Elliptic Flow of Charm and Strange Hadrons in High-Multiplicity

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.121.082301</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Apr 06 05:39:36 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/118802</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Elliptic Flow of Charm and Strange Hadrons in High-Multiplicity \(p + \text{Pb} \) Collisions at \(\sqrt{s_{\text{NN}}} = 8.16 \) TeV

A. M. Sirunyan et al.\(^{\ast} \)
(CMS Collaboration)

(Received 25 April 2018; revised manuscript received 22 July 2018; published 21 August 2018)

The elliptic azimuthal anisotropy coefficient \((v_2) \) is measured for charm \((D^0)\) and strange \((K^0_S, \Lambda, \Xi^-, \text{and} \Omega^-)\) hadrons, using a data sample of \(p + \text{Pb} \) collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy of \(\sqrt{s_{\text{NN}}} = 8.16 \) TeV. A significant positive \(v_2 \) signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity \(p + \text{Pb} \) collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller \(v_2 \) than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger \(\text{PbPb} \) collision system at \(\sqrt{s_{\text{NN}}} = 5.02 \) TeV, also presented.

DOI: 10.1103/PhysRevLett.121.082301

There has been long-standing interest in the space-time evolution of the multiparticle production process in high energy collisions of hadrons [1]. The observation of strong collective flow, as inferred from the correlations in azimuthal angle \((\phi)\) of particles emitted over a wide pseudorapidity \((\eta)\) range in relativistic nucleus-nucleus (AA) collisions, has been one of the key signatures suggesting the formation of a strongly interacting quark–gluon plasma (QGP) between the initial impact of the colliding nuclei and final production of particles. As observed first at the Brookhaven National Laboratory (BNL) Relativistic Heavy Ion Collider (RHIC) [2,2–5] and later at the CERN Large Hadron Collider (LHC) [6–11], the QGP exhibits nearly ideal hydrodynamical behavior [12–14]. In recent years, the observation of similar correlations in events with high final-state particle multiplicity resulting from proton-proton \((pp)\) [15–17] and proton-lead \((p + \text{Pb})\) [18–21] collisions at the LHC has raised the question whether a fluidlike QGP is also created in these smaller collision systems [22].

The azimuthal correlation structure of emitted particles is typically characterized by its Fourier components [23]. In hydrodynamic models, the second and third Fourier components, known as elliptic \((v_2)\) and triangular \((v_3)\) flow, respectively, most directly reflect the QGP response to the initial collision geometry and its fluctuations [24–26]. The properties of the long-range correlation associated with light-flavor and strange hadrons in small systems are found to be similar to those observed in AA collisions. This includes, e.g., the particle species dependence [27–29] and multiparticle (or collective) nature [29–32] of the long-range correlation. More recently, such long-range correlations have also been observed in lighter systems at RHIC, including \(d\text{Au} \) [33–35] and \(^3\text{HeAu} \) [36]. While these measurements are consistent with a hydrodynamic expansion, alternative scenarios based on gluon saturation in the initial state also claim to capture the main features of the correlation data (recent reviews are provided in Refs. [37,38]).

The large masses of heavy quarks (charm and bottom) lead to their being produced in the early stages of the collision, and they thus probe the properties of the QGP through their interactions with the medium [39]. The elliptic flow results for \(D \) mesons in AA collisions measured at RHIC [40] and the LHC [41–43] suggest that charm quarks develop strong collective behavior, similar to the bulk production of light flavor particles from the QGP. In small systems, long-range correlation involving inclusive muons and \(J/\psi \) mesons have revealed hints of heavy flavor quark collectivity [44,45]. Observation of \(D \) meson \(v_2 \) in the \(p + \text{Pb} \) system, and especially the comparison to the light-flavor and strange particle \(v_2 \), can impose further constraints on different interpretations related to the origin of the observed long-range collectivity. In particular, such measurements can provide key insights into properties of heavy quark interaction and thermalization within a hot QGP medium possibly formed at a significantly reduced system size.

This Letter presents the first measurements of the elliptic anisotropies of prompt \(D^0 \) mesons and strange hadrons \((K^0_S, \Lambda, \Xi^-, \text{and} \Omega^-)\) in \(p + \text{Pb} \) collisions at a nucleon-nucleon center-of-mass energy of \(\sqrt{s_{\text{NN}}} = 8.16 \) TeV. In all cases, particles and antiparticles are combined in the

\(^{\ast}\)Full author list given at the end of the Letter.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP\(^3\).

DOI: 10.1103/PhysRevLett.121.082301
the relevant kinematic variables, can be found in Ref. [47].

A detailed description of the CMS detector, together with a definition of the coordinate system used and parameter [46]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward calorimeters cover the range $2.9 < |\eta| < 5.2$. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. The silicon tracker measures charged particles within the range $|\eta| < 2.5$. For charged particles with $1 < p_T < 10$ GeV and $|\eta| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [46]. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [47].

The $p+\text{Pb}$ data at $\sqrt{s_{\text{NN}}} = 8.16$ TeV used in this analysis were collected by the CMS experiment in 2016, and correspond to an integrated luminosity of 186 nb$^{-1}$. The beam energies are 6.5 TeV for the protons and 2.56 TeV per nucleon for the lead nuclei. Because of the asymmetric beam conditions, particles selected in this Letter from midrapidity in the laboratory frame ($|y_{\text{lab}}| < 1$) correspond to rapidity in the nucleon–nucleon center-of-mass frame of $-1.46 < y_{\text{cm}} < 0.54$, with positive rapidity corresponding to the proton beam direction. The event reconstruction, event selections, and triggers are identical to those described in Refs. [48,49]. A subset of PbPb data at $\sqrt{s_{\text{NN}}} = 5.02$ TeV for 30%–50% centrality were also used and reprocessed using the same reconstruction algorithm as the $p+\text{Pb}$ data.

The $p+\text{Pb}$ data are analyzed for multiplicity ranges of $N_{\text{trk}}^{\text{offline}} < 35$ and $185 \leq N_{\text{trk}}^{\text{offline}} < 250$, where $N_{\text{trk}}^{\text{offline}}$ is the number of primary tracks [46] with $|\eta| < 2.4$ and $p_T > 0.4$ GeV. Events in the multiplicity region of $N_{\text{trk}}^{\text{offline}} > 250$ is not included to avoid effects of multiple interactions in a single event (pileup). Several topological selections are applied to further reduce the combinatorial background. In particular, strange hadron and D^0 candidates are selected according to the χ^2 probability of their decay vertex, the three-dimensional distance (normalized by its uncertainty) between the primary and decay vertices, and the pointing angle (defined as the angle between the line segment connecting the primary and decay vertices and the momentum vector of the reconstructed particle candidates in the plane transverse to the beam direction). The selection is optimized in each p_T bin, separately for different particle species, in order to maximize the statistical significance of the signal. For Ξ^- and Ω^- reconstruction, these selections are applied to both the initial decay vertex and the subsequent decay vertex of Λ.

In the case of the D^0 measurement, the selections on the pointing angle also suppress the fraction of nonprompt D^0 production (from decays of b hadrons). Simulated event samples of PYTHIA 8.209 [52,53] D^0 signal events, embedded into EPOS LHC [54] minimum bias $p+\text{Pb}$ events, are used to estimate the nonprompt D^0 contamination in data. By fitting the distributions of distance of closest approach of D^0 total momentum vector to the primary vertex, using the probability distribution functions (pdf) for prompt and nonprompt D^0 derived from simulation, the residual nonprompt fraction is found to be decreasing with p_T from 7% to 1%.

The azimuthal anisotropies of D^0 mesons and strange hadrons are extracted from their long-range ($|\Delta\eta| > 1$)
two-particle azimuthal correlations with charged particles, as described in Refs. [28,29]. Taking the D^0 meson as an example, the two-dimensional (2D) correlation function is constructed by pairing each D^0 candidate with reference primary charged-particle tracks with $0.3 < p_T < 3.0$ GeV (denoted “ref” particles), and calculating

$$\frac{1}{N_{D^0}} \frac{d^2N_{\text{pair}}}{d\Delta \eta d\Delta \phi} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} , \tag{1}$$

where $\Delta \eta$ and $\Delta \phi$ are the differences in η and ϕ of each pair. The same-event pair distribution, $S(\Delta \eta, \Delta \phi)$, represents the yield of particle pairs normalized by the number of D^0 candidates from the same event. The mixed-event pair yield distribution, $B(\Delta \eta, \Delta \phi)$, is constructed by pairing D^0 candidates in each event with the reference primary charged-particle tracks from 20 different randomly selected events, from the same $N_{\text{trk}}^\text{offline}$ range, and with a primary vertex falling in the same 2 cm wide range of reconstructed z coordinate. The analysis procedure is performed in each D^0 candidate p_T range by dividing it into intervals of invariant mass. The correction for acceptance and efficiency (derived from PYTHIA+EPOS simulations) of the D^0 meson yield is found to have negligible effect on the measurements, and thus is not applied. The $\Delta \phi$ correlation functions averaged over $|\Delta \eta| > 1$ (to remove short-range correlations such as jet fragmentation) is then obtained from the projection of 2D distributions and fitted by the first three terms of a Fourier series (including additional terms has a negligible effect):

$$\frac{1}{N_{D^0}} \frac{dN_{\text{pair}}}{d\Delta \phi} = \frac{N_{\text{assoc}}}{2\pi} \left(1 + \sum_{n=1}^{3} 2V_n \Delta \cos(n \Delta \phi) \right). \tag{2}$$

Here, $V_n \Delta$ are the Fourier coefficients and N_{assoc} represents the total number of pairs per D^0 candidate. By assuming $V_n \Delta$ to be the product of single-particle anisotropies [55], $V_n \Delta(D^0, \text{ref}) = v_n(D^0) v_n(\text{ref})$, the v_n anisotropy harmonics for D^0 candidates can be extracted as a function of invariant mass, $v_n(D^0) = V_n \Delta(D^0, \text{ref}) / \sqrt{V_{n\Delta}(\text{ref})}$. Because of the limited amount of available data, only the elliptic anisotropy harmonic is measured. The residual contribution of back-to-back dijets to the measured v_2 results is corrected by subtracting correlations from low-multiplicity $p + Pb$ events, following an identical procedure established in Refs. [29,55]. The Fourier coefficients, $V_n \Delta$, extracted from events with $N_{\text{trk}}^\text{offline} < 35$ are subtracted from those extracted from events with $185 \leq N_{\text{trk}}^\text{offline} < 250$ after accounting for the jet yield ratio of the selected events. The subtraction is not performed for PbPb results as the back-to-back jet correlations are found to be negligible in events with centrality between 30% and 50% [49].

To extract the v_2 values of the D^0 meson signal (v_2^S), a simultaneous fit to the invariant mass spectrum of D^0 candidates and their v_2 as a function of the invariant mass, $v_2^{S+B}(m_{\text{inv}})$, is performed in each p_T interval. The mass spectrum fit function is composed of three components: the sum of two Gaussian functions with the same mean but different widths for the D^0 signal, $S(m_{\text{inv}})$, an additional Gaussian function to describe the invariant mass shape of D^0 candidates with an incorrect mass assignment from the exchange of the pion and kaon designations, $SW(m_{\text{inv}})$, and a third-order polynomial to model the combinatorial background, $B(m_{\text{inv}})$. The width of $SW(m_{\text{inv}})$ and the ratio of the yields of $SW(m_{\text{inv}})$ and $S(m_{\text{inv}})$ are fixed according to results obtained from PYTHIA+EPOS simulation studies. The $v_2^{S+B}(m_{\text{inv}})$ distribution is fitted with

$$v_2^{S+B}(m_{\text{inv}}) = \alpha(m_{\text{inv}}) v_2^S + [1 - \alpha(m_{\text{inv}})] v_2^B(m_{\text{inv}}), \tag{3}$$

where

$$\alpha(m_{\text{inv}}) = \frac{S(m_{\text{inv}}) + SW(m_{\text{inv}})}{S(m_{\text{inv}}) + SW(m_{\text{inv}}) + B(m_{\text{inv}})} . \tag{4}$$

Here $v_2^B(m_{\text{inv}})$ for the background D^0 candidates is modeled as a linear function of the invariant mass, and $\alpha(m_{\text{inv}})$ is the D^0 signal fraction. The K-π swapped component is included in the signal fraction because these candidates are from genuine D^0 mesons and should have the same v_2 value as that of the nonswapped D^0 signal. Figure 1 shows an example of a simultaneous fit to the mass spectrum and $v_2^{S+B}(m_{\text{inv}})$ in the p_T interval 4.2–5.0 GeV for the multiplicity range $185 \leq N_{\text{trk}}^\text{offline} < 250$ in $p + Pb$
collisions. The v_2 values for the strange hadrons are extracted in the same way although no swapped-mass component is required.

As the residual contribution from nonprompt D^0 mesons is small, no explicit correction is applied and a systematic uncertainty is quoted instead. Based on the prediction for AA collisions that B mesons have a smaller v_2 than light-flavor particles, due to the larger mass of the b quark [56–58], the nonprompt D^0 v_2 values are assumed to lie between 0 and those of strange hadrons. The maximum effect from nonprompt D^0 mesons is thus estimated using the extracted nonprompt D^0 fraction and the change in v_2^S is found to be smaller than 6%.

Other sources of systematic uncertainty in the D^0 v_2 measurement in this analysis include the background mass pdf, the D^0 meson yield correction (acceptance and efficiency correction), selection of the D^0 candidates, and the background v_2 pdf. No systematic effect has been observed while changing the background mass pdf to a second-order polynomial function of the invariant mass. To evaluate the uncertainties arising from the D^0 meson yield correction, the v_2 values are extracted from the corrected signal D^0 distributions and compared to the uncorrected v_2 values, yielding an uncertainty of 2%. The selection criteria for D^0 candidates are also varied to tighter and looser values such that the D^0 signal fraction, $a_0(m_{inv})$, changes by 50% and a systematic uncertainty of 14% is evaluated from the variations of v_2. The systematic uncertainties from the background v_2 pdf (20% for $p_T < 2.4$ GeV and 4% for $p_T > 2.4$ GeV) are evaluated by changing $v_2^B(m_{inv})$ to a second-order polynomial function of the invariant mass and a constant value. Systematic uncertainties from trigger bias and effects of pileup are negligible.

For K_S^0, Λ, and Ξ^- particles, the systematic uncertainties related to selection of reconstructed candidates (2% for K_S^0 and Λ particles and 6% for Ξ^- particles) are evaluated in the same way as for D^0 mesons. To test the procedure of extracting the signal v_2, a study using EPOS LHC [54] $p +$ Pb events is performed and the extracted values are compared to the generator-level values. The agreement is found to be better than 6%. Systematic uncertainties for Ω^- particles are quoted to be the same as those of Ξ^- particles.

Figure 2 shows the results of the v_2 measurement of the prompt D^0 meson with $-1.46 < y_{cm} < 0.54$ for high-multiplicity (185 $\leq N_{\text{offine}} < 250$) $p +$ Pb collisions. The v_2 results for strange hadrons are also shown for comparison. A clear mass ordering in the elliptic flow is observed in the low-p_T region of ≤ 2.5 GeV, where heavier particle species have a smaller v_2 signal at a given p_T value. For $p_T > 2.5$ GeV, v_2 values for Λ, Ξ^-, and Ω^- baryons, which are similar to each other, all become larger than those of D^0 and K_S^0 mesons, a trend which is also observed in 5.02 TeV $p +$ Pb collisions [28].

![Graph showing the elliptic flow (v_2) for D^0 mesons as a function of p_T (GeV) and N_{offline}]
universal scaling of v_2/n_q between mesons and baryons is observed. The behavior is qualitatively different in the larger PbPb collision system with centrality between 30% and 50%. The results for all particle species tend to follow a common trend in the $KE_T/n_q < 1$ GeV region, indicating that D^0 mesons develop a strong collective behavior similar to the bulk of the QGP.

In summary, the first measurements of elliptic azimuthal anisotropies for prompt D^0 mesons, as well as K^0_S, Λ, Ξ^-, Ω^- hadrons, in high-multiplicity $p+Pb$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV are presented. Significant positive v_2 values are observed for D^0 mesons with $p_T > 2$ GeV. Comparing to strange-hadron results, the D^0 v_2 values are found to be smaller at a given p_T, or at similar transverse kinetic energy per constituent quark, after normalizing v_2 by the number of constituent quarks. The latter effect is not observed in the larger PbPb collision system. A possible interpretation is that, in high multiplicity $p+Pb$ collisions, in contrast to larger nucleus-nucleus collision systems, the collective behavior of charm quarks is weaker than that of the light-flavor quarks.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[36] A. Adare et al. (PHENIX), Measurements of Elliptic and Triangular Flow in High-Multiplicity $^3\text{He} + \text{Au} \text{Collisions at } \sqrt{s_{NN}} = 200 \text{ GeV}, \text{Phys. Rev. Lett.} \text{ 115}, \text{142301} (2015).

[40] L. Adamczyk et al. (STAR Collaboration), Measurement of D^0 Azimuthal Anisotropy at Midrapidity in $\text{Au} + \text{Au} \text{Collisions at } \sqrt{s_{NN}} = 200 \text{ GeV}, \text{Phys. Rev. Lett.} \text{118}, 212301 (2017).

[45] ALICE Collaboration, Search for collectivity with azimuthal $1/\sqrt{s}$-hadron correlations in high multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and $8.16 \text{ TeV}, \text{Phys. Lett. B} \text{780}, \text{7} (2018).

- Indian Institute of Science Education and Research (IISER), Pune, India
- Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- University College Dublin, Dublin, Ireland
- INFN Sezione di Bari, Bari, Italy
- Università di Bari, Bari, Italy
- Politecnico di Bari, Bari, Italy
- INFN Sezione di Bologna, Bologna, Italy
- Università di Bologna, Bologna, Italy
- INFN Sezione di Catania, Catania, Italy
- Università di Catania, Catania, Italy
- INFN Sezione di Firenze, Firenze, Italy
- Università di Firenze, Firenze, Italy
- INFN Laboratori Nazionali di Frascati, Frascati, Italy
- INFN Sezione di Genova, Genova, Italy
- Università di Genova, Genova, Italy
- INFN Sezione di Milano-Bicocca, Milano, Italy
- Università di Milano-Bicocca, Milano, Italy
- INFN Sezione di Napoli, Napoli, Italy
- Università di Napoli "Federico II", Napoli, Italy
- Università della Basilicata, Potenza, Italy
- Università G. Marconi, Roma, Italy
- INFN Sezione di Padova, Padova, Italy
- Università di Padova, Padova, Italy
- Università di Trento, Trento, Italy
- INFN Sezione di Pavia, Pavia, Italy
- Università di Pavia
- INFN Sezione di Perugia, Perugia, Italy
- Università di Perugia, Perugia, Italy
- INFN Sezione di Pisa, Pisa, Italy
- Università di Pisa, Pisa, Italy
- Scuola Normale Superiore di Pisa, Pisa, Italy
- INFN Sezione di Roma, Rome, Italy
- Sapienza Università di Roma, Rome, Italy
- INFN Sezione di Torino, Torino, Italy
- Università di Torino, Torino, Italy
- Università del Piemonte Orientale, Novara, Italy
- INFN Sezione di Trieste, Trieste, Italy
- Università di Trieste, Trieste, Italy
- Kyungpook National University, Daegu, Korea
- Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
- Hanyang University, Seoul, Korea
- Korea University, Seoul, Korea
- Sejong University, Seoul, Korea
- Seoul National University, Seoul, Korea
- University of Seoul, Seoul, Korea
- Sungkyunkwan University, Suwon, Korea
- Vilnius University, Vilnius, Lithuania
- National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
- Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
- Universidad Iberoamericana, Mexico City, Mexico
- Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
- Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- University of Auckland, Auckland, New Zealand
- University of Canterbury, Christchurch, New Zealand
- National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
- National Centre for Nuclear Research, Swierk, Poland
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
- Joint Institute for Nuclear Research, Dubna, Russia
- Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
State University of New York at Buffalo, Buffalo, New York 14260, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08542, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA
Purdue University, West Lafayette, Indiana 47907, USA
Purdue University Northwest, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251, USA
University of Rochester, Rochester, New York 14627, USA
Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
University of Tennessee, Knoxville, Tennessee 37996, USA
Texas A&M University, College Station, Texas 77843, USA
Texas Tech University, Lubbock, Texas 79409, USA
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Virginia, Charlottesville, Virginia 22904, USA
Wayne State University, Detroit, Michigan 48202, USA
University of Wisconsin—Madison, Madison, Wisconsin 53706, USA

\(^a\)Deceased.
\(^b\)Also at Vienna University of Technology, Vienna, Austria.
\(^c\)Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
\(^d\)Also at Universidade Estadual de Campinas, Campinas, Brazil.
\(^e\)Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
\(^f\)Also at Université Libre de Bruxelles, Bruxelles, Belgium.
\(^g\)Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
\(^h\)Also at Joint Institute for Nuclear Research, Dubna, Russia.
\(^i\)Also at British University in Egypt, Cairo, Egypt.
\(^j\)Also at Fayoum University, El-Fayoum, Egypt.
\(^k\)Also at Ain Shams University, Cairo, Egypt.
\(^l\)Also at Department of Physics, King Abdullah University, Jeddah, Saudi Arabia.
\(^m\)Also at Université de Haute Alsace, Mulhouse, France.
\(^n\)Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
\(^o\)Also at Tbilisi State University, Tbilisi, Georgia.
\(^p\)Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\(^q\)Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
\(^r\)Also at University of Hamburg, Hamburg, Germany.
\(^s\)Also at Brandenburg University of Technology, Cottbus, Germany.
\(^t\)Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\(^u\)Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
\(^v\)Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
\(^w\)Also at IIT Bhubaneswar, Bhubaneswar, India.
\(^x\)Also at Institute of Physics, Bhubaneswar, India.
\(^y\)Also at Shoolini University, Solan, India.
\(^z\)Also at University of Visva-Bharati, Santiniketan, India.
\(^aa\)Also at Isfahan University of Technology, Isfahan, Iran.
\(^bb\)Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
\(^cc\)Also at Università degli Studi di Siena, Siena, Italy.
\(^dd\)Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
\(^ee\)Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
\(^ff\)Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
\(^gg\)Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
\(^hh\)Also at Institute for Nuclear Research, Moscow, Russia.
\(^ii\)Also at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia.
\(^jj\)Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
\(^kk\)Also at University of Florida, Gainesville, FL, USA.
\(^ll\)Also at P.N. Lebedev Physical Institute, Moscow, Russia.
\(^mm\)Also at INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy.
Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

Also at National and Kapodistrian University of Athens, Athens, Greece.

Also at Riga Technical University.

Also at Universität Zürich, Zurich, Switzerland.

Also at Stefan Meyer Institute for Subatomic Physics.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Istanbul Aydin University, Istanbul, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Piri Reis University, Istanbul, Turkey.

Also at Gaziosmanpasa University, Tokat, Turkey.

Also at Ozyegin University, Istanbul, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Marmara University, Istanbul, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Istanbul Bilgi University, Istanbul, Turkey.

Also at Hacettepe University, Ankara, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.

Also at Monash University, Faculty of Science, Clayton, Australia.

Also at Bethel University.

Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.

Also at Utah Valley University, Orem, USA.

Also at Purdue University, West Lafayette, IN, USA.

Also at Beykent University.

Also at Bingol University, Bingol, Turkey.

Also at Sinop University, Sinop, Turkey.

Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.

Also at Texas A&M University at Qatar, Doha, Qatar.

Also at Kyungpook National University.