Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Khachatryan, V. et al. “Constraints on the Higgs Boson Width from Off-Shell Production and Decay to Z-Boson Pairs.” Physics Letters B 736 (September 2014): 64–85 © 2014 Elsevier B.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1016/J.PHYSLETB.2014.06.077</td>
</tr>
<tr>
<td>Publisher</td>
<td>Elsevier</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Nov 21 09:38:27 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/115365</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Attribution 4.0 International (CC BY 4.0)</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>https://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

CERN Collaboration*

CERN, Switzerland

Article history:
Received 14 May 2014
Received in revised form 12 June 2014
Accepted 30 June 2014
Available online 3 July 2014

Editor: M. Doser

Keywords:
CMS
Physics
Higgs
Diboson
Properties

A R T I C L E I N F O

A B S T R A C T

Constraints are presented on the total width of the recently discovered Higgs boson, \(\Gamma_H \), using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb\(^{-1}\) at a center-of-mass energy \(\sqrt{s} = 7 \) TeV and 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of \(\Gamma_H < 22 \) MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of \(m_H = 125.6 \) GeV.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP³.

The discovery of a new boson consistent with the standard model (SM) Higgs boson by the ATLAS and CMS Collaborations was recently reported [1–3]. The mass of the new boson \(m_H \) was measured to be near 125 GeV, and the spin-parity properties were further studied by both experiments, favoring the scalar, \(J^{PC} = 0^{++} \), hypothesis [4–7]. The measurements were found to be consistent with a single narrow resonance, and an upper limit of 3.4 GeV at a 95% confidence level (CL) on its decay width \(\Gamma_H \) was reported by the CMS experiment in the four-lepton decay channel [7]. A direct width measurement at the resonance peak is limited by experimental resolution, and is only sensitive to values far larger than the expected width of around 4 MeV for the SM Higgs boson [8,9].

It was recently proposed [10] to constrain the Higgs boson width using its off-shell production and decay to two Z bosons away from the resonance peak [11]. In the dominant gluon fusion production mode the off-shell production cross section is known to be sizable. This arises from an enhancement in the decay amplitude from the vicinity of the Z-boson pair production threshold. A further enhancement comes in gluon fusion production, from the top-quark pair production threshold. The zero-width approximation is inadequate and the ratio of the off-shell cross section above \(2m_Z \) to the on-shell signal is of the order of 8% [11,12]. Further developments to the measurement of the Higgs boson width were proposed in Refs. [13,14].

The gluon fusion production cross section depends on \(\Gamma_H \) through the Higgs boson propagator:

\[
\frac{d\sigma_{gg-H \rightarrow ZZ}}{dm_Z^2} \sim \frac{g^2_{ggH} m_H^2}{(m_Z^2 - m_H^2)^2 + m_H^2} \tag{1}
\]

where \(g_{ggH} \) and \(g_{HZZ} \) are the couplings of the Higgs boson to gluons and Z bosons, respectively. Integrating either in a small region around \(m_H \), or above the mass threshold \(m_{ZZ} > 2m_Z \), where \((m_{ZZ} - m_H) \gg \Gamma_H \), the cross sections are, respectively,

\[
\sigma_{\text{on-shell}}^{gg-H \rightarrow ZZ} \sim \frac{g^2_{ggH} m_H^2}{m_H \Gamma_H} \quad \text{and} \quad \sigma_{\text{off-shell}}^{gg-H \rightarrow ZZ} \sim \frac{g^2_{ggH} m_H^2}{(2m_Z)^2} \tag{2}
\]

From Eq. (2), it is clear that a measurement of the relative off-shell and on-shell production in the \(H \rightarrow ZZ \) channel provides direct information on \(\Gamma_H \), as long as the coupling ratios remain unchanged, i.e. the gluon fusion production is dominated by the top-quark loop and there are no new particles contributing. In particular, the on-shell production cross section is unchanged under a common scaling of the squared product of the couplings and of the total width \(\Gamma_H \), while the off-shell production cross section increases linearly with this scaling factor.

The dominant contribution for the production of a pair of Z bosons comes from the quark-initiated process, \(q\bar{q} \rightarrow ZZ \), the diagram for which is illustrated in Fig. 1(left). The gluon-induced diboson production involves the \(gg \rightarrow ZZ \) continuum background production from the box diagrams, as illustrated in Fig. 1(center). An

* E-mail address: cms-publication-committee-chair@cern.ch.
example of the signal production diagram is shown in Fig. 1(right). The interference between the two gluon-induced contributions is significant at high \(m_{\ell\ell} \) [15], and is taken into account in the analysis of the off-shell signal.

Vector boson fusion (VBF) production, which contributes at the level of about 7% to the on-shell cross section, is expected to increase above 2\(m_2 \). The above formalism describing the ratio of off-shell and on-shell cross sections is applicable to the VBF production mode. In this analysis we constrain the fraction of VBF production using the properties of the events in the on-shell region. The other main Higgs boson production mechanisms, t\(t\bar{t} \) and VH (\(V = Z, W \)), which contribute at the level of about 5% to the on-shell signal, are not expected to produce a significant off-shell contribution as they are suppressed at high mass [8,9]. They are therefore neglected in the off-shell analysis.

In this Letter, we present constraints on the Higgs boson width using its off-shell production and decay to Z-boson pairs, in the final states where one Z boson decays to an electron or a muon pair and the other to either an electron or a muon pair, \(H \rightarrow ZZ \rightarrow 4\ell \) (\(4\ell \) channel), or a pair of neutrinos, \(H \rightarrow ZZ \rightarrow 2\ell 2\nu \) \((2\ell 2\nu \) channel). Relying on the observed Higgs boson signal in the resonance peak region [7], the simultaneous measurement of the signal in the high-mass region leads to constraints on the Higgs boson width \(\Gamma_H \) in the \(4\ell \) decay channel. The \(2\ell 2\nu \) decay channel, which benefits from a higher branching fraction [16,17], is used in the high-mass region to further increase the sensitivity to the Higgs boson width. The analysis is performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations [4,7], and implications for the anomalous HVV interactions are discussed. The Higgs boson mass is set to the measured value in the \(4\ell \) decay channel of \(m_H = 125.6 \) GeV [7] and the Higgs boson width is set to the corresponding expected value in the SM of \(\Gamma_H^{\text{SM}} = 4.15 \) MeV [8,9].

The measurement is based on pp collision data collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 5.1 fb\(^{-1}\) at the center-of-mass energy of \(\sqrt{s} = 7 \) TeV (\(4\ell \) channel), and in 2012, corresponding to an integrated luminosity of 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV (\(4\ell \) and \(2\ell 2\nu \) channels). The CMS detector, described in detail elsewhere [18], provides excellent resolution for the measurement of electron and muon transverse momenta (\(p_T \)) over a wide range. The signal candidates are selected using well-identified and isolated prompt leptons. The online selection and event reconstruction are described elsewhere [2,3,7,15]. The analysis presented here is based on the same event selection as used in Refs. [7,16].

The analysis in the \(4\ell \) channel uses the four-lepton invariant mass distribution as well as a matrix element likelihood discriminant to separate the ZZ components originating from gluon- and quark-initiated processes. We define the on-shell signal region as \(105.6 < m_{4\ell} < 140.6 \) GeV and the off-shell signal region as \(m_{4\ell} > 220 \) GeV. The analysis in the \(2\ell 2\nu \) channel relies on the transverse mass distribution \(m_T \),

\[
m_T^2 = \frac{1}{2} \left[p_T,\text{Z}\ell^2 + m_{2\ell}^2 + \sqrt{E_T^{\text{miss}}^2 + m_{2\ell}^2} \right]^2 - \left[p_T,\text{Z}\ell + E_T^{\text{miss}} \right]^2.
\]

where \(p_T,\text{Z}\ell \) and \(m_{2\ell} \) are the measured transverse momentum and invariant mass of the dilepton system, respectively. The missing transverse energy, \(E_T^{\text{miss}} \), is defined as the magnitude of the transverse momentum imbalance evaluated as the negative of the vectorial sum of transverse momenta of all the reconstructed particles in the event. In the \(2\ell 2\nu \) channel, the off-shell signal region is defined as \(m_T > 180 \) GeV. The choice of the off-shell regions in both channels is done prior to looking at the data, based on the expected sensitivity.

Simulated Monte Carlo (MC) samples of \(gg \rightarrow 4\ell \) and \(gg \rightarrow 2\ell 2\nu \) events are generated at leading order (LO) in perturbative quantum chromodynamics (QCD), including the Higgs boson signal, the continuum background, and the interference contributions using recent versions of two different MC generators, gg2VV [3,15] and mcfm 6.7 [20], in order to cross-check theoretical inputs. The QCD renormalization and factorization scales are set to \(m_{2\ell 2\nu}/2 \) (dynamic scales) and MSTW2008 LO parton distribution functions (PDFs) [21] are used. Higher-order QCD corrections for the gluon fusion signal process are known to an accuracy of next-to-next-to-leading order (NNLO) and next-to-next-to-leading order logarithms for the total cross section [8,9] and to NNLO as a function of \(m_{2\ell 2\nu} \). These correction factors to the LO cross section (K factors) are typically in the range of 2.0 to 2.5. After the application of the \(m_{2\ell 2\nu} \)-dependent K factors, the event yield is normalized to the cross section from Refs. [8,9]. For the \(gg \rightarrow ZZ \) continuum background, although no exact calculation exists beyond LO, it has been recently shown [22] that the soft collinear approximation is able to describe the background cross section and therefore the interference term at NNLO. Following this calculation, we assign to the LO background cross section (and, consequently, to the interference contribution) a K factor equal to that used for the signal [14]. The limited theoretical knowledge of the background K factor at NNLO is taken into account by including an additional systematic uncertainty, the impact of which on the measurement is nevertheless small.

Vector boson fusion events are generated with PHANTOM [23]. Off-shell and interference effects with the nonresonant production are included at LO in these simulations. The event yield is normalized to the cross section at NNLO QCD and next-to-leading order (NLO) electroweak (EW) [8,9] accuracy, with a normalization factor shown to be independent of \(m_{2\ell 2\nu} \).

In order to parameterize and validate the distributions of all the components for both gluon fusion and VBF processes, specific simulated samples are also produced that describe only the signal or the continuum background, as well as several scenarios with scaled couplings and width. For the on-shell analysis, signal events are generated either with POWHEG [24–27] production at NLO in QCD and JHUGen [28,29] decay (gluon fusion and VBF), or with PYTHIA 6.4 [30] (VH and t\(t\bar{t} \) production).

In both the \(4\ell \) and \(2\ell 2\nu \) channels the dominant background is \(q\bar{q} \rightarrow ZZ \). We assume SM production rates for this background, the contribution of which is evaluated by POWHEG simulation at NLO in QCD [31]. Next-to-leading order EW calculations [32,33], which predict [11] negative and \(m_{2\ell 2\nu} \)-dependent corrections to the \(q\bar{q} \rightarrow ZZ \) process for on-shell Z-boson pairs, are taken into account.

All simulated events undergo parton showering and hadronization using PYTHIA. As is done in Ref. [7] for LO samples, the parton
showering settings are tuned to approximately reproduce the ZZ p_T spectrum predicted at NNLO for the Higgs boson production [34]. Generated events are then processed with the detailed CMS detector simulation based on GEANT4 [35,36], and reconstructed using the same algorithms as used for the observed events.

The final state in the 4ℓ channel is characterized by four well-identified and isolated leptons forming two pairs of opposite-sign and same-flavor leptons consistent with two Z bosons. This channel benefits from a precise reconstruction of all final state leptons and from a very low instrumental background. The event selection and the reducible background evaluation are performed following the methods described in Ref. [7]. After the selection, the 4ℓ data sample is dominated by the quark-initiated $q\bar{q} \to ZZ \to 4\ell$ ($q\bar{q} \to 4\ell$) and $gg \to 4\ell$ productions.

Fig. 2 presents the measured $m_{4\ell}$ distribution over the full mass range, $m_{4\ell} > 100$ GeV, together with the expected SM contributions. The $gg \to 4\ell$ contribution is clearly visible in the on-shell signal region and at the Z-boson pair production threshold, above the $q\bar{q} \to 4\ell$ background. The observed distribution is consistent with the expectation from SM processes. We observe 223 events in the off-shell signal region, while we expect 217.6 ± 9.5 from SM processes, including the SM Higgs boson signal.

In order to enhance the sensitivity to the gg production in the off-shell region, a likelihood discriminant D_{gg} is used, which characterizes the event topology in the 4ℓ center-of-mass frame using the observables $(m_{Z_1}, m_{Z_2}, \hat{\Omega})$ for a given value of $m_{4\ell}$, where $\hat{\Omega}$ denotes the five angles defined in Ref. [28]. The discriminant is built from the probabilities P_{tot}^{gg} and $P_{\text{tot}}^{\text{bkg}}$ for an event to originate from either the $gg \to 4\ell$ or the $q\bar{q} \to 4\ell$ process. We use the matrix element likelihood approach (MELA) [29] for the probability computation using the MC@NLO matrix elements for both $gg \to 4\ell$ and $q\bar{q} \to 4\ell$ processes. The probability P_{tot}^{gg} for the $gg \to 4\ell$ process includes the signal (P_{sig}^{gg}), the background (P_{bkg}^{gg}), and their interference (P_{int}^{gg}), as introduced for the discriminant computation in Ref. [37]. The discriminant is defined as

$$D_{gg} = \frac{P_{\text{tot}}^{gg}}{P_{\text{tot}}^{gg} + P_{\text{bkg}}^{gg}} = \left[1 + \left(\frac{a}{1 + \sqrt{\Delta}}\right)^{P_{\text{tot}}^{gg} - P_{\text{tot}}^{\text{bkg}}}\right]^{-1},$$

where the parameter a is the strength of the unknown anomalous gg contribution with respect to the expected SM contribution ($a = 1$). We set $a = 10$ in the definition of D_{gg} according to the expected sensitivity. Studies show that the expected sensitivity does not change substantially when a is varied up or down by a factor of 2. It should be stressed that fixing the parameter a to a given value only affects the sensitivity of the analysis. To suppress the dominant $q\bar{q} \to 4\ell$ background in the on-shell region, the analysis also employs a MELA likelihood discriminant D_{gg}^{kin}, based on the JHUGEN and MC@NLO matrix element calculations for the signal and background.

Fig. 2. Distribution of the four-lepton invariant mass in the range 100 < $m_{4\ell}$ < 800 GeV. Points represent the data, filled histograms the expected contributions from the reducible (Z + X) and $q\bar{q}$ backgrounds, and from the sum of the gluon fusion (gg) and vector boson fusion (VV) processes, including the Higgs boson mediated contributions. The inset shows the distribution in the low mass region after a selection requirement on the MELA likelihood discriminant $D_{gg}^{\text{kin}} > 0.5$ [7]. In this region, the contribution of the $t\bar{t}$H and VH production processes is added to the dominant gluon fusion and VBF contributions.

Fig. 3. Distributions of (top) the four-lepton invariant mass after a selection requirement on the MELA likelihood discriminant $D_{gg} > 0.65$, and (bottom) the D_{gg}^{kin} likelihood discriminant for $m_{4\ell} > 330$ GeV in the 4ℓ channel. Points represent the data, filled histograms the expected contributions from the reducible (Z + X) and $q\bar{q}$ backgrounds, and from the gluon fusion (gg) and vector boson fusion (VV) SM processes (including the Higgs boson mediated contributions). The dashed line corresponds to the total expected yield for a Higgs boson width and a squared product of the couplings scaled by a factor 10 with respect to their SM values. In the top plot, the bin size varies from 20 to 85 GeV and the last bin includes all entries with masses above 800 GeV.
the background, as illustrated by the inset in Fig. 2 and used in Ref. [7].

As an illustration, Fig. 3(top) presents the 4ℓ invariant mass distribution for the off-shell signal region (m_{4\ell} > 220 GeV) and for D_{gg} > 0.65. The expected contributions from the q\bar{q}\to 4\ell and reducible backgrounds, as well as for the total gluon fusion (gg) and vector boson fusion (VV) contributions, including the Higgs boson signal, are shown. The distribution of the likelihood discriminant D_{gg} for m_{4\ell} > 330 GeV is shown in Fig. 3(bottom), together with the expected contributions from the SM. The expected m_{4\ell} and D_{gg} distributions for the sum of all the processes, with a Higgs boson width \Gamma_{H} = 10 \times \Gamma_{H}^{\text{SM}} and a relative cross section with respect to the SM cross section equal to unity in both gluon fusion and VBF production modes (\mu = \mu_{\text{ggH}} = \mu_{\text{VV}} = 1), are also presented, showing the enhancement arising from the scaling of the squared product of the couplings. The expected and observed event yields in the off-shell gg-enriched region defined by m_{4\ell} > 330 GeV and D_{gg} > 0.65 are reported in Table 1.

The 2\ell_2\nu analysis is performed on the 8 TeV data set only. The final state in the 2\ell_2\nu channel is characterized by two oppositelycharged leptons of the same flavor compatible with a Z boson, together with a large E_{T}^{\text{miss}} from the undetectable neutrinos. We require E_{T}^{\text{miss}} > 80 GeV. The event selection and background estimation is performed as described in Ref. [16], with the exception that the jet categories defined in Ref. [16] are here grouped into a single category, i.e. the analysis is performed in an inclusive way. The m_\ell distribution in the off-shell signal region (m_{\ell_1\ell_2} > 180 GeV) is shown in Fig. 4. The expected and observed event yields in a gg-enriched region defined by m_{\ell_1\ell_2} > 350 GeV and E_{T}^{\text{miss}} > 100 GeV are reported in Table 1.

Systematic uncertainties comprise experimental uncertainties on the signal efficiency and background yield evaluation, as well as uncertainties on the signal and background from theoretical predictions. Since the measurement is performed in wide m_{ZZ} regions, there are sources of systematic uncertainties that only affect the total normalization and others that affect both the normalization and the shape of the observables used in this analysis. In the 4\ell final state, only the latter type of systematic uncertainty affects the measurement of \Gamma_{H}, since normalization uncertainties change the on-shell and off-shell yields by the same amount.

![Fig. 4. Distribution of the transverse mass in the 2\ell_2\nu channel. Points represent the data, filled histograms the expected contributions from the backgrounds, and from the gluon fusion (gg) and vector boson fusion (VV) SM processes (including the Higgs-mediated contributions). The dashed line corresponds to the total expected yield for a Higgs boson width and a squared product of the couplings scaled by a factor 10 with respect to their SM values. The bin size varies from 80 to 210 GeV and the last bin includes all entries with transverse masses above 1 TeV.](image-url)

Among the signal uncertainties, experimental systematic uncertainties are evaluated from observed events for the trigger efficiency (1.5%), and combined object reconstruction, identification and isolation efficiencies (3–4% for muons, 5–11% for electrons) [7]. In the 2\ell_2\nu final state, the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into account and propagated to the evaluation of E_{T}^{\text{miss}}. The uncertainty in the b-jet veto (1–3%) is estimated from simulation using correction factors for the b-tagging and b-misidentification efficiencies as measured from the dijet and tt decays control samples [38].

Theoretical uncertainties from QCD scales in the q\bar{q} background contribution are within 4–10% depending on m_{ZZ} [7]. An additional uncertainty of 2–6% is included to account for missing higher order contributions with respect to a full NLO QCD and NLO EW evaluation. The systematic uncertainty in the normal-
ization of the reducible backgrounds is evaluated following the methods described in Refs. [7,16]. In the $2\ell\nu$ channel, for which these contributions are not negligible at high mass, the estimation from control samples for the $Z+\text{jets}$ and for the sum of the $t\bar{t}$, tW and WW contributions leads to uncertainties of 25% and 15% in the respective background yields. Theoretical uncertainties in the high mass contribution from the gluon-induced processes, which affect both the normalization and the shape, are especially important in this analysis (in particular for the signal and interference contributions that are scaled by large factors). However, these uncertainties partially cancel when measuring simultaneously the yield from the same process in the on-shell signal region. The remaining $m_{\ell\ell}$-dependent uncertainties in the QCD renormalization and factorization scales are derived using the K factor variations from Ref. [14], corresponding to a factor of two up or down from the nominal $m_{\ell\ell}/2$ values, and amount to 2–4%. For the $gg\to ZZ$ continuum background production, we assign a 10% additional uncertainty on the K factor, following Ref. [22] and taking into account the different mass ranges and selections on the final state. This uncertainty also affects the signal with the signal. The PDF uncertainties are estimated following Refs. [39,40] by changing the NLO PDF set from MSTW2008 to CT10 [41] and NNPDF2.1 [42], and the residual contribution is about 1%. For the VBF processes, no significant $m_{\ell\ell}$-dependence is found regarding the QCD scales and PDF uncertainties, which are in general much smaller than for the gluon fusion processes [8,9]. In the $2\ell\nu$ final state, additional uncertainties on the yield arising from the theoretical description of the parton shower and underlying event are taken into account (6%).

We perform a simultaneous unbinned maximum likelihood fit of a signal-plus-background model to the measured distributions in the 4ℓ and $2\ell\nu$ channels. In the 4ℓ channel the analysis is performed in the on-shell and off-shell signal regions defined above. In the on-shell region, a three-dimensional distribution $\vec{x} = (m_{4\ell}, P_{\text{bkg}}^{\text{on-shell}}, P_{\text{jet}}^{\text{on-shell}})$ is analyzed, following the methodology described in Ref. [7], where the quantity P_{jet} is a discriminant used to separate VBF from gluon fusion production. In the off-shell region, a two-dimensional distribution $\vec{x} = (m_{4\ell}, P_{\text{bkg}}^{\text{off-shell}})$ is analyzed. In the $2\ell\nu$ channel, only the off-shell Higgs boson production is analyzed, using the $\vec{x} = m_{\ell\nu}$ distribution.

The probability distribution functions are built using the full detector simulation or data control regions, and are defined for the signal, the background, or the interference between the two contributions, P_{SIG}, P_{BKG}, or P_{INT}, respectively, as a function of the observables \vec{x} discussed above. Several production mechanisms are considered for the signal and the background, such as gluon fusion (gg), VBF, and quark-antiquark annihilation (qq). The total probability distribution function for the off-shell region includes the interference of two contributions in each production process:

$$P_{\text{off-shell}}(\vec{x}) = \left[\mu_{\text{gg}} \times \left(I_{H} / I_{0} \right) \times P_{\text{SIG}}^{\text{gg}}(\vec{x}) \right]$$

$$+ \sqrt{\mu_{\text{gg}} \times \left(I_{H} / I_{0} \right)} \times P_{\text{INT}}^{\text{gg}}(\vec{x}) + P_{\text{BKG}}^{\text{gg}}(\vec{x})$$

$$+ \left[\mu_{\text{VBF}} \times \left(I_{H} / I_{0} \right) \times P_{\text{SIG}}^{\text{VBF}}(\vec{x}) \right]$$

$$+ \sqrt{\mu_{\text{VBF}} \times \left(I_{H} / I_{0} \right)} \times P_{\text{INT}}^{\text{VBF}}(\vec{x}) + P_{\text{BKG}}^{\text{VBF}}(\vec{x})$$

$$+ \mu_{\text{qq}} \times \left(I_{H} / I_{0} \right) \times P_{\text{INT}}^{\text{qq}}(\vec{x}) + \ldots$$

The list of background processes is extended beyond those quoted depending on the final state ($Z+\text{jets}$, $W+\text{jets}$, WW, WW), the parameters μ_{gg} and μ_{VBF} are the scale factors which modify the signal strength with respect to the reference parameterization in each production mechanism independently. The parameter (I_{H} / I_{0}) is the scale factor which modifies the observed width

![Fig. 5. Scan of the negative log-likelihood, $-2\Delta\ln\mathcal{L}$, as a function of I_{H} for the combined fit of the 4ℓ and $2\ell\nu$ channels (blue thick lines), for the 4ℓ channel alone in the off-shell and on-shell regions (dark red lines), and for the $2\ell\nu$ channel in the off-shell region and 4ℓ channel in the on-shell region (light red lines). The solid lines represent the observed values, the dotted lines the expected values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image)

with respect to the I_{0} value used in the reference parameterization.

In the on-shell region, the parameterization includes the small contribution of the $t\bar{t}H$ and VH Higgs boson production mechanisms, which are related to the gluon fusion and VBF processes, respectively, because either the quark or the vector boson coupling to the Higgs boson is in common among those processes. Interference effects are negligible in the on-shell region. The total probability distribution function for the on-shell region is written as

$$P_{\text{on-shell}}(\vec{x}) = \mu_{\text{gg}} \times \left[P_{\text{SIG}}^{\text{gg}}(\vec{x}) + P_{\text{INT}}^{\text{gg}}(\vec{x}) \right]$$

$$+ \mu_{\text{VBF}} \times \left[P_{\text{SIG}}^{\text{VBF}}(\vec{x}) + P_{\text{INT}}^{\text{VBF}}(\vec{x}) \right]$$

$$+ P_{\text{BKG}}^{\text{gg}}(\vec{x}) + P_{\text{BKG}}^{\text{VBF}}(\vec{x}) + \ldots$$

The above parameterizations in Eqs. (5, 6) are performed for the tree-level HV coupling of a scalar Higgs boson, consistent with our observations [4,7]. We find that the presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and a more stringent constraint on the width. It is evident that the parameterization in Eq. (5) relies on the modeling of the gluon fusion production with the dominant top-quark loop, therefore no possible new particles are considered in the loop. Further discussion can also be found in Refs. [43–45].

The three parameters I_{H}, μ_{gg}, and μ_{VBF} are left unconstrained in the fit. The μ_{gg} and μ_{VBF} fitted values are found to be almost identical to those obtained in Ref. [7]. Systematic uncertainties are included as nuisance parameters and are treated according to the frequentist paradigm [46]. The shapes and normalizations of the signal and of each background component are allowed to vary within their uncertainties, and the correlations in the sources of systematic uncertainty are taken into account.

The fit results are shown in Fig. 5 as scans of the negative log-likelihood, $-2\Delta\ln\mathcal{L}$, as a function of I_{H}. Combining the two channels a limit is observed (expected) on the total width of $I_{H} < 22$ MeV (33 MeV) at a 95% CL, which is 5.4 (8.0) times the expected value in the SM. The best fit value and 68% CL interval correspond to $I_{H} = 1.8^{+4.7}_{-1.8}$ MeV. The result of the 4ℓ analysis
alone is an observed (expected) limit of $\Gamma_H < 33$ MeV (42 MeV) at a 95% CL, which is 8.0 (10.1) times the SM value, and the result of the analysis combining the 4τ on-shell and $2\tau 2\nu$ off-shell regions is $\Gamma_H < 33$ MeV (44 MeV) at a 95% CL, which is 8.1 (10.6) times the SM value. The best fit values and 68% CL intervals are $\Gamma_H = 1.9^{+1.9}_{-1.3}$ MeV and $\Gamma_H = 1.8^{+2.4}_{-1.8}$ MeV for the 4τ analysis and for the analysis combining the 4τ on-shell and 2τ 2ν off-shell regions, respectively.

The expected limit for the two channels combined without including the systematic uncertainties is $\Gamma_H < 28$ MeV at a 95% CL. The effect of systematic uncertainties is driven by the $2\tau 2\nu$ channel with larger experimental uncertainties in signal efficiencies and background estimation from control samples in data, while the result in the 4τ channel is largely dominated by the statistical uncertainty.

The statistical compatibility of the observed results with the expectation under the SM hypothesis corresponds to a p-value of 0.24. The statistical coverage of the results obtained in the likelihood scan has also been tested with the Feldman–Cousins approach [47] for the combined analysis leading to consistent albeit slightly tighter constraints. The analysis in the 4τ channel has also been performed in a one-dimensional fit using either $m_{4\tau}$ or D_{gg} and consistent results are found. The expected limit without using the MELA likelihood discriminant D_{gg} is 40% larger in the 4τ channel.

In summary, we have presented constraints on the total Higgs boson width in its relative on-shell and off-shell production and decay rates to four leptons or two leptons and two neutrinos. The analysis is based on the 2011 and 2012 data sets corresponding to integrated luminosities of 5.1 fb$^{-1}$ at $\sqrt{s} = 7$ TeV and 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The four-lepton analysis uses the measured invariant mass distribution near the peak and above the Z-boson pair production threshold, as well as a likelihood discriminant to separate the gluon fusion ZZ production from the $q\bar{q} \rightarrow ZZ$ background, while the two-lepton plus two-neutrino off-shell analysis relies on the transverse mass distribution. The presented analysis determines the independent contributions of the gluon fusion and VBF production mechanisms from the data in the on-shell region. It relies nevertheless on the knowledge of the coupling ratios between the off-shell and on-shell production, i.e., the dominance of the top quark loop in the gluon fusion production mechanism and the absence of new particle contribution in the loop. The presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and would make our constraint tighter. The combined fit of the 4τ and $2\tau 2\nu$ channels leads to an upper limit on the Higgs boson width of $\Gamma_H < 22$ MeV at a 95% confidence level, which is 5.4 times the expected width of the SM Higgs boson. This result improves by more than two orders of magnitude upon previous experimental constraints on the new boson decay width from the direct measurement at the resonance peak.

Acknowledgements

We wish to thank our theoretician colleagues and in particular Fabrizio Caola for providing the theoretical uncertainty in the gg → ZZ background K factor, Tobias Kasprzik for providing the numerical calculations on the EW corrections for the q$q\bar{q}$ → ZZ background process, Giampiero Passarino for his calculations of the m_{ZZ}-dependent K factor and its variations with renormalization and factorization scales, and Marco Zaro for checking the independence on m_{ZZ} of higher-order corrections in VBF processes. We also gratefully acknowledge Alessandro Ballester, John Campbell, Keith Ellis, Stefano Forte, Nikolai Kauer, Kirill Melnikov, and Ciaran Williams for their help in optimizing the Monte Carlo generators for this analysis.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FFV (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MEQ and LMU (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); BAE (Pakistan); MEHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); THDCentral, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

CMS Collaboration

V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik der OeAW, Wien, Austria

V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

National Centre for Particle and High Energy Physics, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Université de Mons, Mons, Belgium

W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

C.A. Bernardes, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

Institute of High Energy Physics, Beijing, China

C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Universidad de Los Andes, Bogota, Colombia

N. Godinovic, D. Lelas, D. Polic, I. Puljak

Technical University of Split, Split, Croatia
Z. Tsamalaidze

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Athens, Athens, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

University of Ioannina, Ioannina, Greece

G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Wigner Research Centre for Physics, Budapest, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

University of Debrecen, Debrecen, Hungary

S.K. Swain

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research - EHEP, Mumbai, India

S. Banerjee, R.K. Dewanjee, S. Dugad

Tata Institute of Fundamental Research - HECR, Mumbai, India

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdibadi, B. Safarzadeh, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

S. Marcellini a, G. Masetti a,2, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, A.M. Rossi a,b, T. Rovelli a,b, G.P. Sirio a,b, N. Tosi a,b, R. Travaglini a,b
4 INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergo a,b, G. Cappello a, M. Chiorboli a,b, S. Costa a,b, F. Giordano a,2, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b
4 INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy
c CSFNSM, Catania, Italy

G. Barbagli a, V. Ciulli a,b, C. Civenini a, R. D’Alessandro a,b, E. Focardi a,b, E. Gallo a, S. Gonzi a,b, V. Gori a,b,2, P. Lenzi a,b, M. Meschini a, S. Paoletti a, G. Sguazzoni a, A. Tropiano a,b
4 INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo
INFN Laboratori Nazionali di Frascati, Frascati, Italy

F. Ferro a, M. Lo Vetere a,b, E. Robutti a, S. Tosi a,b
4 INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

M.E. Dinardo a,b, S. Fiorendi a,b,2, S. Gennai a,2, R. Gerosa 2, A. Ghezzi a,b, P. Govoni a,b, M.T. Lucchini a,b,2, S. Malvezzi a, R.A. Manzoni a,b, A. Martelli a,b, B. Marzocchi, D. Menasce a, L. Moroni a, M. Paganoni a,b, D. Pedrini a, S. Ragazzi a,b, N. Redaelli a, T. Tabarelli de Fatis a,b
4 INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempo a, N. Cavallo a,c, S. Di Guida a,d,2, F. Fabozzi a,c, A.O.M. Iorio a,b, L. Lista a, S. Meola a,d,2, M. Merola a, P. Paolucci a,2
4 INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli Federico II, Napoli, Italy
c Università della Basilicata (Potenza), Napoli, Italy
d Università G. Marconi (Roma), Napoli, Italy

P. Azzi a,2, N. Bacchetta a,d, D. Bisello a,b, A. Branca a,b, R. Carlin a,b, P. Checcia a, M. Dall’Osso a,b, T. Dorigo a, U. Dosselli a, M. Galanti a,b, F. Gasparini a,b, U. Gasparini a,b, P. Giubilato a,b, A. Gozzelino a, K. Kanishchev a,c, S. Lacaprara a, M. Margoni a,b, A.T. Meneguzzo a,b, J. Pazzini a,b, N. Pozzobon a,b, P. Ronchese a,b, F. Simonetto a,b, E. Torassa a, M. Tosi a,b, P. Zotto a,b, A. Zucchetta a,b, G. Zumerle a,b
4 INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
c Università di Trento (Trento), Padova, Italy

M. Gabusi a,b, S.P. Ratti a,b, C. Riccardi a,b, P. Salvini a, P. Vitulo a,b
4 INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

M. Biasini a,b, G.M. Bilei a, D. Ciangottini a,b, L. Fanò a,b, P. Lariccia a,b, G. Mantovani a,b, M. Menichelli a, F. Romeo a,b, A. Saha a, A. Santocchia a,b, A. Spiezia a,b,2
4 INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

K. Androsov a,27, P. Azzurri a, G. Bagliesi a, J. Bernardini a, T. Boccali a, G. Broccolo a,c, R. Castaldi a, M.A. Ciocci a,27, R. Dell’Orso a, S. Donato a,c, F. Fiori a,c, L. Foà a,c, A. Giassi a, M.T. Grippo a,27, F. Ligabue a,c,
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, F. Vazquez Valencia
Universidad Iberoamericana, Mexico City, Mexico

I. Pedraza, H.A. Salazar Ibarguen
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

E. Casimiro Linares, A. Morelos Pineda
Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

D. Krofcheck
University of Auckland, Auckland, New Zealand

P.H. Butler, S. Reucroft
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
Institute for Theoretical and Experimental Physics, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad Autónoma de Madrid, Madrid, Spain

H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC – Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Bogazici University, Istanbul, Turkey

H. Bahtiyar, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futoyan, A. Gilbert, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias,

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA
V. Azzolini, A. Calamba, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

Carnegie Mellon University, Pittsburgh, USA

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

D. Winn

Fairfield University, Fairfield, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

N. Parashar, J. Stupak

Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

Rice University, Houston, USA

B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

University of Rochester, Rochester, USA

R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

K. Rose, S. Spanier, A. York

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

† Deceased.

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
6 Also at Universidade Estadual de Campinas, Campinas, Brazil.
7 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Suez University, Suez, Egypt.
10 Also at Cairo University, Cairo, Egypt.
11 Also at Fayoum University, El-Fayoum, Egypt.
12 Also at British University in Egypt, Cairo, Egypt.
13 Now at Ain Shams University, Cairo, Egypt.
14 Also at Université de Haute Alsace, Mulhouse, France.
15 Also at Brandenburg University of Technology, Cottbus, Germany.
16 Also at The University of Kansas, Lawrence, USA.
17 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
18 Also at Eötvös Loránd University, Budapest, Hungary.
19 Also at University of Debrecen, Debrecen, Hungary.
20 Also at University of Visva-Bharati, Santiniketan, India.
21 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
22 Now at King Abdulaziz University, Jeddah, Saudi Arabia.
23 Also at University of Ruhuna, Matara, Sri Lanka.
24 Also at Isfahan University of Technology, Isfahan, Iran.
25 Also at Sharif University of Technology, Tehran, Iran.
26 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
27 Also at Università degli Studi di Siena, Siena, Italy.
28 Also at Centre National de la Recherche Scientifique (CNRS) – IN2P3, Paris, France.
29 Also at Purdue University, West Lafayette, USA.
30 Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
31 Also at National Centre for Nuclear Research, Swierk, Poland.
32 Also at Institute for Nuclear Research, Moscow, Russia.
33 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
34 Also at California Institute of Technology, Pasadena, USA.
35 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
36 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
37 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
38 Also at University of Athens, Athens, Greece.
39 Also at Paul Scherrer Institut, Villigen, Switzerland.
40 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
41 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
42 Also at Gaziosmanpasa University, Tokat, Turkey.
43 Also at Adiyaman University, Adiyaman, Turkey.
44 Also at Cag University, Mersin, Turkey.
45 Also at Mersin University, Mersin, Turkey.
46 Also at Izmir Institute of Technology, Izmir, Turkey.
47 Also at Ozyegin University, Istanbul, Turkey.
48 Also at Marmara University, Istanbul, Turkey.
49 Also at Kafkas University, Kars, Turkey.
50 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
51 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
52 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
53 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
54 Also at Argonne National Laboratory, Argonne, USA.
55 Also at Erzincan University, Erzincan, Turkey.
56 Also at Yildiz Technical University, Istanbul, Turkey.
57 Also at Texas A&M University at Qatar, Doha, Qatar.
58 Also at Kyungpook National University, Daegu, Korea.