Measurement of Prompt D[^0] Meson Azimuthal Anisotropy in Pb-Pb Collisions at sNN = 5.02 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurement of Prompt D^0 Meson Azimuthal Anisotropy in Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 11 August 2017; revised manuscript received 6 March 2018; published 16 May 2018)

The prompt D^0 meson azimuthal anisotropy coefficients, v_2 and v_3, are measured at midrapidity ($|y| < 1.0$) in Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (p_T) range of 1 to 40 GeV/c, for central and midcentral collisions. The v_2 coefficient is found to be positive throughout the p_T range studied. The first measurement of the prompt D^0 meson v_3 coefficient is performed, and values up to 0.07 are observed for p_T around 4 GeV/c. Compared to measurements of charged particles, a similar p_T dependence, but smaller magnitude for $p_T < 6$ GeV/c, is found for prompt D^0 meson v_2 and v_3 coefficients. The results are consistent with the presence of collective motion of charm quarks at low p_T and a path length dependence of charm quark energy loss at high p_T, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.

DOI: 10.1103/PhysRevLett.120.202301

The formation of a strongly coupled quark-gluon plasma (QGP), a state of matter comprising deconfined quarks and gluons and exhibiting near-perfect liquid behavior, was established first in experiments performed at the Relativistic Heavy Ion Collider (RHIC) [1–4] and then later confirmed at the CERN Large Hadron Collider (LHC) [5,6]. The azimuthal anisotropy of produced light flavor particles, one of the key signatures for the QGP formation, can be characterized by the Fourier coefficients v_n in the azimuthal angle (ϕ) distribution of the hadron yield, $dN/d\phi \propto 1 + 2 \sum_n v_n \cos[n(\phi - \Psi_n)]$, where Ψ_n is the azimuthal angle of the direction of the maximum particle density of the nth harmonic in the transverse plane [7]. Heavy quarks (charm and bottom) are primarily produced via initial hard scatterings because of their large masses, and thus carry information about the early stages of the QGP [8,9]. Detailed measurements of the azimuthal anisotropy of the final-state charm and bottom hadrons can supply crucial information for understanding the properties of the QGP medium and the interactions between heavy quarks and the medium [10]. At low transverse momentum (p_T), the charm hadron v_n coefficient can help quantify the extent to which charm quarks flow with the medium, which is a good measure of their interaction strength. The measurements can also help explore the coalescence production mechanism for charm hadrons where charm quarks recombine with light quarks from the medium, which could also lead to positive charm hadron v_n [11,12]. At high p_T, the charm hadron v_n coefficient can constrain the path length dependence of charm quark energy loss [13,14], complementing the measurement of the nuclear modification factor [15–17].

The charm hadron v_2 coefficient has been studied indirectly by measuring the v_2 of leptons from heavy-flavor hadron decays [18–22]. The D meson v_2 coefficient, which can provide cleaner information on the interactions between charm quarks and the medium, has also been measured [23–25]. The D^0 meson v_2 results from STAR suggest that the charm quarks have achieved local thermal equilibrium with the QGP medium in the hydrodynamic picture [23]. The D meson v_2 values measured by ALICE are similar to those of light hadrons [24,25]. These results indicate that low-p_T charm quarks take part in the collective motion of the system. The D meson v_3 coefficient, which is predicted to be more sensitive to the interaction strength between charm quarks and the medium [26], has not been measured previously. In general, a precise measurement of the D meson v_n coefficient over a wide momentum range is expected to provide valuable insight into the QGP properties and can further constrain theoretical models.

In this Letter, we report the measurements of the azimuthal anisotropy coefficients, v_2 and v_3, of prompt D^0 mesons in lead-lead (PbPb) collisions at a center-of-mass energy $\sqrt{s_{NN}} = 5.02$ TeV per nucleon pair with

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

DOI: 10.1103/PhysRevLett.120.202301

0031-9007/18/120(20)/202301(17) 202301-1 © 2018 CERN, for the CMS Collaboration
the CMS experiment at the LHC. The coefficients are determined at midrapidity (|y| < 1.0) over a wide range in \(p_T \) (1 to 40 GeV/c) using the scalar product (SP) method [27,28]. Results are presented for the centrality (i.e. the degree of overlap of the two colliding nuclei) classes 0%–10%, 10%–30%, and 30%–50%, where the centrality class of 0%–10% corresponds to the 10% of collisions with the largest overlap of the two nuclei.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the pseudorapidity range 3.0 < |η| < 5.2 on either side of the interaction region. The granularity of the HF towers is Δη × Δφ = 0.175 × 0.175 radians, allowing an accurate reconstruction of the heavy ion collision event planes. The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. Reconstructed tracks with 1 < \(p_T \) < 10 GeV/c typically have resolutions of 1.5%–3.0% in \(p_T \) and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [29]. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [30].

The PbPb data used in this analysis are selected by a minimum bias trigger and a 30%–100% centrality trigger. The collision centrality is determined from the transverse energy (\(E_T \)) deposited in both HF calorimeters. The minimum bias trigger requires energy deposits in both HF calorimeters above a predefined threshold of approximately 1 GeV. Furthermore, to increase the data sample in the 30%–50% centrality range, a dedicated trigger is used to select events in the 30%–100% centrality range. In the offline analysis, an additional selection of hadronic collisions is applied by requiring at least three towers in each of the HF detectors with energy deposits of greater than 3 GeV per tower. Events are required to have at least one reconstructed primary vertex, formed by two or more associated tracks and required to have a distance from the nominal interaction region of less than 15 cm along the beam axis. The numbers of events used in the 0%–10%, 10%–30%, and 30%–50% centrality ranges are 32 × 10^6, 64 × 10^6, and 151 × 10^6, respectively.

The \(D^0 \) mesons (including both the \(D^0 \) and \(D^0 \) states) are reconstructed through the hadronic decay channel \(D^0 \rightarrow K^-\pi^+ \), which has a branching fraction of (3.93 ± 0.04%) [31]. The \(D^0 \) candidates are formed by combining pairs of oppositely charged tracks and requiring an invariant mass within a ±200 MeV/c^2 window of the nominal \(D^0 \) mass of 1864.83 MeV/c^2 [31]. Tracks are required to pass kinematic selections of \(p_T > 0.7 \) GeV/c and |η| < 1.5, and must satisfy high-purity track quality criteria [29] to reduce the fraction of misreconstructed tracks. For each pair of selected tracks, two \(D^0 \) candidates are considered by assuming one of the tracks has the pion mass while the other track has the kaon mass, and vice versa. Kinematic vertex fits [32] are performed to reconstruct the secondary vertices of \(D^0 \) candidates. Several selections related to the topology of the decay are applied in order to reduce the combinatorial background. In particular, the selections are applied to the three-dimensional (3D) decay length significance \(|L_{xy}/\sigma(L_{xy})| \), defined as the 3D distance between the secondary and primary vertices divided by its uncertainty, the pointing angle (θ_p), defined as the angle between the total momentum vector of the two tracks and the vector connecting the primary and secondary vertices, the \(\chi^2 \) probability of the secondary vertex fit, and the distance of the closest approach (DCA) of the total momentum vector to the primary vertex. The signal-to-background ratios are \(p_T \) dependent; thus \(p_T \)-dependent selection criteria are applied to \(L_{xy}/\sigma(L_{xy}) \) and the vertex probability, ranging from 6.0 to 3.0 and 0.25 to 0.05 for low to high \(p_T \), respectively. In the selection, θ_p < 0.12 radians and DCA < 0.008 cm is required. The selection on DCA not only increases the signal significance but also suppresses the fraction of nonprompt \(D^0 \) (\(D^0 \) mesons from decays of \(b \) hadrons) significantly, which reduces the systematic uncertainties from the nonprompt \(D^0 \) meson contribution, as discussed later.

The event plane angles corresponding to the nth harmonic can be expressed in terms of \(Q \) vectors, \(Q_n = \sum_{k=1}^{M} a_k e^{i n \phi_k} \), where \(M \) represents the subevent multiplicity, \(\phi_k \) is the azimuthal angle of the kth particle, and \(a_k \) is a weighting factor. In this analysis, event planes determined from the two HF calorimeters covering the range 3 < |η| < 5, and from the tracker using tracks within |η| < 0.75 are used. For the HF (tracker) event planes, \(M \) is the number of towers (tracks), and \(a_k \) is the \(E_T \) deposited in each HF tower (\(p_T \) of each track). The \(Q \) vector of each \(D^0 \) candidate is defined as \(Q_{n,D^0} = e^{i n \phi} \), where \(\phi \) is the azimuthal angle of the \(D^0 \) candidate. In the SP method, \(v_n \) coefficient can be expressed in terms of the \(Q \) vectors as

\[
v_n\{\text{SP}\} = \frac{\langle Q_{n,D^0} Q_{n,A}^{*} \rangle}{\sqrt{\langle Q_{n,D^0} Q_{n,D^0}^{*} \rangle \langle Q_{n,A} Q_{n,A}^{*} \rangle}}.
\]

where the subscripts \(A \) and \(B \) refer to the HF event planes, the subscript \(C \) refers to the tracker event plane, and the \(\langle \rangle \) in denominator (numerator) indicates an average over all events (all \(D^0 \) candidates). The denominator of Eq. (1) corrects for the finite resolution of the event plane \(A \). To avoid few-particle correlations, such as those induced by high-\(p_T \) dijets and particle decays, the \(\eta \) gap between \(D^0 \) candidates and the correlated event plane \(A \) is required to be
at least three units. Thus, if the D^0 candidate comes from the positive-η side, Q_{nA} (Q_{nB}) is calculated using the negative-η (positive-η) side of HF, and vice versa. The real part is taken for all averages of Q-vector products. To account for asymmetries that arise from acceptance and other detector-related effects, the Q vectors of event planes are recentered [7,33]. These corrections and their effects on the results are found to be negligible.

To extract v_n ($n = 2, 3$) values of the D^0 signal (v_n^S), a simultaneous fit to the invariant mass spectrum of D^0 candidates and their v_n distribution as a function of the invariant mass [$v_n^{S+B}(m_{inv})$] is performed in each p_T interval. The mass spectrum fit function is composed of three components: two Gaussian functions with the same mean but different widths for the D^0 signal [$S(m_{inv})$], an additional Gaussian function to describe the invariant mass shape of D^0 candidates with an incorrect mass assignment from the exchange of the pion and kaon designations [$SW(m_{inv})$], and a third-order polynomial to model the combinatorial background [$B(m_{inv})$]. The width of $SW(m_{inv})$ is fixed according to PYTHIA+HYDJET simulations, in which the D^0 signal events from PYTHIA 8.209 [34,35] are embedded into the minimum bias PbPb events from HYDJET 1.9 [36]. Furthermore, the ratio of the yields of $SW(m_{inv})$ and $S(m_{inv})$ is fixed to the value extracted from simulations. The $v_n^{S+B}(m_{inv})$ distribution is fit with

$$v_n^{S+B}(m_{inv}) = \alpha(m_{inv})v_n^S + [1 - \alpha(m_{inv})]v_n^B(m_{inv}),$$

where

$$\alpha(m_{inv}) = [S(m_{inv}) + SW(m_{inv})]/[S(m_{inv}) + SW(m_{inv}) + B(m_{inv})].$$

Here $v_n^B(m_{inv})$ is the v_n value of background D^0 candidates and is modeled as a linear function of the invariant mass, and $\alpha(m_{inv})$ is the D^0 signal fraction as a function of the invariant mass. The K-π swapped component is included in the signal fraction because these candidates are from genuine D^0 mesons and should have the same v_n value as that of the true D^0 signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and $v_2^{S+B}(m_{inv})$ in the p_T interval 4–5 GeV/c for the centrality class 10%–30%.

The D^0 signal in data is a mixture of prompt and nonprompt D^0 components; thus, the v_n^S is a combination of the v_n coefficients of prompt D^0 (v_n^{prompt}) and nonprompt D^0 ($v_n^{nonprompt}$) components,

$$v_n^S = f_{prompt}v_n^{prompt} + (1 - f_{prompt})v_n^{nonprompt},$$

where f_{prompt} is the fraction of prompt D^0 mesons. Besides the measurement of v_n of D^0 mesons with all analysis selections applied (v_n^p), the v_n of D^0 mesons obtained by removing the DCA < 0.008 cm requirement (v_n^{prompt}) and the corresponding prompt D^0 fraction (f_{prompt}) are also measured. The prompt D^0 fractions are evaluated from data by fitting the DCA distribution using the probability distribution functions for prompt and nonprompt D^0 derived from the PYTHIA+HYDJET simulations. The DCA distributions of the D^0 signal in data are obtained with fits to mass spectra in bins of DCA. The discrimination between prompt and nonprompt D^0 mesons lies mainly in the large DCA region; thus, the fit is performed on the entire range. The f_{prompt} and $f_{prompt, s}$ are then evaluated from the fit. It is found that the DCA < 0.008 cm requirement can suppress the fraction of nonprompt D^0 mesons by approximately 50%. The f_{prompt} ranges between 75% and 95%, depending on p_T and centrality. The v_n^{prompt} can then be expressed as

$$v_n^{prompt} = v_n^p + \frac{1 - f_{prompt}}{f_{prompt} - f_{prompt, s}}(v_n^S - v_n^{prompt}),$$

(2)

The second term,

$$\frac{1 - f_{prompt}}{f_{prompt} - f_{prompt, s}}(v_n^S - v_n^{prompt}),$$

is a correction factor to account for the remaining non-prompt D^0 mesons after all analysis selections. Taking the uncertainties in f_{prompt} and $f_{prompt, s}$ into account, the
second term on the right of Eq. (2) is found to lie approximately between −0.02 and +0.02. In this analysis, the v_n^2 values are kept as the central values of the measured prompt D^0 meson v_n, while the second term of Eq. (2) is taken as a source of systematic uncertainty.

Apart from the systematic uncertainties from the remaining nonprompt D^0 mesons discussed above, other sources of systematic uncertainty in this analysis include the background mass probability distribution function (PDF), the D^0 meson yield correction (acceptance and efficiency), the track selections, and the background v_n PDF. In this Letter, the quoted uncertainties in v_n are absolute values. The systematic uncertainties from the background mass PDF (0.001 for both v_2 and v_3) are evaluated by the variations of v_n while changing the background mass PDF to a second-order polynomial or an exponential function. Both the D^0 meson yield correction, and the values of v_n are functions of the D^0 meson p_T, so there will be systematic uncertainties arising from the correction. To evaluate these uncertainties (0.002–0.003 for v_2 and 0.004–0.005 for v_3), the yield correction is applied, and then v_n values are extracted from the corrected distributions and compared with the default v_n values. The track selections are also varied and systematic uncertainties from track selections (0.005–0.02 for v_2 and 0.01–0.02 for v_3) are assigned based on the variations of v_n. The systematic uncertainties from the background v_n PDF (mostly 0.001–0.01 for v_2 and 0.005–0.015 for v_3) are evaluated by changing $v_n^B(m_{inv})$ to a second-order polynomial function of the invariant mass. The effects from few-particle correlations are also studied by varying the η gap and are found to be negligible.

Figure 2 shows the prompt D^0 meson v_2 (upper) and v_3 (lower) coefficients at midrapidity ($|y| < 1.0$) for the centrality classes 0%–10% (left), 10%–30% (middle), and 30%–50% (right), and compares them to those of charged particles (dominated by light flavor hadrons) at midpseudorapidity ($|\eta| < 1.0$) [37]. The D^0 meson v_2 and v_3 coefficients increase with p_T to significant positive values in the low-p_T region, and then decrease for higher p_T. Compared to those of charged particles, the D^0 meson v_2 and v_3 coefficients exhibit a similar p_T dependence. As has been observed for charged particles, the D^0 meson v_2 coefficient increases with decreasing centrality in the 0%–50% centrality range, while the v_3 coefficient shows little centrality dependence. This is consistent with an increasing elliptical eccentricity with decreasing centrality [38].
and an approximately constant triangularity stemming from geometry fluctuations [39].

For $p_T < 6 \text{ GeV}/c$, the magnitudes of D^0 meson v_2 and v_3 coefficients are smaller than those for charged particles in the centrality classes 10%–30% and 30%–50%. Further study may determine whether it is a pure mass ordering or whether other effects, such as the degree of charm quark thermalization, coalescence, and the path length dependence of energy loss, are at play. The comparison between the D^0 meson results and theoretical calculations in this low-p_T region (see discussion below) suggests a collective motion of charm quarks. For $p_T > 6 \text{ GeV}/c$, the D^0 meson v_2 values remain positive, suggesting a path length dependence of the charm quark energy loss; the D^0 meson v_3 precision is limited by the available data. The D^0 meson v_2 values are consistent with those of charged particles, suggesting that the path length dependence of charm quark energy loss is similar to that of light quarks.

Figure 2 also compares calculations from theoretical models [26,40–43] to the prompt D^0 meson v_2 and v_3 experimental results. The calculations from LBT [40], CUJET 3.0 [43], and SUBATECH [26] include collisional and radiative energy losses, while those from TAMU [42] and PHSD [41] include only collisional energy loss. Initial-state fluctuations [44] are included in the calculations from LBT, SUBATECH, and PHSD; thus calculations for the v_3 coefficient are only available from these three models. For $p_T < 6 \text{ GeV}/c$, LBT, SUBATECH, TAMU, and PHSD can qualitatively describe the shapes of the measured v_2, while the TAMU model underestimates the v_2 values. This may suggest that the heavy quark potential in the TAMU model needs to be tuned [45] or that the addition of radiative energy loss is needed. The calculations from LBT and SUBATECH are in reasonable agreement with the v_3 results, while the PHSD calculations are systematically below the measured v_3 for centrality class 10%–30%. In the calculations from LBT, SUBATECH, TAMU, and PHSD, the charm quarks have acquired significant elliptic and triangular flow through the interactions with the medium constituents, and the coalescence mechanism is incorporated. Without including the interactions between charm quarks and the medium, these models will significantly underestimate the data [26,40–42]. Thus, the fact that the calculated v_n values are close to or even lower than the measured results suggests that the charm quarks take part in the collective motion of the system. Whether and how well the D^0 anisotropy can be described by hydrodynamics and thermalization requires further investigation. For $p_T > 6 \text{ GeV}/c$, PHSD and CUJET can generally describe the v_2 results. LBT and SUBATECH predict lower and higher v_2 values than in data, respectively, indicating that improvements of the energy loss mechanisms in the two models are necessary.

In summary, measurements of prompt D^0 meson azimuthal anisotropy coefficients, v_2 and v_3, using the scalar product method in PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ have been presented. The v_2 values are found to be positive in the p_T range of 1 to 40 GeV/c. The v_3 coefficient is measured for the first time, and values up to 0.07 are observed for p_T around 4 GeV/c. The v_2 coefficient is observed to be centrality dependent, while the v_3 coefficient shows little centrality dependence. Compared with those of charged particles, the measured D^0 meson v_2 and v_3 coefficients are found to be smaller for $p_T < 6 \text{ GeV}/c$ but to have similar p_T dependence. Through the comparison with theoretical calculations, the v_2 and v_3 results at low p_T suggest that the charm quarks take part in the collective motion of the system. The v_2 values for $p_T > 6 \text{ GeV}/c$, which are consistent with those of charged particles, suggest that the path length dependence of charm quark energy loss is similar to that of light quarks. The results provide new constraints on models of the interactions between charm quarks and the quark-gluon plasma, and the charm quark energy loss mechanisms.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We thank E. Bratkovskaya, S. Cao, M. He, J. Liao, M. Nahrgang, R. Rapp, T. Song, and J. Xu for the inputs in comparing our measurements with their calculations. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); M basal and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] J. Adams et al. (STAR Collaboration), Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the
[17] CMS Collaboration, Nuclear modification factor of \(D^0 \) mesons in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, arXiv: 1708.04962.

(CMS Collaboration)
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
University of Colorado Boulder, Boulder, Colorado 80309, USA
Cornell University, Ithaca, New York 14853, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
University of Florida, Gainesville, Florida 32611, USA
Florida International University, Miami, Florida 33199, USA
Florida State University, Tallahassee, Florida 32306, USA
Florida Institute of Technology, Melbourne, Florida 32901, USA
University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA
University of Iowa, Iowa City, Iowa 52242, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
The University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Lawrence Livermore National Laboratory, Livermore, California 94551, USA
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Mississippi, Oxford, Mississippi 38677, USA
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
State University of New York at Buffalo, Buffalo, New York 14260, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08542, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA
Purdue University, West Lafayette, Indiana 47907, USA
Purdue University Northwest, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251, USA
University of Rochester, Rochester, New York 14627, USA
The Rockefeller University, New York, New York 10021, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
Texas A&M University, College Station, Texas 77843, USA
Texas Tech University, Lubbock, Texas 79409, USA
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Virginia, Charlottesville, Virginia 22904, USA
Wayne State University, Detroit, Michigan 48202, USA
University of Wisconsin—Madison, Madison, Wisconsin 53706, USA

\(^a\)Deceased.
\(^b\)Also at Vienna University of Technology, Vienna, Austria.
\(^c\)Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
\(^d\)Also at Universidade Estadual de Campinas, Campinas, Brazil.
\(^e\)Also at Universidade Federal de Pelotas, Pelotas, Brazil.
\(^f\)Also at Université Libre de Bruxelles, Bruxelles, Belgium.
\(^g\)Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
\(^h\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^i\)Also at Ain Shams University, Cairo, Egypt.
\(^j\)Also at British University in Egypt, Cairo, Egypt.
\(^k\)Also at Cairo University, Cairo, Egypt.
\(^l\)Also at Université de Haute Alsace, Mulhouse, France.
\(^m\)Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
\(^n\)Also at Ilia State University, Tbilisi, Georgia.
\(^o\)Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\(^p\)Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
\(^q\)Also at University of Hamburg, Hamburg, Germany.
\(^r\)Also at Brandenburg University of Technology, Cottbus, Germany.
\(^s\)Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\(^t\)Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
Also at IIT Bhubaneswar, Bhubaneswar, India.
Also at Institute of Physics, Bhubaneswar, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at University of Ruhuna,Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at Yazd University, Yazd, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Università degli Studi di Siena, Siena, Italy.
Also at INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Czech Technical University, Praha, Czech Republic.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ´Moscow Engineering Physics Institute´ (MEPhI), Moscow, Russia.
Also at St. Petersburgh State Polytechnical University, St. Petersburgh, Russia.
Also at University of Florida, Gainesville, USA.
Also at P.N. Lebedev Physical Institute, Moscow, Russia.
Also at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
Also at INFN Sezione di Roma, Sapienza Università di Roma, Rome, Italy.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
Also at National and Kapodistrian University of Athens, Athens, Greece.
Also at Riga Technical University, Riga, Latvia.
Also at Universität Zürich, Zurich, Switzerland.
Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria.
Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
Also at Adiyaman University, Adiyaman, Turkey.
Also at Istanbul Aydin University, Istanbul, Turkey.
Also at Mersin University, Mersin, Turkey.
Also at Cag University, Mersin, Turkey.
Also at Piri Reis University, Istanbul, Turkey.
Also at İzmir Institute of Technology, Izmir, Turkey.
Also at Necmettin Erbakan University, Konya, Turkey.
Also at Marmara University, Istanbul, Turkey.
Also at Kafkas University, Kars, Turkey.
Also at Istanbul Bilgi University, Istanbul, Turkey.
Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
Also at Instituto de Astrofísica de Canarias, La Laguna, Spain.
Also at Utah Valley University, Orem, USA.
Also at Beykent University, Istanbul, Turkey.
Also at Bingol University, Bingol, Turkey.
Also at Erzincan University, Erzincan, Turkey.
Also at Sinop University, Sinop, Turkey.
Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Korea.