Production of D meson in pp and PbPb Collisions at sNN = 5.02 TeV with CMS

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lee, Yen-Jie. “Production of D meson in pp and PbPb Collisions at sNN = 5.02 TeV with CMS.” Edited by A. Mischke and P. Kuijer. EPJ Web of Conferences 171 (2018): 17003.</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1051/epjconf/201817117003</td>
</tr>
<tr>
<td>Publisher</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 12 19:00:22 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/116058</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Production of D^0 meson in pp and PbPb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV with CMS

Yen-Jie Lee1 on behalf of the CMS Collaboration

1Massachusetts Institute of Technology

Abstract. Heavy flavour mesons are used as powerful tools for the study of the strongly interacting medium in heavy ion collisions as heavy quarks are sensitive to the transport properties of the medium. In these proceedings, D^0 nuclear modification factors, comparing the yields in PbPb and pp collisions, and azimuthal anisotropies in PbPb collisions are reported. Prompt D^0 mesons and their antiparticles have been measured with the CMS detector via the hadronic decay channels $D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow K^+\pi^-$ in PbPb and pp collisions at a centre-of-mass energy of 5.02 TeV. Nonprompt D^0 from b quark decays are subtracted. The D^0 results are compared to inclusive charged particles, non-prompt J/ψ mesons from b decays and B^+ mesons in order to reveal possible meson mass dependence of the observables.

Heavy quarks are effective probes to study the properties of the deconfined medium created in heavy ion collisions. These quarks are mostly produced in primary hard QCD scatterings with a production timescale that is shorter than the formation time of the Quark Gluon Plasma (QGP) [1, 2]. Therefore, they carry information about the early stages of the QGP. During their propagation through the medium, heavy quarks lose energy via radiative and collisional interactions with the medium constituents. Quarks are expected to lose less energy than gluons as a consequence of their smaller colour factor. In addition, the so-called “dead-cone effect” is expected to reduce small-angle gluon radiation of heavy quarks when compared to both gluons and light quarks [3–5]. Energy loss can be studied using the nuclear modification factor (R_{AA}), defined as the ratio of the PbPb yield to the pp cross-section scaled by the nuclear overlap function [6]. Moreover, the azimuthal anisotropy of produced D^0 mesons can be characterized by the Fourier coefficients v_n in the azimuthal angle (ϕ) distribution of the hadron yield, $dN/d\phi \propto 1 + 2 \sum_n v_n \cos[n(\phi - \Psi_n)]$, where Ψ_n is the azimuthal angle of the direction of the maximum particle density of the n^{th} harmonic in the transverse plane [7]. At low transverse momentum (p_T), the charm hadron v_n coefficient can help quantify the extent to which charm quarks flow with the medium, which is a good measure of their interaction strength. The measurements of R_{AA} and v_n can also help explore the coalescence production mechanism for charm hadrons where charm quarks recombine with light quarks from the medium, which could also lead to positive charm hadron v_n [8, 9]. At high p_T, the charm hadron v_n coefficient can constrain the path length dependence of charm quark energy loss [10, 11], complementary to the R_{AA} measurements. Precise measurements of the R_{AA} and the azimuthal anisotropy of particles containing both light and heavy quarks can thus provide important tests of QCD predictions at extreme densities and temperatures. In these proceedings, the production of prompt D^0 mesons in PbPb collisions at 5.02 TeV is measured for the first time

*e-mail: yenjie@mit.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
up to a p_T of 100 GeV/c, allowing one to study the properties of the in-medium energy loss in a new kinematic regime. The D^0 meson and its antiparticle are studied in the central rapidity region ($|y| < 1$) of the CMS detector via the hadronic decay channels $D^0 \rightarrow K^-\pi^+$ and $\bar{D}^0 \rightarrow K^+\pi^-$. A detailed description of the CMS experiment can be found in Ref. [12]. The D^0 candidates are reconstructed by combining pairs of oppositely charged particle tracks with an invariant mass within 0.2 GeV/c^2 of the world-average D^0 mass [13]. Each track is required to have $p_T > 1$ GeV/c in order to reduce the combinatorial background. For high-p_T D^0 mesons (above 20 GeV/c) in PbPb data, the single track cut is raised to $p_T > 8.5$ GeV/c to account for the selection ($p_T > 8$ GeV/c) performed with a software-based high level trigger. All tracks are also required to be within $|\eta| < 1.5$. For each pair of selected tracks, two D^0 candidates are created by assuming that one of the particles has the mass of the pion while the other has the mass of the kaon, and vice-versa. The D^0 mesons are required to be within $|y| < 1$, optimized in conjunction to the track pseudorapidity selection to give the best signal to background ratio over the whole range of D^0 p_T studied. In order to further reduce the combinatorial background, the D^0 candidates are selected based on three topological criteria: on the three-dimensional (3D) decay length L_{xyz} normalized to its uncertainty, on the pointing angle θ_p (defined as the angle between the total momentum vector of the tracks and the vector connecting the primary and the secondary vertices), and on the χ^2 probability of the D^0 vertex fit. Details of the D^0 selection criteria and the signal extraction procedure for the R_{AA} and v_n analyses are documented in Refs. [14, 15].

Figure 1. (Left) Nuclear modification factor R_{AA} as a function of p_T in the centrality range 0–100% (green squares) compared to the R_{AA} of charged particles (red circles) [16], B^\pm mesons (blue triangles) [17] and to the preliminary results of R_{AA} of nonprompt J/ψ meson (purple crosses and stars) [18] in the same centrality range. (Right) Nuclear modification factor R_{AA} as a function of p_T in the centrality range 0–10% (green squares) compared to the R_{AA} of charged particles (red circles) [16] in the same centrality range.

Figure 1 shows the D^0 R_{AA} as a function of p_T in two centrality classes. The D^0 meson yield is found to be strongly suppressed in PbPb collisions when compared to the measured pp reference data scaled by the number of binary nucleon-nucleon collisions. These measurements are consistent with the R_{AA} of charged hadrons in both centrality intervals for $p_T > 4$ GeV/c. A hint of a smaller
suppression of $D^0 R_{AA}$ with respect to charged particle R_{AA} is observed for $p_T < 4 \text{ GeV/c}$. The $D^0 R_{AA}$ was found to be compatible with the $B^0 R_{AA}$ in the intermediate p_T region and significantly lower than the nonprompt J/ψ meson R_{AA} for $p_T < 10 \text{ GeV/c}$.

![CMS](https://doi.org/10.1051/epjconf/201817117003)

Figure 2. Prompt D^0 meson v_2 (upper) and v_3 (lower) coefficients at midrapidity ($|y| < 1.0$) for the centrality classes 0–10% (left), 10–30% (middle), and 30–50% (right). The vertical bars represent statistical uncertainties, grey bands represent systematic uncertainties from nonprompt D^0 mesons and open boxes represent other systematic uncertainties. The measured v_2 coefficient of charged particles at midpseudorapidity ($|\eta| < 1.0$) [19] and theoretical calculations for prompt D meson v_2 coefficient [20–24] are also plotted for comparison.

Figure 2 shows the prompt D^0 meson v_2 and v_3 coefficients at midrapidity ($|\eta| < 1.0$) in different centrality classes and compares them to those of charged particles (dominated by light flavor hadrons) at midpseudorapidity ($|\eta| < 1.0$) [19]. The D^0 meson v_2 and v_3 coefficients increase with p_T to significant positive values in the low-p_T region, and then decrease for higher p_T. Compared to those of charged particles, the D^0 meson v_2 and v_3 coefficients exhibit a similar p_T dependence. As has been observed for charged particles, the D^0 meson v_2 coefficient increases with decreasing centrality in the 0–50% centrality range, while the v_3 coefficient shows little centrality dependence. For $p_T < 6 \text{ GeV/c}$, the magnitudes of D^0 meson v_2 and v_3 coefficients are smaller than those for charged particles in the centrality classes 10–30% and 30–50%. The comparison between the D^0 meson results and theoretical calculations in this low-p_T region suggests a collective motion of charm quarks. For $p_T > 6 \text{ GeV/c}$, the D^0 meson v_2 values remain positive, suggesting a path length dependence of the charm quark energy loss; the D^0 meson v_3 precision is limited by the available data. The D^0 meson v_2 values are consistent with those of charged particles, suggesting that the path length dependence of charm quark energy loss is similar to that of light quarks.
In summary, the D^0 meson nuclear modification factor and azimuthal anisotropy coefficients in the central rapidity region ($|y| < 1$) at $\sqrt{s_{NN}} = 5.02$ TeV from CMS are presented. The results are compared to those from inclusive charged particles, nonprompt J/ψ and B^+ mesons. Those high precision $D^0 R_{AA}, v_2$ and v_3 data provide new constraints on models of the interactions between charm quarks and the quark-gluon plasma, and the charm quark energy loss mechanisms.

References

[16] V. Khachatryan et al. (CMS), JHEP 04, 039 (2017), 1611.01664