Ring states in swarms of animals

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>O'Keeffe, Kevin P. et al. &quot;Ring states in swarms of animals.&quot; Physical Review E 98, 2 (August 2018): 022203 © 2018 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1103/PhysRevE.98.022203">http://dx.doi.org/10.1103/PhysRevE.98.022203</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Mar 11 22:26:02 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/117337">http://hdl.handle.net/1721.1/117337</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Ring states in swarmalator systems

Kevin P. O’Keeffe
Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Joep H. M. Evers and Theodore Kolokolnikov
Department of Mathematics and Statistics, Dalhousie University, Halifax B3H 4R2, Canada

(Received 31 August 2017; revised manuscript received 14 April 2018; published 7 August 2018)

Synchronization is a universal phenomenon, occurring in systems as disparate as Japanese tree frogs and Josephson junctions. Typically, the elements of synchronizing systems adjust the phases of their oscillations, but not their positions in space. The reverse scenario is found in swarming systems, such as schools of fish or flocks of birds; now the elements adjust their positions in space, but without (noticeably) changing their internal states. Systems capable of both swarming and synchronizing, dubbed swarmalators, have recently been proposed, and analyzed in the continuum limit. Here, we extend this work by studying finite populations of swarmalators, whose phase similarity affects both their spatial attraction and repulsion. We find ring states, and compute criteria for their existence and stability. Larger populations can form annular distributions, whose density we calculate explicitly. These states may be observable in groups of Japanese tree frogs, ferromagnetic colloids, and other systems with an interplay between swarming and synchronization.

DOI: 10.1103/PhysRevE.98.022203

1. INTRODUCTION

Synchronization is a well studied [1–4] phenomenon spanning many disciplines. In biology it is seen in discharging pacemaker cells [5,6], coherently flashing fireflies [7,8], and accordantly croaking tree frogs [9–11]. In chemistry it is seen in the metabolic cycles of yeast cells [12], and in physics, in arrays of Josephson junctions [13], power grid dynamics [14], and even the wobbling of the millenium bridge [15].

In synchronizing systems, the dynamic state variables are the oscillators’ phases, whose influence on each other leads to macrolevel temporal structures (synchrony). A similar effect occurs in swarming [16–25], a phenomenon as widespread as synchronization, as evidenced by flocks of birds [26,27], locust swarms [28–30], bacterial aggregation [31–33], schools of fish [34,35], predator-prey interactions [36,37], self-assembly [38–42], and even the vortices of Bose-Einstein condensates [43–47]. Like synchronizing oscillators, the interactions between swarming particles give rise to group-level structures. But, now the (dynamic) state variables are the individuals’ positions, and the structures formed are spatial.

Viewed this way, swarming and synchronization are strikingly similar. Both are canonical examples of emergent phenomena. Both are dizzyingly pervasive, occurring in far-flung settings like the menstrual cycle [48] and quantum gases [47]. Yet in spite of these commonalities, the two fields have developed largely independently. In swarming the units are mobile, but do not have internal dynamics. In synchronization the situation is reversed: the oscillators have internal dynamics, but do not move through space.

Recently, however, researchers in both fields have started to study systems with both spatial and internal dynamics. From the swarming side, von Brecht and Uminsky [42] have endowed aggregating particles with an internal polarization vector. In the sync community, researchers have considered mobile oscillators when modeling robotics and biological phenomena [49–53]. In these works, however, the coupling between the space dynamics and the phase dynamics is only one way: their phase evolution is influenced by their relative distances, but their relative phases do not affect their movements.

Oscillators whose space dynamics and phase dynamics are bidirectionally coupled have also been considered. The pioneering work was done by Tanaka et al. [54–56] when studying “chemotactic oscillators,” oscillators whose movements and interactions are mediated by a surrounding chemical field. They studied a very general model, from which they derived reduced dynamics using center manifold and phase reduction techniques. More recent works have been carried out by Starnini et al. [57], and O’Keeffe et al. [58], who took a bottom-up approach. They defined minimal, toy models which enabled greater tractability. The latter called the elements of their system “swarmalators” to highlight their twin identities as swarming oscillators, and to distinguish them from the “mobile oscillators” of the preceding paragraph, whose motion evolves independently of their phase.

Defined this way, swarmalators are, to our knowledge, hypothetical entities. By this we mean there are no real world systems which unequivocally display the required two-way, space-phase coupling. That said, there are some promising candidates. For example, tree frogs, crickets, and katydids are known to synchronize their calling rhythms with others close to them in space (making the phase dynamics position dependent) [59,60]. Perhaps, as some believe [61], the relative phases of their calls also affect their movements, which would complete the requisite feedback loop between the space dynamics and the phase dynamics.
Another contender is biological microswimmers, such as bacteria, algae, or sperm. Here, the phase variable is associated with the rhythmic wriggling of the swimmer’s tail. Since this wriggling both affects, and is affected by, the local hydrodynamic environment, it seems likely that the behavior of neighboring sperm would be coupled. Whether this coupling is truly bidirectional is yet to be determined. That said, there is evidence that sperm, at least, behave this way. As discussed in [62], neighboring sperm can synchronize their wriggling, which in turn is thought to enhance their mutual spatial attraction.

Myxobacteria also have the right ingredients to be swarmalators. In this case, the phase variable is an internal, cyclic degree of freedom, which has been theorized to influence their motion, and vice versa [63]. The same is true of colloidal Janus particles, where now the phase corresponds to an oscillation about the center of mass (which occurs in response to an external magnetic field). Here again, the physics is such that the oscillations and movements of the particles are mutually dependent on each other, as required of swarmalators [64].

In this work, we contribute to the theoretical study of swarmalators. We study two realistic modifications of the model defined in [58]. The first is the effect of finite population sizes (in [58] continuum arguments were used), which we show lead to stable ring states. The second is a change in length scale of the space-phase coupling. In [58] this length scale was chosen to be the same as that of the spatial attraction. However, in some swarmalator systems, such as magnetic Janus particles [64] and Japanese tree frogs [11], this space-phase interaction occurs at the length scale of the spatial repulsion. We here account for this effect by allowing phase similarity to affect both spatial attraction and spatial repulsion.

II. MODEL

We consider swarmalators confined to move in two spatial dimensions

\[
\mathbf{x}_k = \frac{1}{N} \sum_{j=1}^{N} \left[ \mathbf{I}_1(\mathbf{x}_j - \mathbf{x}_k)F_1(\theta_k - \theta_j) + \mathbf{I}_2(\mathbf{x}_j - \mathbf{x}_k)F_2(\theta_k - \theta_j) \right],
\]

for \( k = 1, \ldots, N \), where \( N \) is the population size and \( \mathbf{x}_k \in \mathbb{R}^2 \). \( \theta_k \in S^1 \) is the phase of the \( k \)th swarmalator while its natural frequency is \( \omega_k \). The spatial attraction and repulsion between swarmalators are represented by \( \mathbf{I}_1, \mathbf{I}_2 \in \mathbb{R}^2 \). (Depending on the sign of \( F_1, F_2 \), however, this can change, and \( \mathbf{I}_1 \) can be repulsive and/or \( \mathbf{I}_2 \) can be attractive. We discuss when this occurs later.) The phase interaction is encoded by \( H \in \mathbb{R} \), and the influence of phase similarity on spatial attraction and repulsion is captured by the functions \( F_1, F_2 \in \mathbb{R} \). Finally, the function \( G \in \mathbb{R} \) represents the influence of spatial proximity on the phase dynamics.

Consider the following instance of this model:

\[
x_k = \frac{1}{N} \sum_{j \neq k} \left[ (\mathbf{x}_j - \mathbf{x}_k)(A + J_1 \cos(\theta_j - \theta_k)) - (B - J_2 \cos(\theta_j - \theta_k)) \frac{\mathbf{x}_j - \mathbf{x}_k}{|\mathbf{x}_j - \mathbf{x}_k|^2} \right],
\]

\[
\dot{\theta}_k = \frac{1}{N} \sum_{j \neq k} \sin(\theta_j - \theta_k),
\]

where \( A, B, J_1, J_2 \) are constants chosen to be the same as that of the spatial attraction. However, in some swarmalator systems, such as magnetic Janus particles [64, 66] and Japanese tree frogs [11], this space-phase interaction occurs on the length scale of the spatial repulsion. The ratio \( J_1/J_2 \) determines whether this coupling occurs on the length scale of the spatial repulsion, as is common in studies of the aggregation model [25, 65], because it simplifies the analysis. Specifically, in the absence of space-phase coupling, \( J_1 = J_2 = 0 \), this choice of \( \mathbf{I}_1, \mathbf{I}_2 \) causes swarmalators to form disks of uniform density in space. We note the term \( \mathbf{x}_j - \mathbf{x}_k \) indicates the \( k \)th swarmalator is attracted to the \( j \)th swarmalator only when the term \( A + J_1 \cos(\theta_j - \theta_k) \) is positive. If the latter term is negative, we have the reverse scenario, where the \( k \)th swarmalator is repelled from the \( j \)th swarmalator [similar statements hold for the terms \( \mathbf{x}_j - \mathbf{x}_k/|\mathbf{x}_j - \mathbf{x}_k|^2 \) and \( B - J_2 \cos(\theta_j - \theta_k) \)].

Again for simplicity, we both choose the sine function for \( H \), and consider identical swarmalators \( \phi_k = \omega_k \). By a change of reference frame we set \( \omega = 0 \) without loss of generality. Finally, by rescaling time and space we set \( A = B = 1 \). Note this implies \( (J_1, J_2) \to (J_1, J_2) = (J_1/AB, J_2/AB) \), but for notational convenience we drop the tilde notation. This leaves three parameters \( (J_1, J_2, K) \).

The parameter \( K \) measures the strength of the phase coupling. For \( K > 0 \), the phase coupling between swarmalators tends to minimize their phase difference, while for \( K < 0 \), it tends to maximize it. The parameters \( J_1, J_2 > 0 \) measure the extent to which phase similarity influences spatial attraction and repulsion, respectively. For \( 0 < J_1, J_2 < 1 \), the functions \( F_1 \) and \( F_2 \) are strictly positive. Then, the phase similarity enhances just the magnitude of \( \mathbf{I}_1, \mathbf{I}_2 \). However, for \( J_1, J_2 > 1 \), \( F_1, F_2 \) can change sign (depending on the value of \( \theta_j - \theta_k \)). As we discussed earlier, this means the functions \( \mathbf{I}_1, \mathbf{I}_2 \) become repulsive and attractive, respectively.

We remark that \( J_2 \) does not appear in [58], which meant phase similarity affected spatial attraction, but not spatial repulsion. We here include it for greater generality, so that our results may be applied to swarmalators whose space-phase coupling occurs on the length scale of the spatial repulsion, as is the case, for example, for magnetic Janus particles [64, 66] and Japanese tree frogs [9,11]. We also remark that in [58] \( G(|\mathbf{x}|) = 1/|\mathbf{x}| \), but we choose \( G(|\mathbf{x}|) = 1/|\mathbf{x}|^2 \) here because it simplifies the analysis.

III. RESULTS

A. Ring phase waves

Simulations show that for certain parameter values, a stationary state is formed where the swarmalators arrange themselves in a ring centered about the origin, with their phases perfectly correlated with their spatial angle (i.e., \( \theta_k = \phi_k + \text{const} \), where \( \phi_k \) is angle between \( \mathbf{x}_k \) and the positive \( x \) axis). Accordingly, we call this state the ring phase wave and plot it in Fig. 1(a). We now analyze this state.
As can be seen, in this state the spatial angle $\phi_k$ each swarmalator is correlated with its phase (i.e., ray, and corresponds to the angle the ray makes with the positive $x$ axis. As indicated by the subscript, this leads to a Hopf bifurcation.

**Existence.** In the ring phase wave state the position and phase of the $k$th swarmalator are

$$x_k = R \cos (2\pi k/N)\hat{x} + R \sin (2\pi k/N)\hat{y}, \quad (5)$$

$$\theta_k = 2\pi k/N + C, \quad (6)$$

where $R$ is the radius of the ring, $\hat{x}, \hat{y}$ are unit vectors in the $(x, y)$ directions, $N > 1$, and the constant $C$ is determined by the initial conditions. After substituting the Ansätze (5) and (6) into the equations of motion (3) and (4), and after algebraic manipulation, we derive the following expression for the radius:

$$R = \sqrt{N - 1 + J_2 \over N(2 - J_1)} \quad (7)$$

which is valid for any value of the coupling constant $K$. For large $N$ this becomes $R \sim \sqrt{1/(2 - J_1)}$, independent of $J_2$. This expression for radius of the ring agrees with simulation as shown in Fig. 1(b). By requiring the argument of the square root to be positive, we see rings which satisfy the Ansätze (5) and (6) exist in the parameter region $\{J_1 < 2, J_2 > 1 - N \} \cup \{J_1 > 2, J_2 < 1 - N \}$.

**Stability when $K > 0$.** The above analysis proves the existence of ring phase wave, but not their stability, which we now investigate. For simplicity, we start with the case $K = 0$ so that swarmalators’ phases are “frozen” at the values defined by (6). In Appendix B we show that the ring phase wave is stable for $J_1 \in (J_{1a}, 2)$ where

$$J_{1a} = \begin{cases} 2 - 8 - (N - 1 + J_2) \over (N - 2)^2(1 - J_1), & \text{N even, } N > 4 \\ 2 - 8 - (N - 1 + J_2) \over (N - 1)(N - 3)(1 - J_1), & \text{N odd, } N > 4. \end{cases} \quad (8)$$

For $J_1 < J_{1a}$ (and $K = 0$ remember) the ring becomes unstable. However, it does not break up entirely. Instead, it “fattens” slightly, while the phase distribution remains unchanged. This is depicted in snapshot D in Fig. 2. The destabilizing mode in this case is the highest frequency wave number $|N/2|$.

We remark that the case $J_2 = J_1 = 0$ has a connection to vortex dynamics. In a classic paper [67], the stability of ring configurations of fluid vortices was studied, whose motion is controlled by the classic Helmholtz equations. It turns out that the motions of the center of masses of the vortices obey the aggregation equation. That is, our governing equations (3) and (4) with $J_1 = J_2 = 0$. In other words, the vortices swarm. In [68] the stability of ring states was studied, and it was found that six or less vortices in the classical vortex equations are stable, seven are neutral (borderline stable or unstable), and eight or more are unstable. This is consistent with our result (8) since $J_{1a} = 0$ at $N = 7$ and $J_2 = 0$.

**Stability when $K < 0$.** Negative values of $K$ are more interesting. Now, neighboring swarmalators tend to desynchronize their phases. Do rings states persist in this case? In Appendix B we show they do, provided $J_1 > J_{1b}$ and $K \in (K_{\text{Hopf}}, 0)$ where

$$J_{1b} = \begin{cases} \left(1 - 1 \over N^2\right) - 1 \over N^2, & N \text{ even, } N > 4 \\ \left(1 - 1 \over N^2\right) - 1 \over N^2, & N \text{ odd, } N > 4. \end{cases} \quad (9)$$

and

$$K_{\text{Hopf}} = \begin{cases} (J_1 - 1)(-2 + J_1)N^2 + (-4J_2 + 4J_1 + 8J_2)N + 4J_1(J_2 - 1) \over (N - 4)^2(1 - J_1) & N \text{ even, } N > 4 \\ (J_1 - 1)(-2 + J_1)N^2 + (-4J_2 + 4J_1 + 8J_2)N + 3(J_1 - 3)J_1 + 2J_1 - 2 \over (N - 4)(N - 1)(2 - J_1) & N \text{ odd, } N > 4. \end{cases} \quad (10)$$

where the top equation is for $N$ even and the bottom is for $N$ odd. As before, these both require $N > 4$.

These instability boundaries are drawn in Fig. 2. Notice that $J_{1a} < J_{1b}$, so $J_{1b}$ is the critical parameter value when $K < 0$. Notice also that there are two ways for rings to become unstable. The first is by holding $J_1$ constant, and decreasing $J_1$ below $J_{1b}$ (moving horizontally in Fig. 2). This corresponds to a saddle-node bifurcation, and the ring again fattens, like when $K = 0$. But the similarity (to the scenario when $K = 0$) is not exact; here the phase distribution gets distorted (recall it remained unchanged when $K = 0$), as shown in snapshot E of Fig. 2. Rings also become unstable when $J_1$ is held constant, and $K$ is decreased past $K_{\text{Hopf}} < 0$ (moving vertically in Fig. 2). As indicated by the subscript, this leads to a Hopf bifurcation. The ring structure is completely destroyed, and a disordered gaslike state forms as illustrated in snapshot G of Fig. 2. In this state, the swarmalators move erratically in space and are
FIG. 2. Stability diagram for the ring phase wave state in \((J_1, K)\) space with \(N = 15, J_2 = 0\). Stable regions are indicated with a green color. Insets show the solution to Eqs. (3) and (4) corresponding to parameter values as shown (A through G) as scatter plots in the \((x, y)\) plane. The phase of each swarmalator is represented by a blue ray, and corresponds to the angle the ray makes with the positive \(x\) axis. Initial conditions were taken to be a ring of radius 1, slightly perturbed. The ring is stable for parameter values A, B, C.

Then, the ring is stable for all \(N < N_{\text{max}}\) as long as \(K\) is sufficiently small, namely, \(K \in (K_{\text{Hopf}}(N_{\text{max}}), 0]\). When \(N\) is large, we can rearrange Eq. (10) to obtain

\[
N_{\text{max}} \sim \frac{8}{(2 - J_1)(1 - J_2)}.\tag{12}
\]

We restate that the above equation is valid only for large \(N\), which means either \(0 < 2 - J_1 \ll 1\) or \(0 < 1 - J_2 \ll 1\). We see from (12) that \(N_{\text{max}}\) increases with increasing \(J_1\) and \(J_2\). Or, put another way, swarmalators can form larger rings than regular swarming particles (which have no internal degree of freedom); the inclusion of the phase variable stabilizes the ring state.

The last feature of interest is a special parameter value, \(J_2 = 1\), where rings are unusually stable. To see why, we let \(J_2 \to 1^-\) in (8), (9), and (10) and find

\[
J_{1u}, J_{2u}, K_{\text{Hopf}} \to -\infty, \quad K_{\text{Hopf}} \rightarrow \begin{cases} \frac{8}{(N - 4)(2 - J_1)}, & N \text{ even, } N > 4, J_2 = 1 \\ \frac{8}{(N - 4 - 1)(N)(2 - J_1)}, & N \text{ odd, } N > 4, J_2 = 1. \end{cases}\tag{14}
\]

Consequently, when \(J_2 = 1, J_1 < 1\), and \(K \in (K_{\text{Hopf}}, 0]\) the ring phase wave state is stable for any \(N\)! Furthermore, its radius is finite, and independent of \(N\). This remarkable fact is
demonstrated in Fig. 1(a), where a ring of $N = 100$ particles is observed to be stable.

We note that for $J_2 > 1$, simulations show that the particles exhibit finite-time collisions as $N$ is increased. We therefore restrict our analysis to the parameter region $J_2 < 1$. Thus, aside from the special case $J_2 = 1$, the ring is stable for $N < N_{\text{max}}$. For $N > N_{\text{max}}$, it bifurcates into either the annular phase wave state or the splintered phase wave state, which we discuss next.

**B. Annular phase waves**

When $N > N_{\text{max}}$ and $K = 0$ the swarmalators form an annular distribution where their spatial angle is perfectly constant, which we refer to it as the “annular phase wave.” To distinguish this state from the ring phase waves of the previous section, we here refer to it as the “annular phase wave.”

We explicitly solve for the density of the annular phase wave in the continuum limit $N \to \infty$. Let $\rho(x, \theta, t)$ denote the density of swarmalators, where $\rho(x, \theta, t)dx \, d\theta$ gives the fraction of swarmalators with positions between $x$ and $x + dx$ and phases between $\theta$ and $\theta + d\theta$ at time $t$. We then use the following Ansatz:

$$
\rho(r, \phi, \theta, t) = \frac{1}{2\pi} g(r) \delta(\phi - \theta), \quad R_1 \leq r \leq R_2
$$

where $(r, \phi)$ are polar coordinates and $g(r)$, $R_1$, $R_2$ are unknown. In Appendix B we solve for $g(r)$ by substituting (15) into the continuity equation and deriving an integral equation for $g(r)$. We then reduce this integral equation to a second order ordinary differential equation (ODE), whose solution is

$$
g(r) = C_1 r^{-\sqrt{J_2}} + C_2 r^{\sqrt{J_2}} + \frac{6}{3 - 4J_2},
$$

where $C_1$, $C_2$ are complicated expressions involving $R_1$, $R_2$, $J_1$, $J_2$, given by Eqs. (B20) and (B21). Note this is valid for $J_2 \neq \frac{3}{4}$. At this parameter value, $g(r)$ takes a different functional form, which we display and discuss in Appendix B.

We also derive implicit equations for the inner and outer radii $R_1$, $R_2$ in terms of $J_1$, $J_2$:

$$
h_1(R_1, R_2, J_1, J_2) = 0,
$$

$$
h_2(R_1, R_2, J_1, J_2) = 0,
$$

where $h_1$, $h_2$ are complicated expressions given by Eqs. (B26) and (B27). We solved these using Mathematica. The results are shown in Figs. 3(b) and 3(c), which agree well with numerics.

Notice in Fig. 3 that $R_1 \to R_2$ as $J_2 \to 1$ in panel (b) and $J_2 \to 1$ in panel (c), indicating the morphing of the annular phase wave into the ring phase wave state. We analytically confirm $J_{2c} = 2$ by substituting $R_1 = R_2$ into (17). The result is

$$(3 - 4J_2)(-1 + J_2 + \sqrt{1 - J_2})\frac{2}{J_2 - 1} = 0.$$  

From this we see $-1 + J_2 + \sqrt{1 - J_2} = 0$ which gives

$$J_{2c} = 1.$$  

Note (19) is only valid for $J_2 \neq \frac{3}{4}$, a property inherited from the expression for $g(r)$ (see Appendix B). We confirm the $J_{1c}$ value similarly; we substituted $R_1 = R_2 - \delta$ into (18) and took a series expansion for small $\delta$ leading to

$$
(J_1 - 2)(4J_2 + 3)(-J_2 + \sqrt{J_2 + 1} - 1)
\times \left(\frac{J_2 + \sqrt{(J_2 + 1)^2 + 1}}{\delta}\right)^{\frac{2}{J_2 - 1}} = 0
$$

from which we see

$$J_{1c} = 2.$$  

We close by distilling our results. We explicitly solved for the density in the annular phase wave state, and showed it exists in the parameter region $0 < J_1 < 2$, $0 < J_2 < 1$. As the extremal edges of this region are approached, the annulus gets thinner and thinner until the ring phase wave is achieved right at the boundary $J_1 = 2$ or $J_2 = 1$. When $J_1 = 2$, the radius of the ring approaches $\infty$, whereas when $J_1 \to 2^-$
FIG. 4. Bifurcation of an annulus into a splintered phase wave with 12 clusters. Panels show snapshots of the systems at the different (increasing) times. Data were collected by integrating the governing equations (3) and (4) using the Euler method. Swarmalators are illustrated as points in the \((x, y)\) plane, who phase is represented by angle the blue ray makes with the positive \(x\) axis. Top row: parameter values are \(J_1 = 1.5, J_2 = 0, K = -0.05, N = 100\), and reading from left to right, the times of each panel are \(t = 60, 331.6, 1940, 6940, 2, 101830\). Bottom row: \(J_1 = 1.5, J_2 = 0, K = -0.05, N = 100\), and times \(t = 5, 95, 205.2, 9785, 18415\). Note, for smaller values of \(N\), the system takes longer to equilibrate, and the boundaries between clusters become less well defined.

remains finite. Note that we have only proved the existence of the annular phase wave here, and make no claims about its stability. Numerics indicate that it is stable, but a proof is beyond the scope of this work.

C. Splintered phase wave

In the above section we showed that when \(K = 0\) and \(N > N_{\text{max}}\), the ring phase wave bifurcates into the annular phase wave. For \(K < 0\), they bifurcate into a new state called the splintered phase wave, previously reported in [58]. Here, the ring “splinters” into disconnected clusters of distinct phase. Within each cluster, swarmalators “quiver,” executing small cycles in both position and phase about their mean values. We showcase the evolution of this state from the annular phase wave in Fig. 4.

This nonstationary behavior makes analysis difficult, and we were unable to construct the state or determine its stability. We were, however, able to heuristically find an upper bound for the number of clusters that form. We did this by leveraging our analysis for the ring states: we naively pictured each cluster as a single particle, which lets us reimagine the splintered phase wave state as a ring state. We then use our previous analysis to estimate \(N_{\text{max}}\) given by (11). For example, for parameter values used in Fig. 4, \(N_{\text{max}} = 15\), whereas the number of observed clusters is 12 or 13. Simulations at other parameter values have the same behavior.

D. Genericity

So far, our analysis has been for the instance (3), (4) of the model (1), (2). We here check if the phenomena we found are generic to the model, rather than specific to the instance of the model. We do this by exploring the effects of different functional forms for \(I_1, I_2, F, G\). We study three such choices, listed below. In all cases we found the same states enumerated in Fig. 2. We exhaustively show these states for all three choices of interaction function in Fig. 7 in Appendix C:

\[
I_1, I_2, G, H = \frac{x}{|x|^2}, \frac{x}{|x|^4}, \frac{1}{|x|}, \sin \theta, \quad (23)
\]

\[
I_1, I_2, G, H = xe^{-|x|}, \frac{x}{|x|^2}, \frac{1}{|x|}, \sin \theta, \quad (24)
\]

\[
I_1, I_2, G, H = xe^{-|x|}, \frac{x}{|x|^2}, \frac{e^{-|x|}}{|x|}, \sin \theta. \quad (25)
\]

We were also curious if the ring state would persist in the presence of heterogeneity. To this end, we imbued swarmalators with natural frequencies \(\omega_k\) linearly spaced on \([-\omega_0, \omega_0]\) (recall so far we have considered identical swarmalators \(\omega_k = \omega = 0\), the zero value achieved by a change of reference). Simulations show the ring distribution persists, but now the swarmalators split into counter-rotating groups (which follows from the fact that \(\langle \dot{\theta}_i \rangle = \langle \dot{x}_i \rangle = 0\) in our model). That is, individual swarmalators execute circular motion in both space and phase, with the overall density of swarmalators remaining constant. This state is equivalent to the active phase wave reported in [58], with the inner and outer radii of the annular being the same. Figure 5 displays the state in the \((x, y)\) plane. A theoretical understanding of this state is lacking [aside from the trivial result that the radius of the ring is still given by (7)], and is left for future work.

IV. DISCUSSION

We studied the stability of ring states in swarmalator systems with both phase-dependent attraction and phase-dependent repulsion. We analytically computed criteria for their existence and stability, which were valid for all population sizes \(N\). We found that in general (even for \(K\) sufficiently small and negative) ring states are stable for sufficiently small
swarmalators an internal phase, and for swarming particles an orientation or heading) stabilizes structures of low co-dimension (rings or shells). Rigorously justifying this claim is an interesting open problem; perhaps an extension of the techniques used in [70] could prove fruitful.

An apposite future goal would be to find or manufacture the states we studied here in the real world. States similar to the rings and static phase wave have been realized in ferromagnetic colloids confined to liquid-liquid interfaces. So called “asters” consist of annular structures of particles whose magnetic dipole vectors correlate with their spatial angle [71], as happens in the ring and static phase wave states studied here. Ringlike states are also found in groups of Japanese tree frogs, who congregate along edges of paddy fields [10]. The phase distribution is, however, different to that found here; instead, neighboring frogs are perfectly out of phase with each other. Full phase waves are yet to be discovered.

There are also theoretical avenues for future work within our proposed model of swarmalators. For instance, we considered motion in just two spatial dimensions. While there are some physical systems where this type of motion is realized, such as certain active colloids [72] or sperm, which are often attracted to the surface of liquids [73], this was mostly for mathematical convenience. The more realistic case of motion in three spatial dimensions would be interesting to explore. For instance, 3D analogs of the states found in 2D were reported in [58], but their stability was not analyzed. Moreover, finite populations sizes were unexplored. Perhaps the analysis in [42] would be helpful in answering these questions.

Other extensions include adding heterogeneity in the coupling parameters $K$, $J_1$, $J_2$, and the natural frequencies $\omega_k$, or considering delayed or noisy interactions. Less trivial phase dynamics could also be interesting. As we stated, the choice of $H(\theta) = \sin(\theta)$ was inspired by the Kuramoto model [74], but leads to trivial phenomena in the $K > 0$ plane (total synchrony). Perhaps using the more realistic Winfree model [3], which has richer phase dynamics, would lead to more interesting swarmalator phenomena when $K$ is positive.

ACKNOWLEDGMENTS

Research was supported by NSF Grants No. DMS-1513179 and No. CCF-1522054 (K.P.O.) and NSERC Discovery Grant No. RGPIN-33798 and Accelerator Supplement Grant No. RGPAS/461907 (T.K. and J.H.M.E).

APPENDIX A: STABILITY OF RING PHASE WAVE

Here, we develop the stability theory for ring states of the swarmalator model defined in the main text, using techniques similar to those developed in [41,69,75,76]. It is convenient to use complex notation to describe the ring phase wave state. We thus identify the real, two-dimensional vector $x_k = (x_k^{(1)}, x_k^{(2)})$ as a point in the complex plane (so that $x_k^{(1)}$ is real part of the complex number, and $x_k^{(2)}$ is the imaginary part). To remind ourselves that $x_k$ is now a complex number, we drop the bold notation hereafter.
We first consider a more general model of the form
\[ x'_k = \sum_j f(|x_k - x_j|^2)(x_k - x_j) + \sum_j cos(\theta_k - \theta_j)h(|x_k - x_j|^2)(x_k - x_j), \] (A1)
\[ \theta'_k = \sum_j sin(\theta_k - \theta_j)g(|x_k - x_j|^2). \] (A2)

The model defined by Eqs. (3) and (4) then corresponds to the specific choice
\[ f(r) = \frac{1}{r} - 1; \quad h(r) = -\frac{J_2}{r} - J_1, \quad g(r) = -\frac{K}{r}. \] (A3)

The ring phase wave steady state is given by
\[ x_k = Rz^k, \quad z = \exp(2\pi i/N), \quad \theta_k = 2\pi k/N, \]
where \( R \) is the ring radius. This Ansatz satisfies Eq. (A2) for any \( R \) whereas (A1) is satisfied if and only if
\[ \sum_{l\neq 0} f(R^2|1 - z^l|^2)(1 - z^l) + \sum_{l\neq 0} h(R^2|1 - z^l|^2)\cos(2\pi l/N)(1 - z^l) = 0. \] (A4)

which gives an expression for \( R \). For the specific choice (A3), using the identities
\[ \sum_{l\neq 0} \frac{1}{1 - z^l} = \frac{N - 1}{2}, \quad \sum_{l\neq 0} \frac{z^l + z^{-l}}{1 - z^l} = -1, \] (A5)
Eq. (A4) reduces to Eq. (7).

We now consider the perturbations
\[ x_k(t) = Rz^k + u_k(t); \quad \theta_k = 2\pi k/N + v_k(t). \]
Substituting into the governing equations and linearizing gives
\[ u_k' = \sum_j [f'(|x_k - x_j|^2) + \cos(\theta_k - \theta_j)h'(|x_k - x_j|^2)(x_k - x_j)^2(\bar{u}_k - \bar{u}_j)] - J\sin(\theta_k - \theta_j)h(|x_k - x_j|^2)(x_k - x_j)(v_k - v_j) \]
\[ + \sum_j \left[f(|x_k - x_j|^2) + f'(|x_k - x_j|^2)x_k - x_j + \cos(\theta_k - \theta_j)h(|x_k - x_j|^2)x_k - x_j\right](u_k - u_j) \]
\[ + \sum_j \left[g(|x_k - x_j|^2)x_k - x_j + \cos(\theta_k - \theta_j)h(|x_k - x_j|^2)x_k - x_j\right](u_k - u_j) \]
and
\[ v_k' = \sum_j \left[\sin(\theta_k - \theta_j)g(|x_k - x_j|^2)(x_k - x_j)(\bar{u}_k - \bar{u}_j) + (x_k - x_j)(u_k - u_j)\right] + \sum_j \cos(\theta_k - \theta_j)g(|x_k - x_j|^2)(v_k - v_j). \]

Following [41,69,75], we use the self-consistent Ansatz
\[ u_k(t) = A(t)z^{mk} + \bar{B}(t)z^{-mk}, \]
\[ v_k = C(t)z^{mk} + \bar{C}(t)z^{-mk}. \]

After much algebra, and collecting like terms in \( z^{mk} \) and \( z^{-mk} \), we obtain a \( 3 \times 3 \) linear system for each mode \( m \):
\[ \begin{pmatrix} A' \\ B' \\ C' \end{pmatrix} = \begin{pmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix}, \] (A6)
where
\[ M_{11} = \sum_j \left[f(R^2|1 - z^l|^2) + f'(R^2|1 - z^l|^2)R^2|1 - z^l|^2 + \cos(\frac{2\pi l}{N})h(R^2|1 - z^l|^2)\right](1 - z^{m+1}), \]
\[ M_{12} = \sum_j \left[f'(R^2|1 - z^l|^2) + \cos(\frac{2\pi l}{N})h'(R^2|1 - z^l|^2)\right]R^2(1 - z^l)^2(1 - z^{m-1}), \]
\[ M_{13} = \sum_j h(R^2|1 - z^l|^2)\sin(2\pi l/N)R(1 - z^l)(1 - z^{ml}), \]
\[ M_{21} = M_{12}, \]
\[ M_{22} = \sum_j \left[f(R^2|1 - z^l|^2) + f'(R^2|1 - z^l|^2)R^2|1 - z^l|^2 + \cos(\frac{2\pi l}{N})h(R^2|1 - z^l|^2)\right](1 - z^{m+1}), \]
\[ M_{23} = \sum_j \left[\sin(\frac{2\pi l}{N})h(R^2|1 - z^l|^2)R(1 - z^{-l})(1 - z^{m}) \right]. \]
It turns out that the modes and the eigenvalues is given by

\[ M_{31} = \sum \sin(2\pi l/N) g(R^2 \{1 - z_l^2\}) (R(1 - z_l^2)^{(m+1)l}) \],
\[ M_{32} = \sum \sin(2\pi l/N) g(R^2 \{1 - z_l^2\}) (R(1 - z_l^2)^{(m-1)l}) \],
\[ M_{33} = \sum \cos(2\pi l/N) g(R^2 \{1 - z_l^2\}) (1 - z_l^m) , \]

where all sums are over \( l = 1 \ldots N - 1 \). Specializing to \((A3)\), we use the following key identity:

\[ \sum_{i=1}^{N-1} \frac{z_i^{mN}}{(1 - z_i^2)} = \begin{cases} \frac{1}{12} + \frac{1}{2\pi} N^2 - \frac{1}{2} (m - 1 - N/2)^2, & m \in \{1, N - 1\} \\ -\frac{1}{12}(N - 5)(N - 1), & m \equiv 0. \end{cases} \]

The expressions for \( M \) then become

\[ M = \begin{bmatrix} -N + \frac{J_2}{2} & \frac{(N-3)(1-J_2)}{2R^2} & 0 \\ \frac{(N-3)(1-J_2)}{2R^2} & N^2 J_1 - N & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad m = 0 \]
\[ M = \begin{bmatrix} -N & \frac{(N-4)(1-J_2)}{2R^2} & i\frac{N}{2}(2RJ_1 + J_2) \\ \frac{(N-4)(1-J_2)}{2R^2} & 0 & 0 \\ -i(N-2)K & 0 & \frac{K}{2R^2} \end{bmatrix}, \quad m = 1 \]
\[ M = \begin{bmatrix} -N & \frac{3(N-5)(1-J_2)}{2R^2} & i\frac{N}{2}(RJ_1 + J_2) \\ \frac{3(N-5)(1-J_2)}{2R^2} & N^2 J_1 - N & -i\frac{N}{2}(2RJ_1 + J_2) \\ -iK \frac{(N-3)}{2R^2} & iK \frac{(N-2)}{2R^2} & -\frac{K}{2R^2}(N-4) \end{bmatrix}, \quad m = 2. \]

For \( m \in \{2, N - 2\} \), we have

\[ M = \begin{bmatrix} -N & \frac{(m-1)(-m+N-1)(-J_2+1)}{2R^2} & i\frac{N}{2}(RJ_1 + J_2) \\ \frac{(m-1)(-m+N-1)(-J_2+1)}{2R^2} & -N & -i\frac{N}{2}(RJ_1 + J_2) \\ -K \frac{i}{2R^2}(N - m - 1)m & K \frac{i}{2R^2}(m - 1)(N - m) & -\frac{K}{2R^2}(N(m-1) - m^2) \end{bmatrix}. \]

while the other two are roots of the quadratic

\[ K[f(a-b) + c(d-e)] + \lambda(b-a - Kf) + \lambda^2 = 0. \]

(A10)

We remind the reader that these expressions are for \( m \in \{2, N - 2\} \). This requires \( N > 4 \). Thus, the following analysis holds only when this condition is met.

From the expressions of the eigenvalues we deduce the instabilities that can occur. There are three types: either \( \lambda > 0 \) crosses through zero, \( \lambda < 0 \) crosses through zero, or \( \lambda = 0 \) exhibits a Hopf bifurcation. These three possibilities correspond to \( a + b = 0 \), \( K[f(a-b) + c(d-e)] = 0 \), and \( b - a - Kf = 0 \) with \( K[f(a-b) + c(d-e)] < 0 \), respectively.

Further analysis shows that the ring is unstable with respect to mode \( m = 2 \) whenever \( K > 0 \), regardless of the values of \( J_1, J_2 \). Hence, we ignore this boring part of parameter space and consider only the region \( K \leq 0 \). It turns out that the most unstable mode corresponds to the highest mode \( m = \lfloor N/2 \rfloor \).

With this choice of \( m \), let \( J_{1a} \) be the value of \( J_1 \) such that \( a + b = 0 \), and let \( J_{1b} \) be the value \( J_1 \) such that \( f(a-b) + c(d-e) = 0 \). Finally, let \( K_{\text{Hopf}} \) be the value of \( K \) for which \( b - a - Kf = 0 \). These values are given by \( (8), (9) \), and \( (10) \) in the main text, respectively. Further analysis shows that
$J_{1a} < J_{1b}$. (Note the swarmalators execute oscillations in both space and phase after the Hopf bifurcation.)

The stability diagram is illustrated in Fig. 2. Suppose that $K \leq 0$. Then, for $J_1$ below $J_{1a}$, the ring is unstable with respect to spatial perturbation. For $J_{1a} < J_1 < J_{1b}$, the ring is unstable with respect to a mixture of spatial and phase perturbations, when $K < 0$, but is stable when $K = 0$. Finally, the ring is fully stable if $J_{1b} < J_1$ as long as $K_{\text{Hopf}} < K < 0$. This stability region is indicated in green in Fig. 2.

APPENDIX B: DENSITY OF ANNULAR PHASE WAVE STATE

The density of swarmalaters in the annular phase wave state (best expressed in polar coordinates) is given by

$$\rho(r, \phi, \theta) = \frac{1}{2\pi} g(r) (\delta(\phi - \theta) , \quad R_1 \leq r \leq R_2 \quad (B1)$$

$$= 0, \quad \text{elsewhere} \quad (B2)$$

where $r_k$, $\phi_k$ is the radial position and spatial angle of the $k$th swarmalator, and $g(r)$, $R_1$, $R_2$ are unknowns to be solved for. We first solve for $g(r)$, which in turn lets us solve for $R_1$, $R_2$.

1. Find radial density $g(r)$

Swarmalators are stationary (in both space and phase) in the annular phase wave state:

$$\mathbf{v} = 0, \quad (B3)$$

where we have introduced the “underline” notation $\mathbf{v} = (\mathbf{v}_r, \mathbf{v}_\phi)$ (so that $\mathbf{v} \in \mathbb{R}^2$, $\mathbf{v}_r \in \mathbb{R}^2$, and $\mathbf{v}_\phi \in \mathbb{R}$). By applying the divergence operator to (B3) we generate another equation

$$\nabla \cdot \mathbf{v} = 0, \quad (B4)$$

Equations (B3) and (B4) let us solve for $g(r)$, as we will now show.

Zero divergence condition. We first investigate Eq. (B4). In polar coordinates the continuum expressions for the velocity $\mathbf{v}$ are

$$v_r = \int (s \cos(\phi' - \phi) - r)(1 + J_1 \cos(\theta' - \theta)$$

$$- \frac{1 - J_2 \cos(\theta' - \theta)}{s^2 - 2rs \cos(\theta' - \theta) + r^2} \rho(s, \phi', \theta')ds d\phi' d\theta',$$

$$v_\phi = \int s \sin(\phi' - \phi)(1 + J_1 \cos(\theta' - \theta)$$

$$- \frac{1 - J_2 \cos(\theta' - \theta)}{s^2 - 2rs \cos(\theta' - \theta) + r^2} \rho(s, \phi', \theta')ds d\phi' d\theta',$$

$$v_\theta = K \int \frac{\sin(\theta' - \theta)}{s^2 - 2rs \cos(\phi' - \phi) + r^2} \rho(s, \phi', \theta')ds d\phi' d\theta',$$

where $v_\theta = r \cdot \mathbf{\theta}$. Substituting the Ansatz (B1) for the density $\rho$ into the velocity fields above leads to $v_\phi = v_\theta = 0$. The radial component becomes

$$v_r = \frac{1}{2\pi} \int_{R_1}^{R_2} \int_{-\pi}^{\pi} (s \cos \beta - r) g(r) s ds d\beta$$

$$- \frac{1}{2\pi} \int_{R_1}^{R_2} \int_{-\pi}^{\pi} \cos \beta - r \cos \theta g(s) s ds d\beta$$

$$+ \frac{J_1}{2\pi} \int_{R_1}^{R_2} \int_{-\pi}^{\pi} \cos^2 \beta - r \cos \theta g(s) s ds d\beta$$

$$+ \frac{J_2}{2\pi} \int_{R_1}^{R_2} \int_{-\pi}^{\pi} \cos^2 \beta - r \cos \theta g(s) s ds d\beta. \quad (B8)$$

where $\beta = \phi' - \phi$. Evaluating the first and third integrals is elementary, while the second and fourth can be computed using Poisson’s formula

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\cos m \theta}{s^2 - 2rs \cos \theta + r^2} ds d\theta = \left\{ \begin{array}{ll}
\left(\frac{s}{s}\right)^m \frac{1}{s^2} & \text{if } r < s,
\left(\frac{s}{s}\right)^m \frac{1}{s^2} & \text{if } r > s.
\end{array} \right.$$

The result is

$$v_r = -r \int_{R_1}^{R_2} g(s) s ds + \frac{1}{r} \int_{s_0}^{s_2} g(s) s ds + \frac{J_1}{2} \int_{R_1}^{R_2} s^2 g(s) ds$$

$$+ \frac{J_2}{2} \int_{s_0}^{s_2} g(s) s ds. \quad (B9)$$

In polar coordinates the divergence is

$$\nabla \cdot v = \frac{1}{r} \frac{\partial}{\partial r} (rv_r) + \frac{1}{r} \frac{\partial}{\partial \phi} (v_\phi) + \frac{\partial}{\partial \theta} (v_\theta).$$

(B11)

Since $v_\phi = v_\theta = 0$ this reduces to

$$\nabla \cdot v = \frac{1}{r} \frac{\partial}{\partial r} (rv_r). \quad (B12)$$

Substituting $v_r$ as per (B10) into the above expression and applying the derivative operator gives

$$\nabla \cdot v = \frac{1}{r} \left(-2r \int_{R_1}^{R_2} g(s) s ds + r g(r)(1 - J_2)\right)$$

$$\frac{J_1}{2} \int_{s_0}^{s_2} s^2 g(s) ds + \frac{J_2}{2} \int_{s_0}^{s_2} g(s) s^2 ds$$

$$\frac{J_2}{2r^2} \int_{s_0}^{s_2} s^2 g(s) ds. \quad (B13)$$

Setting this to zero, as required by (B4), and rearranging, leads to the following integral equation for $g(r)$:

$$g(r) = \frac{1}{1 - J_2} \left(2 - \frac{J_1}{2r} \int_{R_1}^{R_2} s^2 g(s) ds - \frac{J_2}{2r} \int_{R_1}^{R_2} g(s) ds \right.$$

$$- \frac{J_2}{r^3} \int_{R_1}^{R_2} s^3 g(s) ds). \quad (B14)$$

Solve integral equation. We solve the above integral equation for $g(r)$ by reducing it to an ODE. Multiplying both sides
Panel (a) shows values $J_0$ using expression (B18). The red solid line is for $J_0$ by RING STATES IN SWARMALATOR SYSTEMS PHYSICAL REVIEW E 98 only constants in front of the integrals. Taking the derivative is that the third term in the ODE (B17) for $J_2$ looks at the third term in Eq. (B18), we see the value $J_2 = 0.745, 0.755$, which hug the curve at $J_2 = 0.75$. In panel (b) we use a tighter neighborhood with extremal values $0.749, 0.751$, which produces a tighter ‘hugging’. These results indicate that there is no change in the behavior of $g(r)$ at the value $J_2 = 0.75$.

by $r^3$ and taking a derivative with respect to $r$ gives

$$3r^2 g(r) + r^3 g'(r) = \frac{1}{1 - J_2} \left[ 6r^2 - J_2 r \int_r^\infty g(s) ds \right] + J_1 \int_{R_1}^{R_2} s^2 g(s) ds$$

(B15)

We next divide by $r$ to give

$$3r g(r) + r^2 g'(r) = \frac{1}{1 - J_2} \left[ 6r - J_2 \int_r^\infty g(s) ds \right] + J_1 \int_{R_1}^{R_2} s^2 g(s) ds$$

(B16)

since this expression is easier to differentiate, as there then are only constants in front of the integrals. Taking the derivative then leads the following simple, second order ODE for $g(r)$:

$$r^2 g''(r) + 5r g'(r) + \left( 3 - \frac{J_2}{1 - J_2} \right) g(r) - \frac{6}{1 - J_2} = 0.$$  

(B17)

The solution to this equation is

$$g(r) = C_1 r^{-\sqrt{\frac{J_2}{1-J_2}}^2} + C_2 r^{\sqrt{\frac{J_2}{1-J_2}}^2} + \frac{6}{3 - 4J_2}.$$  

(B18)

We find the constants of integration $C_1, C_2$ by substituting this back into the integral equation (B14), which gives

$$\frac{A}{r} + \frac{B}{r^3} = 0.$$  

(B19)

where $A, B$ are complex functions of $C_1, C_2, R_1, R_2, J_1, J_2$ that must be identically 0. Enforcing this constraint leads to the following complicated expressions for $C_1, C_2$:

$$C_1 = -\frac{2r_i \sqrt{\frac{J_2}{1-J_2}}^2 R_i^2 R_2^2}{R_i^2 R_2^2 - R_2^2 \left[ J_1 (\sqrt{1-J_2-1} R_i^2 R_2^2 - R_2^2 R_i^2) + J_2 (\sqrt{(1-J_2-1) R_i^2 R_2^2 + (1-J_2+1) R_2^2 R_i^2}) \right]}$$

$$C_2 = -\frac{2r_i \sqrt{\frac{J_2}{1-J_2}}^2 R_i^2 R_2^2}{R_i^2 R_2^2 - R_2^2 \left[ J_1 (\sqrt{1-J_2-1} R_i^2 R_2^2 + R_2^2 R_i^2) + J_2 (\sqrt{1-J_2+1} R_i^2 R_2^2) \right]}.$$  

(B20)

(B21)

Looking at the third term in Eq. (B18), we see the value $J_2 = \frac{3}{4}$ is problematic. Why is this value distinguished? The reason is that the third term in the ODE (B17) for $g(r)$ becomes zero at this value of $J_2$. In this case, $g(r), C_1, C_2$ are given by

$$g(r) = -\frac{C_1}{4r^3} + C_2 + 6 \ln r, \quad J_2 = \frac{3}{4}.$$  

(B22)

$$C_1 = \frac{8R_i^2 R_2^2 (4J_1 R_2^2 + 9) \ln R_1 - (4J_1 R_2^2 + 9) \ln R_2 + 6}{-4J_1 R_2^2 + 4J_1 R_i^2 R_2^2 - 9R_2^2 + R_i^2}$$

(B23)

$$C_2 = \frac{2(-4J_1 R_2^2 + 4J_1 R_i^2 R_2^2 + 3R_2^2 (4J_1 R_2^2 + 9) \ln R_2 - 3R_2^2 (4J_1 R_2^2 + 1) \ln R_1 - 27R_2^2 + R_i^2)}{-4J_1 R_2^2 + 4J_1 R_i^2 R_2^2 - 9R_2^2 + R_i^2}.$$  

(B24)

The difference between the expressions (B18) and (B22) for $g(r)$ are superficial. By this we mean there is no change in the physical behavior of the swarmlator system as $J_2$ passes through $\frac{3}{4}$. We demonstrate this two ways. The first way is by observing that $R_1, R_2$ vary smoothly with respect to $J_2$ as drawn in Fig. 3; no change in behavior occurs at $J_2 = \frac{3}{4}$. The
FIG. 7. States found with difference choices of the functions (23), (24), and (25). Simulations for all plots were for $N = 15$ swarmalators, and the Euler method with a step size of $dt = 0.01$ and $N_t = 5 \times 10^5$ number of time steps was used. The top row is for choice (23), the second for choice (24), and the third for choice (25). The ring state, corresponding to subfigure B in the stability diagram in Fig. 2, is shown in the first column. Reading from top to bottom, the parameter values were $(J_1, J_2, K) = (2.7, 0, -0.001), (1, 0, 0, -0.01), (1.5, 0, -0.001)$. The fattened ring state, corresponding to subfigure E in Fig. 2, is shown in the second column. Parameter values were $(J_1, J_2, K) = (1.5, 0, -0.001), (0.2, 0, 0, -0.01), (0.8, 0, -0.001)$. The column shows the nonstationary state depicted in subfigure G in Fig. 2. Parameter values were $(J_1, J_2, K) = (1.5, 0, -5), (0.2, 0, 0, -2), (0.8, 0, 5)$. Note, in this last column, the swarmalators move around erratically in both space and phase.

second way is by plotting $g(r)$ at the values for values of $J_2$ is the neighborhood of $\frac{3}{4}$ in Fig. 6. As can be seen $g(r)$ varies smooth as $J_2$ is varied through $\frac{3}{4}$. Hence, the value of $J_2 = \frac{3}{4}$ has no physical significance.

2. Inner and outer radii

So far we have solved for $g(r)$ using the zero divergence condition (B4). The zero velocity condition (B3) must also be satisfied. We here check the condition $v_r = 0$, and show that along with mass conservation $\int \rho(x, \theta) dx d\theta = 1$, it also lets us determine the inner and outer radii $R_1, R_2$.

Zero velocity condition. Substituting the expression (B18) for $g(r)$ into Eq. (B10) for $v_r$ leads to

$$v_r = \frac{h_1(R_1, R_2, J_1, J_2)}{r}.$$
where \( h_1 \) is given by

\[
\begin{align*}
    h_1 &= \left[ 2J_2^2(\sqrt{J_2+1}+3R_2^2-6) + J_2\left( R_2^3 \left[ J_1(4\sqrt{J_2+1}-2R_2^2-4) - 15\sqrt{J_2+1} + 21 \right] + 19\sqrt{J_2+1} - 25 \right) \\
    &+ (\sqrt{J_2+1} - 1)(J_1R_2^2 + 3(J_1-4)R_2^2 + 12)) \right] R_1^{\frac{3}{2\sqrt{2}}(1)} + 4(J_2 - \sqrt{J_2+1} + 1)R_2^{\frac{3}{2\sqrt{2}}(1)} (J_1R_2^2 + J_2)R_1^{\frac{3}{2\sqrt{2}}(1)} + 2 \\
    &+ J_2(-2J_1R_2^2 + 7\sqrt{J_2+1} - 13) + 3(\sqrt{J_2+1} - 1)(J_1R_2^2 + 4) - 2J_2^2 R_1^{\frac{3}{2\sqrt{2}}(1)} + 4(-J_2 + \sqrt{J_2+1} - 1)R_2^{\frac{3}{2\sqrt{2}}(1)} + 2 \\
    &\times (3J_2 - J_1R_2^2)R_1^{\frac{3}{2\sqrt{2}}(1)} - R_2^{\frac{3}{2\sqrt{2}}(12)} \left[ J_2(2J_1R_2^2 + 3\sqrt{J_2+1} + 3) - J_1(\sqrt{J_2+1} - 1)R_2^2 + 2J_2^2 \right] \\
    &- R_2^{\frac{3}{2\sqrt{2}}(12)} \left[ J_2^2(4\sqrt{J_2+1} - 6R_2^2 + 4) + J_2\left[ R_2^3 \left[ 2J_1(2\sqrt{J_2+1} + R_2^2 - 2) - 3(\sqrt{J_2+1} + 1) \right] + 3(\sqrt{J_2+1} + 1) \right] \\
    &- 3J_2(\sqrt{J_2+1} - 1)R_2^2(R_2^2 - 1) \right].
\end{align*}
\]

We require \( v_r = 0 \) for all \( r \), which implies \( h_1(R_1, R_2, J_1, J_2) = 0 \).

Mass conservation. The density Ansatz (B1) must also be normalized: \( \int \rho(x, \theta)dx \, d\theta = 1 \). This leads to a second equation \( h_2(R_1, R_2, J_1, J_2) = 0 \) where

\[
\begin{align*}
    h_2 &= - \left[ J_2(2J_1R_2^2 + 3\sqrt{J_2+1} + 3) - J_1(\sqrt{J_2+1} - 1)R_2^2 + 2J_2^2 \right] R_1^{\frac{3}{2\sqrt{2}}(1)} - R_2^{\frac{3}{2\sqrt{2}}(12)} \\
    &+ 4(-J_2 + \sqrt{J_2+1} - 1)R_2^{\frac{3}{2\sqrt{2}}(12)} (3J_2 - J_1R_2^2)R_2^{\frac{3}{2\sqrt{2}}(12)} + 2 \\
    &+ J_2(-2J_1R_2^2 + 7\sqrt{J_2+1} - 13) + 3(\sqrt{J_2+1} - 1)(J_1R_2^2 + 4) - 2J_2^2 R_1^{\frac{3}{2\sqrt{2}}(12)} + 4(-J_2 + \sqrt{J_2+1} - 1)R_2^{\frac{3}{2\sqrt{2}}(12)} + 2 \\
    &\times (3J_2 - J_1R_2^2)R_1^{\frac{3}{2\sqrt{2}}(12)} - R_2^{\frac{3}{2\sqrt{2}}(12)} \left[ J_2(2J_1R_2^2 + 3\sqrt{J_2+1} + 3) - J_1(\sqrt{J_2+1} - 1)R_2^2 + 2J_2^2 \right] R_1^{\frac{3}{2\sqrt{2}}(12)} + 2 \\
    &- 3J_2(\sqrt{J_2+1} - 1)R_2^2(R_2^2 - 1) \right].
\end{align*}
\]

Thus, we have derived the following set of simultaneous equations whose roots determine \( R_1, R_2 \) in terms of the parameters \( J_1 \) and \( J_2 \):

\[
\begin{align*}
    h_1(R_1, R_2, J_1, J_2) &= 0, \quad \text{(B28)} \\
    h_2(R_1, R_2, J_1, J_2) &= 0. \quad \text{(B29)}
\end{align*}
\]

APPENDIX C: GENERICITY

In Fig. 7 we show the states shown in Fig. 2 found when different functional forms [enumerated by (23), (24), (25)] are chosen for \( I_1, I_2, F, G \) (see Sec. III D). As can be seen, all states are recovered.