Measurement of the ZZ production cross section and search for anomalous couplings in 22 final states in pp collisions at $s = 7$ TeV

Citation

As Published
http://dx.doi.org/10.1007/JHEP01(2013)063

Publisher
Springer Berlin Heidelberg

Version
Final published version

Accessed
Fri Feb 01 22:54:43 EST 2019

Citable Link
http://hdl.handle.net/1721.1/116094

Terms of Use
Attribution 4.0 International (CC BY 4.0)

Detailed Terms
https://creativecommons.org/licenses/by/4.0/
Measurement of the ZZ production cross section and search for anomalous couplings in $2\ell 2\ell'$ final states in pp collisions at $\sqrt{s} = 7$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Abstract: A measurement is presented of the ZZ production cross section in the $ZZ \rightarrow 2\ell 2\ell'$ decay mode with $\ell = e, \mu$ and $\ell' = e, \mu, \tau$ in proton-proton collisions at $\sqrt{s} = 7$ TeV with the CMS experiment at the LHC. Results are based on data corresponding to an integrated luminosity of 5.0 fb$^{-1}$. The measured cross section $\sigma(pp \rightarrow ZZ) = 6.24^{+0.86}_{-0.80}$ (stat.)$^{+0.41}_{-0.32}$ (syst.)$^{+0.14}_{-0.14}$ (lumi.) pb is consistent with the standard model predictions. The following limits on ZZZ and $ZZ\gamma$ anomalous trilinear gauge couplings are set at 95% confidence level: $-0.011 < f_4^Z < 0.012$, $-0.012 < f_5^Z < 0.012$, $-0.013 < f_4^\gamma < 0.015$, and $-0.014 < f_5^\gamma < 0.014$.

Keywords: Hadron-Hadron Scattering

ArXiv ePrint: 1211.4890
The study of diboson production in proton-proton collisions provides an important
test of the standard model (SM). Many extensions of the SM predict new scalar, vector,
or spin-2 particles that decay into a pair of W or Z bosons. In addition, these final states
are sensitive to the self-interactions among the gauge bosons via trilinear gauge couplings
(TGCs). These couplings are the direct consequence of the non-Abelian SU(2) × U(1) gauge
symmetry of the SM and are a necessary ingredient to construct renormalizable theories.
The values of these couplings are fully determined in the SM by the gauge structure of
the Lagrangian. Therefore, any deviation of the observed coupling strength from the SM
prediction would indicate the presence of new physics. This deviation would be manifested
as a change in the production cross section, especially for energetic heavy gauge bosons.

In the SM, ZZ production proceeds via the t- and u-channel qq scattering diagrams,
and via gluon-gluon fusion. The presence of anomalous neutral trilinear couplings (ATGCs)
would lead to a sizable enhancement of ZZ final states via s-channel qq scattering. A model
featuring such couplings can be constructed by means of an effective Lagrangian [1]. In
this parametrization, two ZZZ couplings and two ZZγ couplings are allowed by electro-
magnetic gauge invariance and Lorentz invariance for on-shell Z bosons. The couplings are
parametrized by two CP-violating (fZ4,γ5) and two CP-conserving (fZ4,γ5) complex parame-
ters, which are zero in the SM.

Measurements of the ZZ cross section were previously performed at the Tevatron [2, 3]
and the Large Hadron Collider (LHC) [4, 5]. A first measurement of the ZZ cross section at
center-of-mass energy √s = 7 TeV by the Compact Muon Solenoid (CMS) Collaboration in
the decay mode ZZ → 22ℓ, where ℓ is either e or μ, is presented in ref. [4]. The measured
cross section σ(pp → ZZ)B(ZZ → 22ℓ) = 28.1±4.6
−4.0(stat.) ± 1.2(syst.) ± 1.3(lumi.) fb
agrees well with the SM prediction of 27.9 ± 1.9 fb. In this Letter, we present an extended
measurement of the ZZ production cross section based on the decay mode 22ℓ′, where
ℓ′ is e, μ, or τ. If a τ is present in the final state, one Z is required to decay into e+e− or μ+μ−,
and the second Z into τ+τ− in four possible final states: ℏτή, τετή, τμτή, and
τετμ, where τή represents a τ decaying hadronically, while τε and τμ indicate taus decaying
into an electron and a muon, respectively. The presence of four leptons in the final state
provides a clean signature with only a small contribution from background processes. The
background sources include reducible contributions from Zb̅b and tt processes, where the
final states contain two isolated leptons and two b jets with secondary leptons, and from
Z+jets and ZW+jets processes where the jets are misidentified as leptons.

In this Letter, we also present a search for the neutral ZZZ and ZZγ ATGCs. Previous
studies on neutral ZZZ and ZZγ ATGCs were performed at LEP2 [6–10], the Tevatron [11],
and the LHC [5]. The most restrictive limits were set in ref. [5], −0.07 < fZ4,5 < 0.07 and
−0.08 < fZZ4,5 < 0.08, with a data set corresponding to an integrated luminosity of 1 fb−1
of pp collisions at √s = 7 TeV.

The measurements presented here are based on data collected in 2010 and 2011 with
the CMS experiment at the LHC at √s = 7 TeV, corresponding to an integrated luminosity of 5.0 ± 0.1 fb−1. A set of Monte Carlo (MC) event samples is used to simulate signal and
background events. The ZZ production via qq is generated at next-to-leading order (NLO)
with POWHEG [12–14], while other diboson processes (WW, WZ, Zγ) are generated with
PYTHIA 6.424 and MadGraph [15]. The $gg \to ZZ$ contribution is estimated using events generated with the gg2ZZ code [16]. The Z+jets samples, namely $Zb\bar{b}$, $Zc\bar{c}$, and $Z+$light jets, are generated with MadGraph. The $t\bar{t}$ events are generated at NLO with POWHEG. For leading-order generators, the default set of parton distribution functions (PDFs) used to produce these samples is CTEQ6L [17], while CT10 [18] is used for NLO generators. Finally, for the modeling of ATGCs, the SHERPA generator version 1.2.2 is used [19]. The τ-lepton decays are generated with TAUOLA [20]. All events are processed through a detailed simulation of the CMS detector based on GEANT4 [21] and reconstructed with the same algorithms as used for data.

A detailed description of the CMS detector can be found elsewhere [22]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL), and the brass/scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux return yoke of the magnet. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angle ϕ is measured in the x-y plane. Variables used in this analysis include the pseudorapidity $\eta = -\ln[\tan(\theta/2)]$ and the transverse momentum $p_T = \sqrt{p_x^2 + p_y^2}$.

The ECAL is designed to have both excellent energy resolution and high granularity, properties that are crucial for reconstructing electrons and photons produced in τ-lepton decays. The ECAL is constructed with projective lead tungstate crystals that provide coverage in pseudorapidity $|\eta| < 1.48$ in a barrel region and $1.48 < |\eta| < 3.00$ in two endcap regions (EE). A preshower detector consisting of two planes of silicon sensors interleaved with a total of $3X_0$ of lead is located in front of the EE. The energy resolution is 3% or better for the range of electron energies relevant for this analysis. The tracker measures charged particle tracks within the range $|\eta| < 2.4$. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules, and provides an impact parameter resolution of $\sim 15 \mu m$ and a transverse momentum resolution of about 1.5% for 100 GeV particles. The reconstructed tracks are used to measure the location of interaction vertices. The spatial resolution of the reconstruction in the transverse direction is $\sim 25 \mu m$ for primary vertices with more than 30 associated tracks [23]. The barrel region of the muon system is instrumented with drift tubes, and the endcap regions with cathode strip chambers. In both regions, resistive-plate chambers provide additional coordinate and timing information. Muons are reconstructed in the range $|\eta| < 2.4$, with a typical p_T resolution of $\sim 1\%$ for $p_T = 40$ GeV.

At the trigger level, the selected events are required to have either at least two electrons, one with $p_T > 17$ GeV and the other with $p_T > 8$ GeV, or at least two muons, one with $p_T > 13$ GeV ($p_T > 17$ GeV for high instantaneous luminosity data-taking periods) and the other with $p_T > 8$ GeV.

Electrons are reconstructed within $|\eta^e| < 2.5$ and with $p_T^e > 7$ GeV by combining information from the ECAL and tracker [24, 25]. Electron identification requirements rely on the electromagnetic shower shape and other observables based on tracker and calorimeter
information. The selection criteria depend on p_T and $|\eta|$, and on a categorization according to observables that are sensitive to the amount of bremsstrahlung emitted along the trajectory in the tracker. Muons are reconstructed within $|\eta| < 2.4$ and $p_T > 5$ GeV with information from both the tracker and the muon spectrometer. The track must have more than 10 out of up to 24 possible hits in the silicon tracker to ensure a precise measurement of the momentum. The efficiencies are measured in data, using a tag-and-probe technique based on an inclusive sample of $Z \rightarrow \ell^+ \ell^-$ events. The measurements are performed in several ranges of p_T and $|\eta|$. The product of reconstruction and identification efficiencies for electrons in the ECAL barrel (endcaps) varies from about 68% (62%) for the p_T range 7–10 GeV, to 82% (74%) at $10 < p_T < 20$ GeV, and reaches up to 90% (89%) at $p_T > 20$ GeV. The muons are reconstructed and identified with efficiencies above 98%.

Since the ZZ final state is expected to have only a small contribution from background processes, the algorithms are tuned to maximize the lepton-reconstruction efficiency, resulting in an increased lepton-misidentification rate. A particle-flow (PF) technique is used for τ_h reconstruction. In the PF approach, information from all subdetectors is combined to reconstruct and identify particles produced in the collision. The particles are classified into mutually exclusive categories: charged hadrons, photons, neutral hadrons, muons, and electrons. These particles are used to reconstruct the τ_h candidates with the “hadron plus strip” (HPS) algorithm, which is designed to optimize the performance of τ_h identification and reconstruction by considering specific τ_h decay modes. The neutrinos produced in all τ decays escape detection and are ignored in the τ_h reconstruction. The algorithm provides high τ_h identification efficiency, approximately 50% for the range of τ_h energies relevant for this analysis, while keeping the misidentification rate for jets at the level of 1%.

Events are required to have at least one $Z \rightarrow \ell^+ \ell^-$ candidate, denoted by Z_1. The invariant mass of the reconstructed Z_1 is required to be $60 < m_{\ell\ell} < 120$ GeV. The two leptons must have opposite charges, one with $p_T > 20$ GeV and the other with $p_T > 10$ GeV, and with $|\eta| < 2.5$ for the electrons and $|\eta| < 2.4$ for the muons. If more than one candidate is found, the one with the mass closest to the Z mass is considered as Z_1.

Lepton isolation requirements depend on the ZZ decay mode. For the final states with only electrons and muons, the isolation criteria are based on a combination of the tracker, ECAL, and HCAL information. The standard combined relative isolation is defined as

$$I_{rel} = \left(\sum_i p_{T,\text{track}}^i + \max\left(\sum_j E_{T,\text{ECAL}}^j + \sum_k E_{T,\text{HCAL}}^k - \pi \cdot \Delta R_{\text{max}}^2 \cdot \rho; 0 \right) \right) / p_T,$$

with the sums running over the charged tracks and the energy deposits in the ECAL and HCAL within a cone around the lepton direction defined by $\Delta R < \Delta R_{\text{max}} = 0.3$, where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, and E_T stands for the transverse energy. The neutral isolation is made largely independent of the pileup of pp collisions by correcting for the average energy density, ρ, calculated in each event using a “jet area” technique and defined as the median of the energy distribution for the neutral particles around all jets. The isolation variable I_{rel} is required to be less than 0.275 for each lepton. The significance of the impact pa-
rameter of each lepton relative to the event vertex \((S_{3D}) \) is required to satisfy \(|S_{3D}| < 4\). The primary vertex is chosen as the vertex with the highest sum of \(p_T^2 \) of its constituent tracks.

In the \(2\ell 2\tau \) final states, instead of standard isolation, the leptons from the \(Z_1 \) are required to have a combined PF relative isolation \(I_{\text{rel}}^{\text{PF}} < 0.25 \). The \(I_{\text{rel}}^{\text{PF}} \) is defined similarly to \(I_{\text{rel}}^{\text{std}} \), however in this case the sums run over charged hadrons, photons, and neutral hadrons, all measured in the isolation cone of \(\Delta R < 0.4 \) around the lepton direction.

The selection requirements for the second \(Z \), denoted by \(Z_2 \), also depend on the final state. In the final states with electrons and muons only, the isolation requirements are the same as for the leptons from \(Z_1 \), but \(p_T > 7 \text{ GeV} \) and \(p_T > 5 \text{ GeV} \) are required for electrons and muons, respectively. If the final state is \(\tau_e \tau_\mu \), the lepton \(p_T \) values are required to exceed 10 GeV. The remaining criteria are identical to those for \(Z_1 \). Since hadronically decaying \(\tau \) leptons have much larger misidentification rates than the other leptons, the isolation requirement based on \(I_{\text{rel}}^{\text{PF}} \) for the electrons and muons in the final states \(\tau_e \tau_h \) and \(\tau_\mu \tau_h \) is changed to 0.15 and 0.1, respectively. A study of inclusive \(Z \rightarrow \tau^+\tau^- \) production [31] demonstrated that modifying the electron and muon isolation requirements is a more effective way to reduce background in such final states than requiring tighter isolation on \(\tau_h \). The \(\tau \) leptons are required to have \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.3\), and to satisfy the requirements of a loose HPS working point. If the \(Z_2 \) decays to \(\tau^+ \tau^- \), both \(\tau_h \) are required to satisfy the requirements of a medium working point of the HPS algorithm. The loose (medium) working point requires the scalar sum of the \(p_T \) of the charged hadrons and \(E_T \) of the neutral hadrons within the isolation cone to be less than 2 GeV (1 GeV). The loose (medium) working point corresponds to a probability of approximately 1% (0.5%) for jets to be misidentified as \(\tau_h \). Using the medium instead of loose working point leads to a decrease in the \(\tau_h \) reconstruction efficiency from \(\approx 50\% \) to \(\approx 40\% \).

The invariant mass of the reconstructed \(Z_2 \) is required to satisfy \(60 < m_{\ell\ell} < 120 \text{ GeV} \), when \(Z_2 \) decays into \(e^+e^- \) or \(\mu^+\mu^- \). In the \(2\ell 2\tau \) final states, the visible invariant mass of the reconstructed \(Z_2 \rightarrow \tau^+\tau^- \) is required to satisfy \(30 < m_{\tau\tau}^{\text{vis}} < 80 \text{ GeV} \). The upper bound reduces contributions from \(Z_2 \rightarrow \ell^+\ell^- \), where an electron or a muon is not well reconstructed and is misidentified as a \(\tau_h \). For the \(Z_2 \rightarrow \tau_e \tau_\mu \) final state, the upper bound on \(m_{\tau\tau} \) is increased to 90 GeV, as this state is not produced in \(Z_2 \rightarrow \ell^+\ell^- \) decays. In the final states involving \(\tau_h \), leptons from the same \(Z \) are required to be separated by \(\Delta R > 0.4 \) for the \(Z_1 \), and by \(\Delta R > 0.5 \) for the \(Z_2 \).

The major contributions to the background are due to \(Z \) production in association with jets, \(WZ \) production in association with jets, and \(t\bar{t} \). In all of these cases, a jet or nonisolated lepton is misidentified as an isolated electron, muon, or \(\tau_h \). The relative contribution of each source of background depends on the final state.

The background estimate is performed in two steps. Firstly, the rate for loosely isolated objects to be misidentified as isolated ones is measured in a control region that does not contain any signal contribution. The misidentification rate is estimated with events in which the \(Z_1 \) passes all selection requirements, and which contain an additional probe electron, muon, or \(\tau_h \). No isolation requirement is applied to the probe. The misidentification rate is defined as the ratio of the number of probe candidates that pass the isolation requirements to the initial number of probe candidates, and is measured as a function of \(p_T \) and \(\eta \) for each lepton flavor.
The theoretical uncertainties on the ZZ → 2ℓ2ℓ′ acceptance are evaluated using MCFM 6.2 [32], varying QCD scales up and down by a factor of two with respect to the default factorization (\(\mu_F\)) and renormalization (\(\mu_R\)) scales \(\mu_F = \mu_R = m_Z\), where \(m_Z\) is the mass of the Z boson. The variations in the acceptance are 0.1% (q\(\bar{q}\) → ZZ) and 0.4% (gg → ZZ) and can be neglected. The uncertainties related to the PDFs are evaluated following the PDF4LHC prescription [33]. Using the CT10 [18], MSTW08 [34], and NNPDF [35] sets, the uncertainties are estimated to be 4% for q\(\bar{q}\) → ZZ and 5% for gg → ZZ processes.

The uncertainties on Z+jets, WZ+jets, and t\(\bar{t}\) backgrounds reflect the uncertainties on the measured values of the misidentification rates and the limited quantity of data in the control regions in the data and amount to 30–50% depending on the decay channel. The uncertainty on the integrated luminosity is 2.2% [36]. Systematic uncertainties on trigger efficiency (1.5%), lepton identification efficiency, and lepton isolation are evaluated from data. The uncertainties associated with lepton identification and isolation are 1–2% for muons and electrons, and 6–7% for \(\tau_h\). Uncertainties on energy scales, 3% for \(\tau_h\) and 1–2.5% for electrons, contribute to variations in the shape of the mass spectrum.

Table 1 presents the number of observed events in the signal region in each channel, as well as the expected number of signal events and the estimated number of background events.
events. We observe a total of 54 candidate events in the 4e, 4µ, and 2e2µ channels, compared to the SM expectation of 54.5 ± 0.3 (stat.) ± 4.8 (syst.) events, which includes 1.4 from background processes. In the 2ℓ2τ channels, 11 candidate events are observed, compared to 11.7 ± 0.8 (stat.) ± 1.0 (syst.) events expected, including 4.4 from background processes. The reconstructed four-lepton invariant mass distributions are compared to the SM expectations in figures 1 (a) and (b) for the sum of the 4e, 4µ, and 2e2µ channels, and the sum of all the 2ℓ2τ channels. The shapes of the signal and background are taken from the MC simulation, with each component normalized to the corresponding estimated value from table 1. The reconstructed masses in 2ℓ2τ states ($m_{\ell\ell\tau\tau}$) are shifted downwards with respect to the generated Z masses by about 30% due to the undetected neutrinos in τ decays. Figures 1 (c) and (d) demonstrate the relationship between the reconstructed Z_1 and Z_2 masses.

To include all the final states in the calculation of the cross section, a simultaneous fit to the numbers of observed events in all the decay channels is performed. The fit is constrained by the requirement that all the measurements come from the same initial state via different decay modes. It allows for combining many decay modes with either very few or no events observed. The joint likelihood is a combination of the likelihoods for the individual channels, which include the signal and background hypotheses. Each τ-lepton decay mode is treated as a separate channel because they are mutually exclusive owing to the methodology adopted for event reconstruction and subsequent event selection. The statistical and systematic uncertainties are introduced in the form of nuisance parameters via log-normal distributions around the estimated central values.

The resulting cross section is measured to be

$$\sigma(pp \rightarrow ZZ) = 6.24^{+0.86}_{-0.80} \text{ (stat.)}^{+0.41}_{-0.32} \text{ (syst.)} \pm 0.14 \text{ (lumi.) pb}.$$

This result is to be compared to the theoretical value of 6.3 ± 0.4 pb calculated with MCFM at NLO for $q\bar{q} \rightarrow ZZ$ and LO for $gg \rightarrow ZZ$ with the MSTW08 PDFs and for both Z bosons in the mass range $60 < m_Z < 120$ GeV. This is the most precise published $pp \rightarrow ZZ$ cross section measurement to date, which for the first time extends the $pp \rightarrow ZZ \rightarrow 2\ell 2\ell$ measurement to include final states with hadronically decaying τ leptons.

The limits on ATGCs are calculated with the modified frequentist construction CL$_S$ [37–39] based on the shape of the four-lepton invariant mass distributions, including the 4e, 4µ, and 2e2µ channels in the likelihood combination. Figure 2 presents the distribution of the four-lepton reconstructed mass for the sum of the 4e, 4µ, and 2e2µ channels. The dashed and dotted histograms represent the results of the SHERPA simulation for the SM ($f_4^Z = 0$) and in the presence of an ATGC ($f_4^Z = 0.015$), while all the other anomalous couplings are set to zero. The presence of ATGCs would be manifested in an increased yield of events at high four-lepton masses. The invariant mass distributions are interpolated from SHERPA simulation for different values of the anomalous couplings. For each distribution only one or two couplings are varied, while all others are set to zero. The fit is performed to find the maximum likelihood value and limits are calculated. To avoid unitarity violation at energies above the scale Λ of new physics, the ATGCs are often modified with a form-factor parametrization of the type $1/(1 + \hat{s}/\Lambda^2)^2$, where $\sqrt{\hat{s}} \approx m_{2\ell 2\ell}$.

Figure 1. Distributions of the four-lepton reconstructed mass for (a) the sum of the 4e, 4\(\mu\), and 2e2\(\mu\) channels and (b) the sum of the 2\(\ell\)2\(\tau\) channels. Points represent the data, and the shaded histograms represent the expected ZZ signal and the reducible background. The shapes of the signal and background are taken from the MC simulation, with each component normalized to the corresponding estimated value from table 1. The distributions (c) and (d) demonstrate the relationship between the reconstructed \(Z_1\) and \(Z_2\) masses.

is the effective center-of-mass energy of the collision. However, no unitarity violations occur in the sensitive region \(m_{2\ell2\ell} \lesssim 1.5\) TeV for bare anomalous couplings of order 0.05 or smaller [40], so we calculate the limits without form-factor scaling. This choice has the advantage of avoiding any bias from energy-dependence assumptions and is exact in the limit in which the scale of new physics is much larger than \(\sqrt{s}\).

Figure 3 presents the expected and observed two-dimensional exclusion limits at 95% confidence level (CL) on the anomalous neutral trilinear \(ZZZ\) and \(ZZ\gamma\) couplings. The green and yellow bands represent the one and two standard-deviation variations from the expected limit. The present limits are dominated by statistical uncertainties. Systematic uncertainties arising from the uncertainty on the theoretical cross section, PDFs, detector
Figure 2. Distribution of the four-lepton reconstructed mass for the sum of the 4e, 4µ, and the 2e2µ channels. Points represent the data, and the shaded histograms represent the expected ZZ signal and the reducible background. The dashed and dotted histograms represent the results of the SHERPA simulation for the SM ($f^Z_4 = 0$) and in the presence of an ATGC ($f^Z_4 = 0.015$), while all the other anomalous couplings are set to zero.

Figure 3. Expected and observed two-dimensional exclusion limits at 95% CL on the anomalous neutral trilinear ZZZ (f^Z_4, f^Z_5) and ZZγ ($f^Z_{4γ}, f^Z_{5γ}$) couplings. The green and yellow bands represent the one and two standard-deviation variations from the expected limit. In calculating the limits, the anomalous couplings that are not shown in the figure are set to zero.

Efficiencies, and luminosity are introduced in the form of nuisance parameters with log-normal probability density functions. One-dimensional 95% CL limits for the $f^Z_{4γ}$ and $f^Z_{5γ}$ anomalous coupling parameters are measured to be

$$-0.011 < f^Z_4 < 0.012, -0.012 < f^Z_5 < 0.012, -0.013 < f^Z_{4γ} < 0.015, -0.014 < f^Z_{5γ} < 0.014.$$
In the one-dimensional fits, all of the ATGC parameters except the one under study are kept fixed to zero. These values extend previous results on vector boson self-interactions and are currently the most stringent limits established for ZZZ and $ZZ\gamma$ couplings.

In summary, we have presented an updated measurement of the ZZ production cross section in proton-proton collisions at 7 TeV in the $ZZ \rightarrow 2\ell 2\ell'$ decay mode, with $\ell = e, \mu$ and $\ell' = e, \mu, \tau$. The data sample corresponds to an integrated luminosity of 5.0 fb$^{-1}$. The measured cross section $\sigma(pp \rightarrow ZZ) = 6.24^{+0.86}_{-0.80}\,(\text{stat.})^{+0.41}_{-0.32}\,(\text{syst.})\pm0.14\,(\text{lumi.})\,pb$ is consistent with the SM prediction and is the most precise published $pp \rightarrow ZZ$ cross section measurement to date. For the first time the $pp \rightarrow ZZ \rightarrow 2\ell 2\ell'$ measurements are extended to include final states with hadronically decaying τ leptons. Limits on vector-boson self-interactions are established, significantly restricting anomalous ZZZ and $ZZ\gamma$ trilinear gauge couplings.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[22] CMS collaboration, The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 [INSPIRE].

[31] CMS collaboration, Measurement of the inclusive Z cross section via decays to τ pairs in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 08 (2011) 117 [arXiv:1104.1617] [INSPIRE].

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Aguiló, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, J. Hammer, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krämer1, I. Krätschmer, D. Liko, I. Mikulec, M. Pernicka1, B. Rahbaran, C. Rohringer, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Instituto de Física Teórica a, Universidade Estadual Paulista b, São Paulo, Brazil
T.S. Anjosb,3, C.A. Bernardesb,3, F.A. Diasa,4, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,3, C. Laganaa, F. Marinhoa, P.G. Mercadanteb,3, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev5, P. Iaydjiev5, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, V. Kožuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, R. Plesnija6, D. Polic, I. Puljak5

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran7, S. Elgammal8, A. Ellithi Kamel9, M.A. Mahmoud10, A. Radi11,12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Miintel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen
Helsinki Institute of Physics, Helsinki, Finland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
Moscow State University, Moscow, Russia

P.N. Lebedev Physical Institute, Moscow, Russia

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland
Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu, N. Sonmez

Istanbul Technical University, Istanbul, Turkey
K. Cankocak

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, U.S.A.
K. Hatakeyama, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, U.S.A.
O. Charaf, C. Henderson, P. Rumerio

Boston University, Boston, U.S.A.
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak
W.D. Teo, J. Thom, J. Thompson, J. Tucker, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, U.S.A.

D. Winn

Fermi National Accelerator Laboratory, Batavia, U.S.A.

University of Florida, Gainesville, U.S.A.

Florida International University, Miami, U.S.A.

Florida State University, Tallahassee, U.S.A.

Florida Institute of Technology, Melbourne, U.S.A.

M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, U.S.A.

The University of Iowa, Iowa City, U.S.A.

Johns Hopkins University, Baltimore, U.S.A.
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo,
G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, A. Whitbeck

The University of Kansas, Lawrence, U.S.A.
P. Baringer, A. Bean, G. Benelli, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders,
R. Stringer, G. Tinti, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, U.S.A.
A.F. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin,
S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, U.S.A.
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, U.S.A.
A. Baden, M. Boutemeur, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg,
M. Kim, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple,
M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, U.S.A.
A. Apyan, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta,
G. Gomez Ceballos, M. Goncharov, K.A. Hahn, Y. Kim, M. Klute, K. Krajczar59,
P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph,
G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf,
B. Wyslouch, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, U.S.A.
S.I. Cooper, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, S.C. Kao, K. Klapoetke,
Y. Kubota, J. Mans, N. Pastika, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe,
J. Turkewitz

University of Mississippi, Oxford, U.S.A.
L.M. Cremaldi, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders

University of Nebraska-Lincoln, Lincoln, U.S.A.
E. Avdeeva, K. Bloom, S. Bose, B.R. Claes, A. Dominguez, M. Eads, J. Keller,
I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, U.S.A.
A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar

Northeastern University, Boston, U.S.A.
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, D. Nash, D. Trocino,
D. Wood, J. Zhang

Northwestern University, Evanston, U.S.A.
A. Anastassov, A. Kubik, L. Lusito, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack,
A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won
University of Notre Dame, Notre Dame, U.S.A.
L. Antonelli, D. Berry, A. Brinkerhoff, K.M. Chan, M. Hildreth, C. Jessop, D.J. Karmgard,
J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer,

The Ohio State University, Columbus, U.S.A.
B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg,
C. Vuosalo, G. Williams, B.L. Winer

Princeton University, Princeton, U.S.A.
E. Berry, P. Elmer, V. Halyo, P. Hebda, J. Hegeman, A. Hunt, P. Jindal, S.A. Koay,
D. Lopes Pegna, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué,
X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, U.S.A.
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, U.S.A.
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett,
Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, V. Maroussov,
Marono, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, U.S.A.
S. Guragain, N. Parashar

Rice University, Houston, U.S.A.
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi,
J. Roberts, J. Zabel

University of Rochester, Rochester, U.S.A.
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq,
T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, D. Vishnevskiy,
M. Zieliński

The Rockefeller University, New York, U.S.A.
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, U.S.A.
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan,
D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar,
M. Park, R. Patel, V. Rekovic, J. Robles, K. Rose, S. Salur, S. Schnetzer, C. Seitz,
S. Somalwar, R. Stone, S. Thomas, M. Walker

University of Tennessee, Knoxville, U.S.A.
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York
Texas A&M University, College Station, U.S.A.

Texas Tech University, Lubbock, U.S.A.
N. Akchurin, J. Damgov, C. Dragoiu, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, Y. Roh, I. Volobouev

Vanderbilt University, Nashville, U.S.A.

University of Virginia, Charlottesville, U.S.A.

Wayne State University, Detroit, U.S.A.
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, U.S.A.

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, U.S.A.
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at National Centre for Nuclear Research, Swierk, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Also at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Moscow State University, Moscow, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, U.S.A.
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at Sharif University of Technology, Tehran, Iran
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
27: Also at Università della Basilicata, Potenza, Italy
28: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
29: Also at Università degli Studi di Siena, Siena, Italy
30: Also at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania
31: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
32: Also at University of California, Los Angeles, Los Angeles, U.S.A.
33: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
34: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Izmir Institute of Technology, Izmir, Turkey
43: Also at The University of Iowa, Iowa City, U.S.A.
44: Also at Mersin University, Mersin, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Suleyman Demirel University, Isparta, Turkey
48: Also at Ege University, Izmir, Turkey
49: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
50: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
51: Also at University of Sydney, Sydney, Australia
52: Also at Utah Valley University, Orem, U.S.A.
53: Now at University of Edinburgh, Scotland, Edinburgh, United Kingdom
54: Also at Institute for Nuclear Research, Moscow, Russia
55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
56: Also at Argonne National Laboratory, Argonne, U.S.A.
57: Also at Erzincan University, Erzincan, Turkey
58: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
59: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
60: Also at Kyungpook National University, Daegu, Korea