Angular Analysis and Branching Fraction Measurement of the Decay B^0K^0+K^0+

As Published
http://dx.doi.org/10.1016/J.PHYSLETB.2013.10.017

Publisher
Elsevier BV

Version
Final published version

Accessed
Fri Feb 08 02:05:06 EST 2019

Citable Link
http://hdl.handle.net/1721.1/116503

Terms of Use
Attribution 3.0 United States (CC BY 3.0 US)

Detailed Terms
https://creativecommons.org/licenses/by/3.0/us/
Angular analysis and branching fraction measurement of the decay \(B^0 \rightarrow K^{*0} \mu^+ \mu^- \)

CMS Collaboration*

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 15 August 2013
Received in revised form 1 October 2013
Accepted 7 October 2013
Available online 15 October 2013
Editor: M. Doser

Keywords:
CMS
Physics

A B S T R A C T

The angular distributions and the differential branching fraction of the decay \(B^0 \rightarrow K^{*0}(892)^0 \mu^+ \mu^- \) are studied using a data sample corresponding to an integrated luminosity of 5.2 \(\text{fb}^{-1} \) collected with the CMS detector at the LHC in pp collisions at \(\sqrt{s} = 7 \text{ TeV} \). From more than 400 signal decays, the forward–backward asymmetry of the muons, the \(K^{*0}(892)^0 \) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the square of the dimuon invariant mass. The measurements are in good agreement with standard model predictions.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is possible for new phenomena (NP) beyond the standard model (SM) of particle physics to be observed either directly or indirectly, i.e., through their influence on other physics processes. Indirect searches for NP generally proceed by comparing experimental results with theoretical predictions in the production or decay of known particles. The study of flavor-changing neutral-current decays of hadrons such as \(B^0 \rightarrow K^{*0} \mu^+ \mu^- (K^{0}) \) indicates the \(K^{*0}(892)^0 \) and charge conjugate states are implied in what follows, unless explicitly stated otherwise) is particularly fertile for new phenomena searches, given the modest theoretical uncertainties in the predictions and the low rate as the decay is forbidden at tree level in the SM. On the theoretical side, great progress has been made since the first calculations of the branching fraction \([1–4]\), the forward–backward asymmetry of the muons, \(A_{FB} \) \([5]\), and the longitudinal polarization fraction of the \(K^{0} \), \(F_L \) \([6–11]\). Robust calculations of these variables \([12–19]\) are now available for much of the phase space of this decay, and it is clear that new physics could give rise to readily observable effects \([8,16,20–34]\). Finally, this decay mode is relatively easy to select and reconstruct at hadron colliders.

The quantities \(A_{FB} \) and \(F_L \) can be measured as a function of the dimuon invariant mass squared \((q^2)\) and compared to SM predictions \([14]\). Deviations from the SM predictions can indicate new physics. For example, in the minimal supersymmetric standard model (MSSM) modified with minimal flavor violation, called flavor blind MSSM (FBMSSM), effects can arise through NP contributions to the Wilson coefficient \(C_7 \) \([16]\). Another NP example is the MSSM with generic flavor-violating and CP-violating soft SUSY-breaking terms (GMSSM), in which the Wilson coefficients \(C_7, C_7', \) and \(C_{10} \) can receive contributions \([16]\). As shown there, these NP contributions can dramatically affect the \(A_{FB} \) distribution (note that the variable \(S_2 \) defined in Ref. \([16]\) is related to \(A_{FB} \) measured in this Letter by \(S_2 = -\frac{3}{2}A_{FB} \)), indicating that precision measurements of \(A_{FB} \) can be used to identify or constrain new physics.

While previous measurements by BaBar, Belle, CDF, and LHCb are consistent with the SM \([35–38]\), these measurements are still statistically limited, and more precise measurements offer the possibility to uncover physics beyond the SM.

In this Letter, we present measurements of \(A_{FB} \), \(F_L \) and the differential branching fraction \(d\mathcal{B}/dq^2 \) from \(B^0 \rightarrow K^{0}\mu^+\mu^- \) decays, using data collected from pp collisions at the Large Hadron Collider (LHC) with the Compact Muon Solenoid (CMS) experiment in 2011 at a center-of-mass energy of 7 TeV. The analyzed data correspond to an integrated luminosity of 5.2 ± 0.1 \(\text{fb}^{-1} \) \([39]\). The \(K^{0} \) is reconstructed through its decay to \(K^{-}\mu^+ \) and the \(B^0 \) is reconstructed by fitting the two identified muon tracks and the two hadron tracks to a common vertex. The values of \(A_{FB} \) and \(F_L \) are measured by fitting the distribution of events as a function of two angular variables: the angle between the positively charged muon and the \(B^0 \) in the dimuon rest frame, and the angle between the kaon and the
B⁰ in the K⁰ rest frame. All measurements are performed in q² bins from 1 to 19 GeV². The q² bins 8.68 < q² < 10.09 GeV² and 12.90 < q² < 14.18 GeV², corresponding to the B⁰ → K⁰l/σ and B⁰ → K⁰ψ decays (ψ indicates the ψ(2S) in what follows), respectively, are both used to validate the analysis, and the former is used to normalize the branching fraction measurement.

2. CMS detector

A detailed description of the CMS detector can be found elsewhere [40]. The main detector components used in this analysis are the silicon tracker and the muon detection systems. The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.4, where η = −ln[tan(θ/2)] and θ is the polar angle of the track relative to the beam direction. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T field of the superconducting solenoid. The reconstructed tracks have a transverse impact parameter resolution ranging from ≈100 μm to ≈20 μm as the transverse momentum of the track (pₜ) increases from 1 GeV to 10 GeV. In the same pₜ regime, the momentum resolution is better than 1% in the central region, increasing to 2% at |η| = 2.4, while the track reconstruction efficiency is nearly 100% for muons with |η| < 2.4 and varies from ≈95% at |η| = 0 to ≈85% at |η| = 2.4 for hadrons. Muons are measured in the pseudorapidity range |η| < 2.4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers, all of which are sandwiched between the solenoid flux return steel plates. Events are selected with a two-level trigger system. The first level is composed of custom hardware processors and uses information from the calorimeters and muon systems to select the most interesting events. The high-level trigger processor farm further decreases the event rate from nearly 100 kHz to around 350 Hz before data storage.

3. Reconstruction, event selection, and efficiency

The signal (B⁰ → K⁰μ⁺μ⁻) and normalization/control samples (B⁰ → K⁰l/ψ and B⁰ → K⁰ψ) were recorded with the same trigger, requiring two identified muons of opposite charge to form a vertex that is displaced from the pp collision region (beamspot). The beamspot position and size were continuously measured from Gaussian fits to reconstructed vertices as part of the online data quality monitoring. Five dimuon trigger configurations were used during 2011 data taking with increasingly stringent requirements to maintain an acceptable trigger rate as the instantaneous luminosity increased. For all triggers, the separation between the beamspot and the dimuon vertex in the transverse plane was required to be larger than three times the sum in quadrature of the distance uncertainty and the beamspot size. In addition, the cosine of the angle between the dimuon momentum vector and the vector from the beamspot to the dimuon vertex in the transverse plane was required to be larger than three times the sum in quadrature of the distance uncertainty and the beamspot size. In addition, the cosine of the angle between the dimuon momentum vector and the vector from the beamspot to the dimuon vertex in the transverse plane was required to be greater than 0.9. More than 95% of the data were collected with triggers that required single-muon pseudorapidity of |η(μ)| < 2.2 for both muons, dimuon transverse momentum of pₜ(μμ) > 6.9 GeV, single-muon transverse momentum for both muons of pₜ(μ) > 3.0, 4.0, 4.5, 5.0 GeV (depending on the trigger), and the corresponding vertex fit probability of χ²/ν > 5.15%, 15%, 15%. The remaining data were obtained from a trigger with requirements of |η(μ)| < 2.5, χ²/ν > 1.6%, and pₜ(μμ) > 6.5 GeV. The events used in this analysis passed at least one of the five triggers.

The decay modes used in this analysis require two reconstructed muons and two charged hadrons, obtained from offline reconstruction. The reconstructed muons are required to match the muons that triggered the event readout and to pass several muon identification requirements, namely a track matched with at least one muon segment, a track fit χ² per degree of freedom less than 1.8, at least 11 hits in the tracker with at least 2 from the pixel detector, and a transverse (longitudinal) impact parameter less than 3 cm (30 cm). The reconstructed dimuon system is further required to satisfy the same requirements as were used in the trigger. In events where multiple trigger configurations are satisfied, the requirements associated with the loosest trigger are used.

While the muon requirements are based on the trigger and a CMS standard selection, most of the remaining selection criteria are optimized by maximizing S/√S+B, where S is the expected signal yield from Monte Carlo (MC) simulations and B is the background estimated from invariant-mass sidebands in data, defined as >3σₘ(B⁰) and <5.5σₘ(B⁰) from the B⁰ mass [41], where σₘ(B⁰) is the average B⁰ mass resolution of 44 MeV. The optimization is performed on one trigger sample, corresponding to an integrated luminosity of 2.7 fb⁻¹, requiring 1.0 < q² < 7.3 GeV² or 16 < q² < 19 GeV² to avoid J/ψ and ψ' contributions. The hadron tracks are required to fail the muon identification criteria, and have pₜ(b) > 0.75 GeV and an extrapolated distance of closest approach to the beamspot in the transverse plane greater than 12 times the sum in quadrature of the distance uncertainty and the beamspot transverse size. The two hadrons must have an invariant mass within 80 MeV of the nominal K⁰ mass for either the K⁺π⁻ or K⁺π⁺ hypothesis. To remove contamination from ϕ decays, the hadron-pair invariant mass must be greater than 1.035 GeV when the charged K mass is assigned to both hadron tracks. The B⁰ candidates are obtained by fitting the four charged tracks to a common vertex and applying a vertex constraint to improve the resolution of the track parameters. The B⁰ candidates must have pₜ(B⁰) > 8 GeV, |η(B⁰)| < 2.2, vertex fit probability χ²/ν > 9%, vertex transverse separation from the beamspot greater than 12 times the sum in quadrature of the separation uncertainty and the beamspot transverse size, and cos θₓᵧ > 0.9994, where θₓᵧ is the angle, in the transverse plane, between the B⁰ momentum vector and the line-of-flight between the beamspot and the B⁰ vertex. The invariant mass of the four-track vertex must also be within 280 MeV of the world-average B⁰ mass for either the K⁺π⁻μ⁺μ⁻ or K⁺π⁻μ⁺μ⁻ hypothesis. This selection results in an average of 1.06 candidates per event in which at least one candidate is found. A single candidate is chosen from each event based on the best B⁰ vertex fit χ².

The four-track vertex candidate is identified as a B⁰(B⁰) if the K⁺π⁻ (K⁺π⁻) invariant mass is closest to the nominal K⁰ mass. In cases where both Kπ combinations are within 50 MeV of the nominal K⁰ mass, the event is rejected since no clear identification is possible owing to the 50 MeV natural width of the K⁰. The fraction of candidates assigned the incorrect state is estimated from simulations to be 8%.

From the retained events, the dimuon invariant mass q and its corresponding calculated uncertainty σq are used to distinguish between the signal and normalization/control samples. The B⁰ → K⁰l/ψ and B⁰ → K⁰ψ' samples are defined as mJ/ψ > 5σq < q < mJ/ψ + 3σq and |q − mψ' | < 3σq, respectively, where mJ/ψ and mψ' are the world-average mass values. The asymmetric selection of the J/ψ sample is due to the radiative tail in the dimuon spectrum, while the smaller signal in the ψ' mode made an asymmetric selection unnecessary. The signal sample is the complement of the J/ψ and ψ' samples.

The global efficiency, ε, is the product of the acceptance and the trigger, reconstruction, and selection efficiencies, all of which are obtained from MC simulations. The pp collisions are simulated using PYTHIA [42] version 6.424, the unstable particles are decayed byEvtGen [43] version 9.1 (using the default matrix element for the signal), and the particles are traced through a detailed model.
of the detector with GEANT4 [44]. The reconstruction and event selection for the generated samples proceed as for the data events. Three simulation samples were created in which the B^0 was forced to decay to $B^0 \rightarrow K^{(0)}(\pi^+)\mu^+\mu^-$ or $K^{(0)}(\pi^-)\mu^+\mu^-$, or $B^0 \rightarrow K^{(0)}(\pi^-)\phi(\mu^+\mu^-)$, or $B^0 \rightarrow K^{(0)}(\pi^-)\phi(\mu^+\mu^-)$. The acceptance is calculated as the fraction of events passing the single-muon cuts of $p_T(\mu) > 2.8$ GeV and $|\eta(\mu)| < 2.3$ relative to all events with a B^0 in the event with $p_T(B^0) > 8$ GeV and $|\eta(B^0)| < 2.2$. The acceptance is obtained from the generated events before the particle tracing with GEANT4. To obtain the reconstruction and selection efficiency, the MC simulation events are divided into five samples, appropriately sized to match the amount of data taken with each of the five triggers. In each of the five samples, the appropriate trigger and matching offline event selection is applied. Furthermore, each of the five samples is reweighted to obtain the correct distribution of pileup events (additional pp collisions in the same bunch crossing as the collision that produced the B^0 candidate), corresponding to the data period during which the trigger was active. The reconstruction and selection efficiency is the ratio of the number of events that pass all the selections and have a reconstructed B^0 compatible with the generated B^0 in the event relative to the number of events that pass the acceptance criteria. The compatibility of generated and reconstructed particles is enforced by requiring the reconstructed K^\pm, π^\pm, μ^\pm, and K^0 to have $\sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} < 0.3$ for hadrons and 0.004 for muons, where $\Delta\eta$ and $\Delta\phi$ are the differences in η and ϕ between the reconstructed and generated particles, and ϕ is the azimuthal angle in the plane perpendicular to the beam direction. The efficiency and purity of this compatibility requirement are greater than 99%.

4. Analysis method

The analysis measures A_{FB}, F_ℓ, and $d\mathcal{B}/dq^2$ of the decay $B^0 \rightarrow K^{(0)}(\pi^+)\mu^+\mu^-$ as a function of q^2. Fig. 1 shows the relevant angular observables needed to define the decay: θ_K is the angle between the kaon momentum and the direction opposite to the B^0 (B^0) in the $K^{(0)}(K^{(0)})$ rest frame, θ_ℓ is the angle between the positive (negative) muon momentum and the direction opposite to the B^0 (B^0) in the dimuon rest frame, and ϕ is the angle between the plane containing the two muons and the plane containing the kaon and pion. Since the extracted angular parameters A_{FB} and F_ℓ and the acceptance times efficiency do not depend on ϕ, ϕ is integrated out. Although the K^\pm invariant mass must be consistent with a $K^{(0)}$, there can be contributions from a spinless (S-wave) $K^+\pi^-$ combination [45–47]. This is parametrized with two terms related to the S-wave fraction, F_S, and the interference amplitude between the S-wave and P-wave decays, A_S. Including this component, the angular distribution of $B^0 \rightarrow K^{(0)}(\pi^+)\mu^+\mu^-$ can be written as [47]:

![Image](https://example.com/fig1.png)

Fig. 1. Sketch showing the definition of the angular observables for the decay $B^0 \rightarrow K^{(0)}(\pi^+)\mu^+\mu^-$.

\[
\frac{1}{\Gamma} \frac{d^2\Gamma}{d\cos\theta_K d\cos\theta_\ell dq^2} = \frac{9}{16} \left\{ \left[\frac{2}{3} F_S + \frac{4}{3} A_S \cos\theta_K \right] (1 - \cos^2 \theta_\ell) \right.
\]

\[
+ (1 - F_S) \left[2 F_L \cos^2 \theta_K (1 - \cos^2 \theta_\ell) \right]
\]

\[
+ \left[\frac{1}{3} (1 - F_L) (1 - \cos^2 \theta_K) (1 + \cos^2 \theta_\ell) \right]
\]

\[
+ \frac{4}{3} A_{FB} \left(1 - \cos^2 \theta_K \cos \theta_\ell \right) \right\}.
\]

The main results of the analysis are extracted from unbinned extended maximum-likelihood fits in bins of q^2 to three variables: the $K^+\pi^-\mu^+\mu^-$ invariant mass and the two angular variables θ_K and θ_ℓ. For each q^2 bin, the probability density function (PDF) has the following expression:

\[
PDF(m, \cos\theta_K, \cos\theta_\ell) = Y_S \cdot S(m) \cdot S(\cos\theta_K, \cos\theta_\ell) \cdot \epsilon(\cos\theta_K, \cos\theta_\ell)
\]

\[
+ Y_{Bc} \cdot B_c(m) \cdot B_c(\cos\theta_K, \cos\theta_\ell)
\]

\[
+ Y_{Bp} \cdot B_p(m) \cdot B_p(\cos\theta_K, \cos\theta_\ell).
\]

The signal yield is given by the free parameter Y_S. The signal shape is described by the product of a function $S(m)$ of the invariant mass variable, the theoretical signal shape as a function of two angular variables, $S(\cos\theta_K, \cos\theta_\ell)$, and the efficiency as a function of the same two variables, $\epsilon(\cos\theta_K, \cos\theta_\ell)$. The signal mass shape $S(m)$ is the sum of two Gaussian functions with a common mean. While the mean is free to float, the two resolution parameters and the relative fraction are fixed to the result from a fit to the simulated events. The signal angular function $S(\cos\theta_K, \cos\theta_\ell)$ is given by Eq. (1). The efficiency function $\epsilon(\cos\theta_K, \cos\theta_\ell)$, which also accounts for mistagging of a B^0 as a B^0 (and vice versa), is obtained by fitting the two-dimensional efficiency histograms ($6 \cos\theta_K$ bins and 5 $\cos\theta_\ell$ bins) to polynomials in $\cos\theta_K$ and $\cos\theta_\ell$. The $\cos\theta_K$ polynomial is degree 3, while the $\cos\theta_\ell$ polynomial is degree 6, with the 1st and 5th orders removed, as these were the simplest polynomials that adequately described the efficiency in all bins. For some q^2 bins, simpler polynomials are used as they are sufficient to describe the data. There are two contributions to the background, with yields given by Y_{Bp} for the “peaking” background and Y_{Bc} for the “combinatorial” background. The peaking background is due to the remaining $B^0 \rightarrow K^{(0)}\psi$ and $B^0 \rightarrow K^{(0)}\psi'$ decays, not removed by the dimuon mass or q^2 requirements. For these events, the dimuon mass is reconstructed far from the true ψ or ψ' mass, which results in a reconstructed B^0 mass similarly displaced from the true B^0 mass. The shapes of this background in the mass, $B_p(m)$, and angular variables, $B_p(\cos\theta_K)$ and $B_p(\cos\theta_\ell)$, are obtained from simulation of $B^0 \rightarrow K^{(0)}\psi$ and $B^0 \rightarrow K^{(0)}\psi'$ events, fit to the sum of two Gaussian functions in mass and polynomials in $\cos\theta_K$ and $\cos\theta_\ell$. The background yield is also obtained from simulation, properly normalized by comparing the reconstructed $B^0 \rightarrow K^{(0)}\psi$ and $B^0 \rightarrow K^{(0)}\psi'$ yields in data and MC simulation. The remaining background, combinatorial in nature, is described by a single exponential in mass, $B_c(m)$, and a polynomial in each angular variable, $B_c(\cos\theta_K)$ and $B_c(\cos\theta_\ell)$, varying between degree 0 and 4, as needed to describe the data.

The results of the fit in each q^2 bin (including the ψ or ψ' bins) are shown in Fig. 2. In the fits to the data, the yield Y_{Bp} and all but one of the parameters that define the shapes of $S(m)$, $B_p(m)$, $B_p(\cos\theta_K)$, and $B_p(\cos\theta_\ell)$ are initially set to the values obtained from simulation, with a Gaussian constraint defined by the uncertainty found in the fit to the simulated events. The $S(m)$ mass...
parameter is not constrained. The first fit to the data is to the control samples: $B^0 \rightarrow K^{0}\mu^+\mu^-$. The values for F_S and A_S from the $B^0 \rightarrow K^{0}\mu^+\mu^-$ fit are used in the signal q^2 bins, with Gaussian constraints defined by the uncertainties from the fit. The longitudinal polarization fraction F_L and the scalar fraction F_S are constrained to lie in the physical region of 0 to 1. In addition, penalty terms are added to ensure that $|A_{FB}| < \frac{1}{2}(1 - F_L)$ and $|A_S| < \frac{1}{2}(F_S + 3F_L(1 - F_S))$, which are necessary to avoid a negative decay rate.

The differential branching fraction, $d\mathcal{B}/dq^2$, is measured relative to the normalization channel $B^0 \rightarrow K^{0}\mu^+\mu^-$ using

$$\frac{d\mathcal{B}(B^0 \rightarrow K^{0}\mu^+\mu^-)}{dq^2} = \frac{Y_S \epsilon_S}{Y_N \epsilon_S} \frac{d\mathcal{B}(B^0 \rightarrow K^{0}\mu^+\mu^-)}{dq^2}, \quad (3)$$

where Y_S and Y_N are the yields of the signal and normalization channels, respectively, ϵ_S and ϵ_N are the efficiencies of the signal and normalization channels, respectively, and $\mathcal{B}(B^0 \rightarrow K^{0}\mu^+\mu^-)$ is the world-average branching fraction for the normalization channel [41]. The yields are obtained with fits to the invariant-mass distributions and the efficiencies are obtained by integrating over the angular variables used in the previously described fit.

Three methods are used to validate the fit formalism and results. First, 1000 pseudo-experiment samples are generated in each q^2 bin using the PDF in Eq. (2). The log-likelihood values obtained from the fits to the data are consistent with the distributions from the pseudo-experiments, indicating an acceptable goodness of fit. The pull distributions obtained from the pseudo-experiments indicate the uncertainties returned by the fit are generally overestimated by 0–10%. No attempt is made to correct the experimental uncertainties for this effect. Second, a fit is performed to a sample of MC simulation events that approximated the data sample in size and composition. The MC simulation sample contains a data-like sample of MC simulation events that approximated the data sample in size.

The fit algorithm is validated by performing 1000 pseudo-experiments, generated and fit with the PDF of Eq. (2). The average deviation of the 1000 pseudo-experiments from the expected mean is taken as the systematic uncertainty associated with possible bias from the fit algorithm. This bias is less than half of the statistical uncertainty for all measurements. Discrepancies between the functions used in the PDF and the true distribution can also give rise to biases. To evaluate this effect, a MC simulation sample similar in size and composition to the analyzed data set is fit using the PDF of Eq. (2). The differences between the fitted values and the true values are taken as the systematic uncertainties associated with the fit ingredients.

Mistagging a B^0 as a B^0 (and vice versa) worsens the measured B^0 mass resolution. A comparison of resolutions for data and MC simulations (varying the mistag rates in the simulation) indicates the mistag rate may be as high as 12%, compared to the value of 8% determined from simulation. The systematic uncertainty in the mistag rate is obtained from the difference in the final measurements when these two values are used.

The systematic uncertainty related to the contribution from the $K^0 S$-wave (and interference with the P-wave) is evaluated by taking the difference between the default results, obtained by fitting with a function accounting for the S-wave (Eq. (1)), with the results from a fit performed with no S-wave or interference terms ($F_S = A_S = 0$ in Eq. (1)).

Variations of the background PDF shapes, versus mass and angles, are used to estimate the effect of the choice of PDF shapes. The mass-shape parameters of the peaking background, normally taken from a fit to the simulation, are left free in the data fit and the difference adopted as a systematic uncertainty. The degree of the polynomials used to fit the angular shapes of the combinatorial background are increased by one and the difference taken as a systematic uncertainty. In addition, the difference in results obtained by fitting the mass-shape parameters using the data, rather than using the result from simulations, is taken as the signal mass-systematic uncertainty. The effect of the experimental resolution of $\cos \theta_K$ and $\cos \theta_l$ is estimated as the difference, when significant, of the returned values for A_{FB} and F_l when the reconstructed or generated values of $\cos \theta_K$ and $\cos \theta_l$ are used. The effect of the dimuon mass resolution is found to be negligible.

A possible difference between the efficiency computed with the simulation and the true efficiency in data is tested by comparing the measurements of known observables between data and simulation using the control channels. The differences in the measurements of F_l and A_{FB} are computed using the $B^0 \rightarrow K^{0}\mu^+\mu^-$ decay. For the differential branching fraction measurement, the systematic uncertainty is estimated using the ratio of branching fractions $\mathcal{B}(B^0 \rightarrow K^{0}\mu^+\mu^-)/\mathcal{B}(B^0 \rightarrow K^{0}\mu^-\mu^-)$, where our measured value of 15.5 ± 0.4 (statistical uncertainty only) is in agreement with the most-precise previously published value of $16.2 \pm 0.5 \pm 0.3$ [41]. We use the difference of 4.3% between these two measurements as an estimate of the systematic uncertainty from possible q^2-dependent efficiency mismodeling.

For the branching fraction measurement, a common normalization systematic uncertainty of 4.6% arises from the branching fractions of the normalization mode ($B^0 \rightarrow K^{0}\mu^+\mu^-$ and $J/\psi \rightarrow \mu^+\mu^-$) [41]. Finally, variation of the number of pileup collisions is found to have no effect on the results.

The systematic uncertainties are measured and applied in each q^2 bin, with the total systematic uncertainty obtained by adding in quadrature the individual contributions. A summary of the systematic uncertainties is given in Table 1; the ranges give the variation over the q^2 bins.

6. Results

The $K^+ \pi^-\mu^+\mu^-$ invariant-mass, $\cos \theta_K$, and $\cos \theta_l$ distributions for the q^2 bin corresponding to the $B^0 \rightarrow K^{0}\mu^+\mu^-$ decay are shown in Fig. 2, along with the projection of the maximum-likelihood fit described in Section 4. The results are used to validate the fitting procedure and obtain the values for F_S and A_S used in the fits to the signal q^2 bins. From 47,000 signal events, the fitted values are $F_S = 0.554 \pm 0.004$, $A_S = -0.004 \pm 0.004$, $F_S = 0.01 \pm 0.01$, and $A_S = -0.10 \pm 0.01$, where the uncertainties are statistical. Considering also the typical systematic uncertainties (Table 1), the result for F_L is compatible with the world-average value of
Table 1

Systematic uncertainty contributions for the measurements of \(F_1, A_{FB}, \) and \(d\mathcal{B}/dq^2 \). The \(F_2 \) and \(A_{FB} \) uncertainties are absolute values, while the \(d\mathcal{B}/dq^2 \) uncertainties are relative to the measured value. The ranges given refer to the variations over the \(q^2 \) bins.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>(F_1(10^{-1}))</th>
<th>(A_{FB}(10^{-1}))</th>
<th>(d\mathcal{B}/dq^2(%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency statistical uncertainty</td>
<td>5–7</td>
<td>3–5</td>
<td>0–3</td>
</tr>
<tr>
<td>Potential bias from fit algorithm</td>
<td>3–40</td>
<td>12–77</td>
<td>0–27</td>
</tr>
<tr>
<td>Potential bias from fit ingredients</td>
<td>0</td>
<td>0–17</td>
<td>0–21</td>
</tr>
<tr>
<td>Incorrect CP assignment of decay</td>
<td>2–6</td>
<td>2–6</td>
<td>0</td>
</tr>
<tr>
<td>Effect of (K) S-wave contribution</td>
<td>5–23</td>
<td>6–14</td>
<td>5</td>
</tr>
<tr>
<td>Peaking background mass shape</td>
<td>0–26</td>
<td>0–8</td>
<td>0–15</td>
</tr>
<tr>
<td>Background shapes vs. (\cos\theta_{L,E})</td>
<td>3–180</td>
<td>4–160</td>
<td>0–33</td>
</tr>
<tr>
<td>Signal mass shape</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>0–19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Efficiency shape</td>
<td>16</td>
<td>4</td>
<td>4.3</td>
</tr>
<tr>
<td>Normalization to (B^0 \to K^0\bar{\psi}/\psi)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>31–190</td>
<td>18–180</td>
<td>8.6–17</td>
</tr>
</tbody>
</table>

0.570 ± 0.008 [41], while the value for \(A_{FB} \) is consistent with the expected result of no asymmetry. The same fit is performed for the \(B^0 \to K^{0}\bar{\psi}/\psi q^2 \) bin, where 3200 signal events yield results of \(F_1 = 0.509 \pm 0.016 \) (stat.), which is consistent with the world-average value of 0.46 ± 0.04 [41], and \(A_{FB} = 0.013 \pm 0.014 \) (stat.), compatible with no asymmetry, as expected in the SM.

The \(K^+\pi^- \mu^+\mu^- \) invariant mass distributions for each \(q^2 \) bin of the signal sample \(B^0 \to K^{0}\psi/\bar{\psi} q^2 \) are shown in Fig. 3, along with the projection of the unbinned maximum-likelihood fit described in Section 4. Clear signals are seen in each bin, with yields ranging from 23 ± 6 to 103 ± 12 events. The fitted results for \(F_1 \) and \(A_{FB} \) are shown in Fig. 4, along with the SM predictions. The values of \(A_{FB} \) and \(F_1 \) obtained for the first \(q^2 \) bin are at the physical boundary, which is enforced by a penalty term. This leads to statistical uncertainties, obtained from Monte Carlo [49], of zero for the positive (negative) uncertainty for \(F_1 \) (\(A_{FB} \)).

The SM predictions are taken from Ref. [14] and combines two calculational techniques. In the low-\(q^2 \) region, a QCD factorization approach [10] is used, which is applicable for \(q^2 < 4m_c^2 \), where \(m_c \) is the charm quark mass. In the high-\(q^2 \) region, an operator product expansion in the inverse b-quark mass and \(1/\sqrt{q^2} \) [50,51] is combined with heavy quark form factor relations [52]. This is valid above the open-charm threshold. In both regions, the form factor calculations are taken from Ref. [53], and a dimensional estimate is made of the uncertainty from the expansion corrections [27].

Other recent SM calculations [15,17–19] give similar results, with the largest variations found in the uncertainty estimates and the differential branching fraction value. Between the \(J/\psi \) and \(\psi' \) resonances, reliable theoretical predictions are not available.

Using the efficiency corrected yields for the signal and normalization modes \((B^0 \to K^{0}\mu^+\mu^- \) and \(B^0 \to K^{0}\psi/\bar{\psi} \) \) and the world-average branching fraction for the normalization mode [41], the branching fraction for \(B^0 \to K^{0}\mu^+\mu^- \) is obtained as a function of \(q^2 \), as shown in Fig. 5, together with the SM predictions. The results for \(A_{FB}, F_1, \) and \(d\mathcal{B}/dq^2 \) are also reported in Table 2.

The angular observables can be theoretically predicted with good control of the relevant form-factor uncertainties in the low dimuon invariant-mass region. It is therefore interesting to perform the measurements of the relevant observables in the \(1 < q^2 < 6 \) GeV\(^2 \) region. The experimental results in this region, along with the fit projections, are shown in Fig. 6. The values obtained from this fit for \(F_1, A_{FB}, \) and \(d\mathcal{B}/dq^2 \) are shown in the bottom row of Table 2. These results are consistent with the SM predictions of \(F_1 = 0.74^{+0.06}_{-0.07}, A_{FB} = -0.05 \pm 0.03, \) and \(d\mathcal{B}/dq^2 = (4.9^{+1.4}_{-1.1}) \times 10^{-8} \) GeV\(^{-2} \) [54].

The results of \(A_{FB}, F_1, \) and the branching fraction versus \(q^2 \) are compared to previous measurements that use the same \(q^2 \) binning [36–38,55,56] in Fig. 7. The CMS measurements are more precise than all but the LHCb values, and in the highest-\(q^2 \) bin, the CMS measurements have the smallest uncertainty in \(A_{FB} \) and \(F_1 \). Table 3 provides a comparison of the same quantities in the low dimuon invariant-mass region: \(1 < q^2 < 6 \) GeV\(^2 \).

7. Summary

Using a data sample recorded with the CMS detector during 2011 and corresponding to an integrated luminosity of 5.2 fb\(^{-1} \), an angular analysis of the decay \(B^0 \to K^{0}\psi/\bar{\psi} \) has been carried out. The data used for this analysis include more than 400 signal decays and 50000 normalization/control mode decays \((B^0 \to K^{0}\psi/\bar{\psi} \) and \(B^0 \to K^{0}\psi/\bar{\psi} \). Unbinned maximum-likelihood fits have been performed in bins of the square of the dimuon invariant mass (\(q^2 \))
Fig. 3. The $K^+\pi^-\mu^+\mu^-$ invariant-mass distributions for each of the signal q^2 bins. Overlaid on each mass distribution is the projection of the unbinned maximum-likelihood fit results for the overall fit (solid line), the signal contribution (dashed line), the combinatorial background contribution (dot-dashed line), and the peaking background contribution (dotted line).

Table 2
The yields and the measurements of F_L, A_{FB}, and the branching fraction for the decay $B^0 \rightarrow K^0\mu^+\mu^-$ in bins of q^2. The first uncertainty is statistical and the second is systematic.

<table>
<thead>
<tr>
<th>q^2 (GeV2)</th>
<th>Yield</th>
<th>F_L</th>
<th>A_{FB}</th>
<th>$\frac{d\mathcal{B}}{dq^2}$ (10$^{-3}$ GeV$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–2</td>
<td>23.0 ± 6.3</td>
<td>0.60$^{+0.08}_{-0.28}$ ± 0.19</td>
<td>$-0.29^{+0.37}_{-0.60}$ ± 0.18</td>
<td>4.8$^{+1.4}_{-1.2}$ ± 0.4</td>
</tr>
<tr>
<td>2–4.3</td>
<td>45.0 ± 8.8</td>
<td>0.65 ± 0.17 ± 0.03</td>
<td>$-0.07 ± 0.20 ± 0.02$</td>
<td>3.8 ± 0.7 ± 0.3</td>
</tr>
<tr>
<td>4.3–8.68</td>
<td>90 ± 17</td>
<td>0.81$^{+0.13}_{-0.12}$ ± 0.05</td>
<td>$-0.01 ± 0.11 ± 0.03$</td>
<td>3.7 ± 0.7 ± 0.4</td>
</tr>
<tr>
<td>10.09–12.86</td>
<td>96 ± 16</td>
<td>0.45$^{+0.10}_{-0.11}$ ± 0.04</td>
<td>0.40 ± 0.08 ± 0.05</td>
<td>5.4 ± 0.9 ± 0.9</td>
</tr>
<tr>
<td>14.18–16</td>
<td>58 ± 10</td>
<td>0.53 ± 0.12 ± 0.03</td>
<td>0.29 ± 0.09 ± 0.05</td>
<td>4.6$^{+0.9}_{-0.8}$ ± 0.5</td>
</tr>
<tr>
<td>16–19</td>
<td>103 ± 12</td>
<td>0.44 ± 0.07 ± 0.03</td>
<td>0.41 ± 0.05 ± 0.03</td>
<td>5.2 ± 0.6 ± 0.5</td>
</tr>
<tr>
<td>1–6</td>
<td>107 ± 14</td>
<td>0.68 ± 0.10 ± 0.02</td>
<td>$-0.07 ± 0.12 ± 0.01$</td>
<td>4.4 ± 0.6 ± 0.4</td>
</tr>
</tbody>
</table>
Fig. 4. Results of the measurement of F_L (top) and A_{FB} (bottom) versus q^2. The statistical uncertainty is shown by inner error bars, while the outer error bars give the total uncertainty. The vertical shaded regions correspond to the J/ψ and ψ' resonances. The other shaded regions show the SM prediction as a continuous distribution and after rate-averaging across the q^2 bins ($\langle SM \rangle$) to allow direct comparison to the data points. Reliable theoretical predictions between the J/ψ and ψ' resonances ($10.09 < q^2 < 12.86 \text{ GeV}^2$) are not available.

Fig. 5. Results of the measurement of $d\mathcal{B}/dq^2$ versus q^2. The statistical uncertainty is shown by inner error bars, while the outer error bars give the total uncertainty. The vertical shaded regions correspond to the J/ψ and ψ' resonances. The other shaded regions show the SM prediction as a continuous distribution and after rate-averaging across the q^2 bins ($\langle SM \rangle$) to allow direct comparison to the data points. Reliable theoretical predictions between the J/ψ and ψ' resonances ($10.09 < q^2 < 12.86 \text{ GeV}^2$) are not available.

Fig. 6. The $K^+\pi^-\mu^+\mu^-$ invariant-mass (top), $\cos \theta_l$ (middle), and $\cos \theta_K$ (bottom) distributions for $1 < q^2 < 6 \text{ GeV}^2$, along with results from the projections of the overall unbinned maximum-likelihood fit (solid line), the signal contribution (dashed line), and the background contribution (dot-dashed line). Measurements. Combined with other measurements, these results can be used to rule out or constrain new physics.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); CNPq, CAPES, FAPERJ, and FAPESP (Brazil);
SM predictions are also given [14].

Fig. 7. Measurements versus \(q^2 \) of \(F_1 \) (top), \(A_{\text{FB}} \) (middle), and the branching fraction (bottom) for \(B \to K^{\ast} e^+ e^- \) from CMS (this Letter), Belle [36], CDF [37,55], BaBar [56], and LHCb [38]. The error bars give the total uncertainty. The vertical shaded regions correspond to the \(J/\psi \) and \(\psi' \) resonances. The other shaded regions are the result of rate-averaging the SM prediction across the \(q^2 \) bins to allow direct comparison to the data points. Reliable theoretical predictions between the \(J/\psi \) and \(\psi' \) resonances (10.09 < \(q^2 \) < 12.86 GeV²) are not available.

Table 3 Measurements from CMS (this Letter), LHCb [38], BaBar [56], CDF [37,55], and Belle [36] of \(F_1 \), \(A_{\text{FB}} \), and d\(\mathcal{B} \)/d\(q^2 \) in the region 1 < \(q^2 \) < 6 GeV² for the decay \(B \to K^{\ast} e^+ e^- \). The first uncertainty is statistical and the second is systematic. The SM predictions are also given [14].

<table>
<thead>
<tr>
<th>Experiment</th>
<th>(F_1)</th>
<th>(A_{\text{FB}})</th>
<th>d(\mathcal{B})/d(q^2) (10⁻⁸ GeV⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS</td>
<td>0.68 ± 0.10 ± 0.02</td>
<td>-0.07 ± 0.12 ± 0.01</td>
<td>4.4 ± 0.6 ± 0.4</td>
</tr>
<tr>
<td>LHCb</td>
<td>0.65 ± 0.01 ± 0.03</td>
<td>-0.17 ± 0.06 ± 0.01</td>
<td>3.4 ± 0.3 ± 0.4</td>
</tr>
<tr>
<td>BaBar</td>
<td>-</td>
<td>-</td>
<td>4.1 ± 1.1 ± 0.1</td>
</tr>
<tr>
<td>CDF</td>
<td>0.69 ± 0.10 ± 0.08</td>
<td>0.20 ± 0.22 ± 0.07</td>
<td>3.2 ± 1.1 ± 0.3</td>
</tr>
<tr>
<td>Belle</td>
<td>0.67 ± 0.23 ± 0.05</td>
<td>0.26 ± 0.32 ± 0.07</td>
<td>3.0 ± 0.9 ± 0.2</td>
</tr>
<tr>
<td>SM</td>
<td>0.74 ± 0.06 ± 0.07</td>
<td>-0.05 ± 0.03 ± 0.3</td>
<td>4.9 ± 1.1 ± 1.1</td>
</tr>
</tbody>
</table>

MES (Bulgaria); CERN, CAS, MoST, and NSFC (China); COLCIENCIAS (Chile); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); NSC (Norway); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA—Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT—Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU—ESF and the Greek NSRF.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[1] N.G. Deshpande, J. Trampetic, Improved estimates for processes \(b \to s \ell^+ \ell^- \), \(B \to K^{\ast} \ell^+ \ell^- \), and \(B \to K^{\ast} \ell^+ \ell^- \), Phys. Rev. Lett. 60 (1988) 2583.

[2] N.G. Deshpande, Josip Trampetic, Kuriakose Panose, Resonance background to the decays \(b \to s \ell^+ \ell^- \), \(B \to K^{\ast} \ell^+ \ell^- \), and \(B \to K^{\ast} \ell^+ \ell^- \), Phys. Rev. D 39 (1989) 1461.

[7] C.S. Kim, Yeong Gyun Kim, Cai-Dian Lu, Takuya Morozumi, Azimuthal angle distribution in \(B \to K^{\ast} \to K^{\ast} \) at low invariant mass \(m_{\ell^+\ell^-} \) region, Phys. Rev. D 62 (2000) 034013.

CMS Collaboration

L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris
University of Athens, Athens, Greece

X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas
University of Ioannina, Ioannina, Greece

G. Bencke, C. Hajdu, P. Hidas, D. Horvath²⁰, F. Sikler, V. Veszpremi, G. Vesztergombi²¹, A.J. Zsigmond
KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi
Institute of Nuclear Research ATOMKI, Debrecen, Hungary

J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari
University of Debrecen, Debrecen, Hungary

S.K. Swain²²
National Institute of Science Education and Research, Bhubaneswar, India

S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh
Panjab University, Chandigarh, India

Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, S. Malhotra, M. Naimuddin, K. Ranjan, P. Saxena, V. Sharma, R.K. Shrivpuri
University of Delhi, Delhi, India

Saha Institute of Nuclear Physics, Kolkata, India

A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty², L.M. Pant, P. Shukla, A. Topkar
Bhabha Atomic Research Centre, Mumbai, India

Tata Institute of Fundamental Research – EHEP, Mumbai, India

S. Banerjee, S. Dugad
Tata Institute of Fundamental Research – HECR, Mumbai, India

H. Arfaei, H. Bakhshiansohi, S.M. Etesami²⁷, A. Fahim²⁸, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, S. Paktinat Mehdizad, B. Safarzadeh²⁹, M. Zeinali
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Grunewald
University College Dublin, Dublin, Ireland

M. Abbrescia², L. Barbone², C. Calabria², S.S. Chhibra², A. Colaleo², D. Creanza², N. De Filippis², M. De Palma², L. Fiore², G. Iselli², G. Maggi², M. Maggi², B. Marangelli², S. My², S. Nuzzo², N. Pacifico², A. Pompili², G. Pugliese², G. Selvaggi², L. Silvestris², G. Singh², R. Venditti², P. Verwilligen², G. Zito²

S. Chang, T.Y. Kim, S.K. Nam

D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

J.Y. Kim, Zero J. Kim, S. Song

S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, S.K. Park, Y. Roh

M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

I. Grigelionis, A. Juodagalvis

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

C. Amsler, V. Chiochia, C. Favaro, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Suwonjandee

Chulalongkorn University, Bangkok, Thailand

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

E. Gülmez, B. Isildak, M. Kayar, O. Kaya, S. Ozkorucuklu, N. Sonmez

Bogazici University, Istanbul, Turkey

H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Varдарlı, M. Yücel

Istanbul Technical University, Istanbul, Turkey

L. Levchuk, P. Sorokin

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

Baylor University, Waco, USA

O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

The University of Alabama, Tuscaloosa, USA

A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazard, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Boston University, Boston, USA

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA

J. Gronberg, D. Lange, F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

University of Maryland, College Park, USA

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA

University of Oklahoma, Norman, USA

University of Maryland, College Park, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
L. Antonelli, B. Bylsma, L.S. Durkin, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe

The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

University of Puerto Rico, Mayaguez, USA

Purdue University, West Lafayette, USA

N. Parashar

Purdue University Calumet, Hammond, USA

A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

Rice University, Houston, USA

B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

University of Rochester, Rochester, USA

A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

The Rockefeller University, New York, USA

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA

Texas A&M University, College Station, USA

N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, K. Kovitanggoon, S.W. Lee, T. Libeiro, I. Volobouev

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA

S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov
Wayne State University, Detroit, USA

University of Wisconsin, Madison, USA

† Deceased.
1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
3 Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
4 Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
5 Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
6 Also at Universidade Estadual de Campinas, Campinas, Brazil.
7 Also at California Institute of Technology, Pasadena, USA.
8 Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
9 Also at Zewail City of Science and Technology, Zewail, Egypt.
10 Also at Suez Canal University, Suez, Egypt.
11 Also at Cairo University, Cairo, Egypt.
12 Also at Fayoum University, El-Fayoum, Egypt.
13 Also at British University in Egypt, Cairo, Egypt.
14 Also at Ain Shams University, Cairo, Egypt.
15 Also at National Centre for Nuclear Research, Świerk, Poland.
16 Also at Université de Haute Alsace, Mulhouse, France.
17 Also at Joint Institute for Nuclear Research, Dubna, Russia.
18 Also at Brandenburg University of Technology, Cottbus, Germany.
19 Also at The University of Kansas, Lawrence, USA.
20 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
21 Also at Eötvös Loránd University, Budapest, Hungary.
22 Also at Tata Institute of Fundamental Research – EHEP, Mumbai, India.
23 Also at Tata Institute of Fundamental Research – HECR, Mumbai, India.
24 Also at King Abdulaziz University, Jeddah, Saudi Arabia.
25 Also at University of Visva-Bharati, Santiniketan, India.
26 Also at University of Ruhuna, Matara, Sri Lanka.
27 Also at Isfahan University of Technology, Isfahan, Iran.
28 Also at Sharif University of Technology, Tehran, Iran.
29 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
30 Also at Università degli Studi di Siena, Siena, Italy.
31 Also at Purdue University, West Lafayette, USA.
32 Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico.
33 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
34 Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.
35 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
36 Also at University of Athens, Athens, Greece.
37 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
38 Also at Paul Scherrer Institut, Villigen, Switzerland.
39 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
40 Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland.
41 Also at Gaziosmanpasa University, Tokat, Turkey.
42 Also at Adiyaman University, Adiyaman, Turkey.
43 Also at Ege University, Mersin, Turkey.
44 Also at Mersin University, Mersin, Turkey.
45 Also at Izmir Institute of Technology, Izmir, Turkey.
46 Also at Ozyegin University, Istanbul, Turkey.
47 Also at Kafkas University, Kars, Turkey.
48 Also at Suleyman Demirel University, Isparta, Turkey.
49 Also at Ege University, Izmir, Turkey.
50 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
51 Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey.
52 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
53 Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy.
Also at Utah Valley University, Orem, USA.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
Also at Argonne National Laboratory, Argonne, USA.
Also at Erzincan University, Erzincan, Turkey.
Also at Yildiz Technical University, Istanbul, Turkey.
Also at Texas A&M University at Qatar, Doha, Qatar.
Also at Kyungpook National University, Daegu, Republic of Korea.