamic engines—driven by cyclic variations of an external parameter. Counterexamples, however, invalidate the naive extension of this prediction [13,27–30].

It thus remains to characterize optimal power fluctuations in driven nonautonomous engines. As a first step, we investigate finite-time thermodynamic processes that attempt to minimize both the work fluctuations and the average dissipated work. Specifically, for two canonical models of driven mesoscopic systems—a harmonically trapped Brownian particle [1] and a quantum dot [3], illustrated in Fig. 1—we numerically determine the collection of protocols that optimize the compromise between the average and standard deviation of the work. Remarkably, for the quantum dot, as we shift the weight of our optimization objective from average work to work standard deviation, we observe the analog of a first-order phase transition, featuring two distinct local minima in protocol space that exchange global optimality and mixed protocols akin to phase coexistence. Looking at protocols of increasing duration, we show that protocols minimizing work fluctuations need not be quasistatic in the infinite time limit, and thus remain out of reach of a linear theory.

Lastly, we adopt here the standard deviation as our metric for the magnitude of work fluctuations, largely because it naturally appears in the thermodynamic uncertainty relation, and near equilibrium it has universal properties [28,31–33]. However, there are other ways to characterize work fluctuations. Integrated squared power

![Diagram](image-url)
lends itself to analytic treatment using optimal control theory [34]. Alternatively, single-shot thermodynamics has emerged as a program that allows one to design protocols that make very large fluctuations extremely unlikely [35,36]. Finally, the authors of Ref. [37] have numerically optimized the exponential average of the work.

Setup.—We have in mind a mesoscopic system with states \(x \)—continuous or discrete—evolving in a noisy thermal environment at temperature \(T \), under the influence of an externally controlled potential \(U(x, \lambda) \). The system is driven by a protocol \(\lambda(t) \) during a finite time \(\tau \), such that in each realization \(x_t \), the work done is \(W = \int_0^\tau ds \lambda_s \partial_s U(x_s, \lambda_s) \). Due to the noise, the work \(W \) is a fluctuating quantity. However, its average \(\mu_W[\lambda] = \langle W \rangle \) and standard deviation \(\sigma_W[\lambda] = \sqrt{\langle (W - \mu_W)^2 \rangle} \) are uniquely determined by the protocol \(\lambda \). Our goal is then, for fixed protocol duration and end points \((\tau, \lambda_0, \lambda_f) \), to characterize the protocols that minimize either the average work, the standard deviation, or their best compromise.

A general approach to the problem of optimizing a collection of incompatible objectives that cannot be simultaneously optimal—here, \(\mu_W \) and \(\sigma_W \)—is to utilize the notion of Pareto-optimal solutions in order to classify all the possible optimal protocols [38]. To this end, we will say that a protocol \(\lambda^1 \) dominates another, \(\lambda^2 \), if it performs better for one of the objectives (i.e., it leads to a smaller \(\mu_W \) or \(\sigma_W \)) and at least as well in the other objective. The collection of Pareto-optimal protocols—those that are not dominated by any other protocol—form the Pareto front and represent the set of optimal solutions, for which one objective cannot be improved without degrading the other. The Pareto front thus encodes the possible tradeoffs. When plotted in the \(\mu_W - \sigma_W \) plane, as in Fig. 1(c), the Pareto-optimal solutions form a boundary to the space of all feasible protocols.

A natural starting point for computing the Pareto front is to minimize a single objective linear function [38]

\[
J_a = a \mu_W + (1 - a) \sigma_W,
\]

with \(a \in [0,1] \). As we vary \(a \) from 0 to 1, we shift from minimizing the standard deviation \(\sigma_W \) to minimizing the average work \(\mu_W \) [39]. As illustrated in Fig. 1(c), a protocol minimizing \(J_a \) is always Pareto optimal. However, the converse need not be true: the family of minima of \(J_a \) maps out the entire Pareto front only if the space of feasible protocols is strictly convex [38]. For example, the green portion of the front in Fig. 1(c) corresponds to a single value of \(a \). In the following, we will encounter both strictly and not strictly convex fronts.

Harmonic trap.—As a first case study, we consider an overdamped Brownian particle in a harmonic trap with potential \(U(x, k) = k x^2 / 2 \), with controllable spring constant \(k \). We choose this model for its tractability [5,40,41] and its experimental relevance [42–44]. The particle’s dynamics are given by the overdamped Langevin equation

\[
\gamma \dot{x}_t = -k x_t + \sqrt{2 \gamma k_B T} \xi_t,
\]

where \(\gamma \) is the damping coefficient, \(T \) is the temperature, and \(\xi_t \) is a zero-mean, Gaussian white noise. We optimize over protocols \(k \) of fixed duration \(\tau \) with fixed initial and final values \(k_i \) and \(k_f \). Choosing appropriate units, we can take \(k_B T = \gamma = 1 \) and express all results in terms of the ratio \(k_f/k_i \).

Under these constraints, we determine numerically the protocol minimizing \(J_a \) in Eq. (1). This is summarized as follows. (i) Exploiting the linearity of Eq. (2), we derive a closed set of ordinary differential equations (ODEs), whose solution for a given protocol outputs the mean work \(\mu_W \) and standard deviation \(\sigma_W \) (see Supplemental Material Ref. [45]). (ii) The ODEs are integrated by discretizing the protocol into \(N = 100 \) points with linear interpolations. We also explicitly allow for discontinuities at \(t = 0 \) and \(t = \tau \), as these are known to be generic for minimum-work protocols [1,3,4,46,47]. (iii) We then perform a stochastic gradient descent to minimize \(J_a \). At each step, a small trial move \(\delta k \) of one point of the protocol is proposed and accepted if it decreases \(J_a \). Remarkably, the protocol space is found to be very smooth, so that the optimization procedure converges to a unique minimum independently of the initial condition. This was checked for each \(a \) using 100 random initial protocols, with each point drawn from a uniform distribution on \([0, 2k_f] \).

Repeating the process for different values of \(a \), we obtain the family of solutions shown in Fig. 2 (left) for an expansion with \(k_f/k_i = 0.04 \) and protocol durations \(\tau = 1, 2, 5 \). We observe that when varying \(a \) from 0 to 1, the optimal protocols draw a continuous and convex line in the \(\mu_W - \sigma_W \) plane, which thus corresponds to the full family of Pareto-optimal solutions. Correspondingly, the optimal protocols, shown in Fig. 2 (right) for \(\tau = 1 \), deform smoothly along the Pareto front. For \(a = 1 \), our algorithm recovers the minimum-work protocol derived analytically in Ref. [1]. This minimum-work protocol smoothly decreases over the entire interval (apart from discontinuous jumps at the edges), whereas the minimum-fluctuation.
protocol stays relatively constant before dropping quickly. By keeping the oscillator confined, the small spread in position translates to a small spread in work values during the final rapid expansion, despite costing work (cf. Ref. [9]).

If we focus our attention on the optimal work protocols at \(\alpha = 1\), we observe that the Pareto front’s asymptote is vertical. This indicates that to reach the optimal work protocol, one must sacrifice a lot of fluctuations, relatively speaking. Put another way, there are many near-optimal protocols with substantially less fluctuation, complementing Ref. [48], which found in a driven Ising model that near-optimal protocols can be numerous. Similarly, the flat asymptote at \(\alpha = 0\) near the optimal-work-fluctuation protocol indicates that a lot of dissipation is necessary to reduce the fluctuations to a minimum.

Two-level system.—To allow for more complex behavior, we now optimize a quantum dot [3,49]. We model its dynamics as a Markov jump process with two discrete states: empty or filled with one electron. Jumps between states occur due to the exchange of a particle with a reservoir. We denote by \(\epsilon_i\) the difference between the energy level of the dot and the chemical potential of the reservoir. The system is fully characterized by the probability \(p_t\) to be filled, which evolves as (see Refs. [3,45])

\[
\dot{p}_t = -\alpha p_t + \frac{\alpha}{1 + e^{\epsilon_i/k_B T}},
\]

with bare rate constant \(\alpha\). We choose \(\omega = k_B T = 1\), fixing time and energy units.

Like the harmonic oscillator, the linearity of Eq. (3) allows us to construct a set of ODEs whose solution gives \(\mu_W\) and \(\sigma_W\) for a protocol \(\epsilon_i\) changing from \(\epsilon_i\) at \(t = 0\) to \(\epsilon_f\) at \(\tau\). The optimization procedure is identical to that of the harmonic trap. We choose here a representative set of parameters \(\epsilon_i = 4, \epsilon_f = -4\), and \(\tau = 1\). The protocols minimizing \(\mathcal{J}_\alpha\) for \(\alpha \in [0, 1]\) are shown in red in Fig. 3(a). Strikingly, as we vary \(\alpha\) from 0 to 1, tracing the red line from bottom right to top left, there is a discontinuous break (hopping over the green segment),signaling a jump in protocol space (at \(\alpha' \approx 0.305\) for our parameters). This corresponds to a qualitative change in the optimal protocols pictured in Fig. 3(b)—from minimum-fluctuation-like protocols with \(\epsilon_i\) increasing (apart from discontinuous jumps at the end points), to minimum-work-like protocols with \(\epsilon_i\) decreasing. The transition happens when these two different solutions that are locally optimal in protocol space exchange global optimality.

The missing portion of the Pareto front can be accessed by optimizing a different function,

\[
\mathcal{G}_\mu = \kappa(\mu_W - \mu_0)^2 + \sigma_W,
\]

for a fixed value of \(\mu_0\). Taking large \(\kappa = 10\), the protocol that minimizes \(\mathcal{G}_\mu\) has an average work very close to the fixed value \(\mu_W \approx \mu_0\) and minimum standard deviation. It is thus a good approximation of the point on the Pareto front at \(\mu_0\). (An alternative method imposing a hard inequality constraint can be found in Ref. [50].) Varying \(\mu_0\) then yields the green portion of Fig. 3(a), thereby completing the front. The resulting protocols, as shown in Fig. 3(b), exhibit a sharp jump in the middle. Numerically, we find that in this part of the phase diagram our stochastic gradient descent can get trapped in local minima corresponding to different positions of the jump. To find the global minimum of \(\mathcal{G}_\mu\), we thus performed many runs (>500) with different initial conditions to sample all local minima. For more precision, we also adapted our code to replace sharp gradients with exact discontinuities.

Putting everything together, the picture is similar to that of a first-order liquid-gas transition [38]. The parameter \(\alpha\) in \(\mathcal{J}_\alpha\) plays the role of an intensive parameter (say the pressure), whereas \(\mathcal{J}_\alpha\) is analogous to the free energy: There is a finite

FIG. 3. (a) Pareto front for the quantum dot, obtained by minimizing \(\mathcal{J}_\alpha\) and \(\mathcal{G}_\mu\). Symbols indicate the positions of the protocols shown in (b). (b) Optimal work protocol (magenta), the two protocols at \(\alpha = \alpha'\) on the minimum-work and minimum-work-fluctuation branches (blue and yellow), and a protocol in the coexistence region (green). (c) Optimal \(\mathcal{J}_\alpha\) obtained by ramping \(\alpha\) up (yellow) or down (blue) without restarting from a random initial protocol; the exchanging of global optimality occurs at \(\alpha'\). (d) Position of the discontinuity in phase-coexistence protocols as a function of \(\mu_W\) with a linear fit. Parameters: \(\tau = 1, \epsilon_i = 4, \epsilon_f = -4\).

FIG. 4. Pareto front of the quantum dot for varying \(\epsilon_f\) at fixed \(\epsilon_i = 4\) and \(\tau = 1\). For \(\epsilon_f > 1\), the optimal-work-fluctuation solution family disappears, and the Pareto front becomes strictly convex. Dotted black lines are guides to the eye denoting the coexistence regions.
jump to a different protocol at a critical \(\alpha^* \) where the two solutions exchange global optimality. As in a liquid-gas transition, these “homogeneous” solutions remain metastable beyond \(\alpha^* \). Although these suboptimal solutions are not part of the Pareto front, they can be accessed by slowly ramping \(\alpha \) while minimizing \(J_\alpha \) without restarting from a random initial protocol, in the same way that hysteresis loops are observed by ramping fluid pressure. The transition point \(\alpha^* \) corresponds to the exchange of global optimality, as shown in Fig. 3(c).

Minimizing \(G_\mu \) is then akin to switching to a constant-volume (canonical) ensemble. This allows us to observe the analog of phase coexistence inside the protocols: One observes a family of protocols (all at \(\alpha = \alpha^* \)) that comprise two parts—decreasing minimum-work-like and increasing minimum-fluctuation-like protocols—linked together by a discontinuity. As shown in Fig. 3(d), the proportions of each “phase” vary linearly along the front (up to numerical uncertainty), similar to what the lever rule predicts for a liquid-gas transition.

The two “homogeneous” solutions correspond to two distinct strategies: (i) The optimal work is achieved by monotonically decreasing the energy level, while (ii) the minimum standard deviation is achieved by first increasing the energy to confine the system into a single discrete state with almost no spread in state space prior to a rapid fluctuationless switch. Physically, in case (i), the dot is partially filled, and the protocol tries to keep the distribution as much like the equilibrium distribution as possible. In case (ii), the dot is mostly empty, and thus it ends with a distribution very different from the final equilibrium. The trapping of the distribution, made possible by the system’s discreteness, is at the origin of the transition. This is confirmed by Fig. 4, which shows the Pareto fronts for different \(\epsilon_f \) at fixed \(\epsilon_i = 4 \). For larger \(\epsilon_f > 1 \), the initial and final energy levels are not separated enough to make the compressed distribution very different from the final equilibrium. Consequently, the optimal protocols approach the linear regime where work fluctuations are constrained to be equal to the average work [2,31], forcing the optimal-work-fluctuation branch to disappear.

Quasistatic limit.—This disappearance of the transition suggests a similar phenomenon would occur for the linear regime reached for long times [12,51–56]. Thus, we would expect all optimal protocols to collapse onto a quasistatic one that remains nearly in equilibrium at every point in time. The second law of thermodynamics, however, only guarantees that minimum-work protocols will become quasistatic, whereas this need not be true for protocols optimizing a different quantity. Indeed, we show here that the protocols minimizing work fluctuations for the quantum dot never become quasistatic.

Close to the quasistatic limit, linear response predicts that \(2W_{\text{diss}} = \sigma_W^2 \), with \(W_{\text{diss}} = \mu_W - \Delta F \) being the dissipated work and \(\Delta F \) the free-energy difference between the initial and final equilibria [31,33]. For the harmonic oscillator, Fig. 5 shows that as \(\tau \) increases, the linear response regime is approached by both the optimal-work and optimal-work-fluctuation protocols. On the contrary, for the quantum dot, only the optimal-work protocol approaches the linear regime. Even in the infinite-time limit, the optimal-work-fluctuation protocol dissipates a finite amount and thus remains nonquasistatic.

The different limits are best understood by looking at how the optimal protocols change as \(\tau \) increases, as shown in Fig. 6. For the harmonic oscillator, the whole Pareto front contracts to a point in protocol space as the two extremities for \(\alpha = 0 \) and \(\alpha = 1 \) converge to the same protocol. On the contrary, the protocols corresponding to minimal mean work and work standard deviation remain different as \(\tau \to \infty \) for the quantum dot. The structure of the phase diagram of Fig. 3 is preserved upon increasing \(\tau \) so that there always exist two “phases.” Only the family containing the optimal-work protocol becomes quasistatic for large \(\tau \), while the optimal-fluctuation protocols retain instantaneous jumps and are therefore not quasistatic. Thus, studies of optimal-work-fluctuation protocols within linear irreversible thermodynamics cannot access the optimal solution.

To summarize, we have shown that for the harmonic oscillator, the tradeoff between work and work fluctuations is captured by a smooth family of protocols. However, this behavior is not generic. For a quantum dot, approximating a double-well potential, optimal-work and work-fluctuation protocols belong to qualitatively different “phases.” The tradeoffs between the two, captured by the Pareto front,
have the structure of a first-order phase transition with phase-coexistence protocols interpolating between the two phases. Such a phase transition may be a common feature of optimization problems: they occur in optimal complex networks [57,58] and statistical inference [59], and similar phenomena were observed in a quantum control problem with varying constraints [60] and in the utilization of memory in an information engine [61–63]. Finally, we observed that the minimum-work fluctuation and the phase-coexistence protocols do not become quasistatic even for very long protocols and are thus not accessible by a linear theory.

We are especially grateful to Todd R. Gingrich and Luis F. Seoane for their advice and suggestions, and we acknowledge the Gordon and Betty Moore Foundation for supporting us as Physics of Living Systems Fellows through Grant No. GBMF4513.

[39] We choose to use the standard deviation \(\sigma_w \) so that all quantities in \(j_\alpha \) have the same dimension, although this is not necessary and using the variance \(\sigma^2_w \) instead would yield the same results.