Novel urease-negative Helicobacter sp. ‘H. enhydrae sp. nov.’ isolated from inflamed gastric tissue of southern sea otters

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>https://doi.org/10.3354/dao03082</td>
</tr>
<tr>
<td>Publisher</td>
<td>Inter-Research Science Center</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Mar 11 21:29:49 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/119491</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Novel urease negative *Helicobacter* sp., “*H. enhydrae* sp. nov.”, isolated from inflamed gastric tissue of Southern sea otters

Zeli Shen¹, Francesca Batac², Anthony Mannion¹, Melissa A. Miller², Vasudevan Bakthavatchalu¹, Calvin Ho¹, Sean Manning¹, Bruce J. Paster³, James G. Fox¹*

¹Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139
²California Department of Fish & Wildlife, Marine Wildlife Veterinary Care & Research Center, Santa Cruz, CA 95060
³The Forsyth Institute, Cambridge, MA 02142

*Corresponding Author:

James G. Fox

77 Massachusetts Avenue, 16-825C

Cambridge, MA 02139

Phone: 617-253-1757; Fax: 617-258-5708

Email: jgfox@mit.edu
Abstract

A total of 31 sea otters, *Enhydra lutris nereis*, found dead or moribund were euthanized and necropsied in California. Stomach biopsies were collected and transected with equal portions frozen or placed in formalin, and analyzed histologically and screened for *Helicobacter* sp. in gastric tissue. *Helicobacter* spp. were isolated from 9 sea otters (29%); 58% (18/31) animals were positive for helicobacter by PCR. The *Helicobacter* sp. was catalase & oxidase positive, and urease negative. By electron microscopy, the *Helicobacter* sp. had lateral and polar sheathed flagella and had slightly curved rod morphology. 16S and 23S rRNA sequence analysis of all “*Helicobacter enhydrae*” isolates had similar sequences, which clustered as a novel *Helicobacter* sp. closely related to *H. mustelae* (96-97%). The genome sequence of isolate MIT 01-6242 was assembled into a single ~1.6 Mb long contig with a 40.8% G+C content. The annotated genome contained 1,699 protein coding sequences and 43 RNAs, including 65 gene homologous to known *Helicobacter* spp. and *Campylobacter* spp. virulence factors. Histological changes in the gastric tissues extended from mild cystic degeneration of gastric glands, to severe mucosal erosions and ulcers. Silver stains of infected tissues demonstrated slightly curved bacterial rods at the periphery of the gastric ulcers and on the epithelial surface of glands. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and lymphocytes, with occasional lymphoid aggregates and well-defined lymphoid follicles. This is the second novel *Helicobacter* sp., which we have named ‘*H. enhydrae*’, isolated from inflamed stomachs of mustelids, the first being *H. mustelae* from the ferret.
INTRODUCTION

Sea otter populations have suffered dramatically due to extirpation associated with hunting in the eighteenth and nineteenth centuries (1741-1911) until they were protected under the International Seal Treaty (Larson et al. 2012). The southern sea otter, *Enhydra lutris nereis*, listed as Threatened under the U.S. Endangered Species Act, has declined in numbers in the 1970’s through the mid-late 1990’s, and their population continues to be suboptimal despite being legally protected for more than 100 years (USGS, 2010). Slow population recovery of the southern sea otter is undoubtedly multifaceted; both traumatic and infectious causes can impact individual survival and population growth (Kreuder et al. 2003). In a recent systematic review of published cases of marine mammal diseases from 1972-2012, bacterial cases represented approximately 20% of the total number of calculated cases reported (Simeone et al. 2015). Of the bacterial-associated diseases in sea otters, fatal infection by *Streptococcus phocae* and other beta hemolytic streptococci has been associated with skin trauma (Bartlett et al. 2016); *Streptococcus infantarius* has been linked to septicemia and fatal vegetative endocarditis (Carrasco et al. 2014, Counihan et al. 2015); novel *Bartonella* spp. have been identified by PCR-based assays, along with *Streptococcus* spp. in vegetative valvular endocarditis cases. Antibodies to *Toxoplasma gondii, Leptospira interrogans,* and *Brucella* spp. have also been recorded in sea otters inhabiting southern California (Hanni et al. 2003). The prevalence of *Toxoplasma gondii* infection has been associated with water-runoff contaminated with *T. gondii* oocysts (Miller et al. 2002), which are trapped by kelp; the kelp biofilm is then ingested by snails, which in turn are ingested by the otters (Mazzillo et al. 2013). *Sarcocystis neurona* infections identified in sea otters are also the result of fecal-associated exposure (Miller et al. 2010). Other enteric
pathogens, including *Campylobacter* spp., *Clostridium perfringens*, and *Vibrio parahaemolyticus*, are cultured from feces of southern sea otters living in coastal urban areas with higher freshwater runoff exposure (Miller et al. 2006).

Although gastric ulcers have been noted in both northern and southern sea otters, an etiological agent has not been previously identified (Lipscomb et al. 1993, Kreuder et al. 2003). Given that another member of the *Mustelidae* family, the domestic ferret (*Mustela putorius furo*), is known to be colonized with a gastric helicobacter, *H. mustelae*, which is associated with gastritis and gastric ulcers, we initiated a survey of southern sea otters to ascertain whether these animals were also colonized with a gastric *Helicobacter* sp. (Fox et al. 1990, Fox et al. 1991, Fox et al. 1992, Fox et al. 1993).

MATERIAL AND METHODS

Sample collection: A total of 31 southern sea otters, *Enhydra lutris nereis*, found dead or moribund and euthanized were necropsied in California. In accordance with Section 109(h) of U.S. Marine Mammal Protection Act (MMPA) and the U.S. Fish and Wildlife Service's (Service) regulations implementing the MMPA at 50 CFR 18.22(a), and in accordance with the Service's regulations implementing the U.S. Endangered Species Act at 50 CFR 17.21(c)(3), the samples that were used to complete this work were collected from fresh, necropsied sea otter carcasses taken from the wild by an official or employee of the California Department of Fish and Wildlife (CFDW) in the course of his or her duties as an official or employee of CDFW. Stomach biopsies from the pylorus and the gastric body were collected, placed in freeze media containing 20% glycerol in *Brucella* broth (BD, Franklin, NJ) and frozen for Helicobacter culture and PCR;
samples were also placed in formalin for histological evaluation. The biopsy samples were shipped to Massachusetts Institute of Technology, Cambridge, MA. The initial study was conducted in 2001 with 11 animals; additional samples were collected from 20 animals in 2015. Samples were processed for helicobacter isolation and PCR shortly after receiving the biopsies.

Helicobacter PCR: The High Pure PCR Template Preparation Kit (Roche Molecular Biochemicals, Indianapolis, IN) was used for extraction of DNA from both gastric samples from 31 sea otters, and bacterial isolates following the manufacturer’s instructions. *Helicobacter* genus-specific primers C97 (5′-GCT ATG ACG GGT ATCC) and C05 (5′-ACT TCA CCC CAG TCG CTG) were used to amplify a 1.2-kb PCR product from the 16S rRNA gene (Fox et al. 1998). PCR amplifications were performed using the Expand High Fidelity PCR System (Roche Molecular Biochemicals). The following conditions were used for amplification: 35 cycles of denaturation at 94 °C for 1 min, annealing at 58 °C for 1 min and elongation at 72 °C for 1.5 min, followed by an elongation step of 7 min at 72 °C. The 1200 bp PCR products were sequenced using BigDye Terminator Cycle Sequencing method (Thermo Fisher Scientific).

Helicobacter culture: Biopsy samples from 31 sea otter stomachs were homogenized and gastric body and pyloric aliquots were applied separately to the surface of CVA (cefoperazone, vancomycin, and amphotericin B) agar plates. Additional aliquots of each sample were passed through a 0.65-µm syringe filter onto a Trypticase soy agar plate with 5% sheep blood (Remel Laboratories, Lenexux, KS). All plates were incubated at 37°C under microaerobic conditions in a vented jar containing N2, H2, and CO2 (80, 10 and 10%, respectively); and were inspected for bacterial growth every 2-3 days for 3 weeks.
Detailed biochemical characterization analysis was performed on 5 individual isolates using the RapID™ NH System (Remel Laboratories, Lenexus, KS) and API Campy kit (bioMérieux - Boston, MA). Urease, catalase, and oxidase productions, sensitivity to nalidixic acid and cephalothin; as well as the growth in the presence of 1% glycine were assessed, as previously described (Shen et al. 2005). A disc assay was used to screen for indoxyl acetate hydrolysis (Kaur et al. 2011). Suspected bacterial growth was identified as *Helicobacter* on the basis of gross colony morphology, compatible bacterial morphology on phase microscopy and Gram stains, biochemical testing, helicobacter-specific PCR and 16S rRNA gene sequencing. The full 16S rRNA sequence of 5 strains was amplified with primer 9F (5’ GAG TTT GAT YCT GGC TCA G) and 1541R (5’ AAG GAG GTG WTC CAR CC). Sequence alignments and phylogenetic analysis of 16S rRNA and 23S rRNA were performed using the Lasergene software package (Lasergene 12 DNASTAR, Madison WI).

Histological evaluation: Full-thickness postmortem gastric biopsies from twenty-six sea otters were formalin-fixed (10%), paraffin-embedded, and 5 µm sections stained by hematoxylin and eosin (H&E) and Warthin-Starry stains for histological assessment by a board-certified pathologist (V.B).

Electron microscopy: Sea otter isolate *Helicobacter* sp. MIT 01-6242 was examined by transmission electron microscopy (B.P). Cells grown on blood agar plates were centrifuged and gently suspended in 10 mM Tris-HCl buffer (pH 7.4) at a concentration of about 10^8 cells per ml. Samples were negatively stained with 1% (wt/vol) phosphotungstic acid (pH 6.5) for 20 to 30 s.
Specimens were examined and measured via a JEOL model JEM-1200EX transmission electron microscope operating at 100 kV.

Whole genome sequencing of strain MIT 01-6242: Genomic DNA was sequenced using the Single Molecule Real-Time (SMRT) sequencing method with a PacBio RS II machine (Pacific BioSciences, Menlo Park, CA). The sequencing reads were assembled using the RS_HGAP_Assembly.3 workflow from the SMRT Portal 2.3. The assembled genome was annotated with the Rapid Annotation using Subsystem Technology (RAST) using the RASTtk workflow (http://rast.nmpdr.org) (Overbeek et al. 2014). Annotated protein sequences were further analyzed for conserved domains using Batch CD-Search (http://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi) (Marchler-Bauer et al. 2015).

Multi-genome comparisons and identification of homologous virulence factor were performed with the Pathosystems Resource Integration Center (PATRIC, http://enews.patricbrc.org/citing-patric/) (Wattam et al. 2014).

RESULTS

Helicobacter prevalence in sea otters: For samples collected in 2001, 82% of pyloric, and 45% of gastric body samples were positive for helicobacter by PCR; Helicobacter sp was isolated from one pyloric sample. For samples collected during 2015, 45% of pyloric samples, and 10% of gastric body samples were positive for Helicobacter spp. by PCR. A novel Helicobacter sp. was isolated from 40% of the 2015 pyloric samples (Table 1). For sea otters with gastric ulcers, 4/5 (80%) of the stomachs were positive by PCR in 2001, while in 2015, 5/10 (50%) of gastric samples with ulcers were positive by PCR for Helicobacter spp.
The characteristics of helicobacter isolates from sea otters: Helicobacter-like organisms were isolated from the pylorus of 9 sea otters (Table 1). Gram-negative bacteria were visible on CVA and blood agar plates as single colonies following 3-5 days of incubation under microaerobic conditions. The biochemical characteristics of five isolates were compared with those of other closely related Helicobacter species (Table 2). All isolates were oxidase and catalase positive, and urease negative. The isolates did not reduce nitrate to nitrite, and did not hydrolyze alkaline phosphate or indoxyl acetate. The bacteria did not have γ-glutamyl transpeptidase activity and all isolates were sensitive to nalidixic acid, and resistant to cephalothin. The organism grew in 1 % glycine and at 37 and 42 °C, but not at 25 °C.

Electron microscopy: By electron microscopy, the novel sea otter isolate Helicobacter sp. is a slightly curved rod (1–3 μm long by and 0.5 μm wide) (Fig. 1). The organisms had lateral and polar sheathed flagellae. Coccoid bacterial forms with similar flagellae were also noted.

Phylogenetic analysis: The 16S rRNA gene sequences from all 9 sea otter isolates were sequenced, and shared over 99 % sequence similarity with each other. The sea otter isolates clustered as a novel Helicobacter sp. most closely related to H. mustelae (96-97%). (Fig. 2a). The 23S rRNA gene sequences of two of the isolates, MIT 01-6242, and MIT 15-1068 were analyzed and compared with the 23S rRNA gene sequences of other Helicobacter spp., the two sequences were most closely related to H. mustelae, as well with 97 % identity (Fig. 2b).
Whole genome sequencing: The complete genome sequence of Helicobacter sp. MIT 01-6242 was obtained using PacBio’s SMRT sequencing method. In total, 70,216 reads with a mean read length of 9,773 base pairs and N50 read length of 13,584 base pairs were obtained at ~350-fold coverage. The reads were assembled into a single 1.6 Mb long contig with a G+C content of 40.8%, which was similar to representative genomes from the gastric, enterohepatic, and marine Helicobacter sp. H.mustelae 12198, H. pylori 26695, H.hepaticus ATCC 51449, and H.cetorum MIT 99-5656, respectively. Likewise, the RASTtk annotated genome of Helicobacter sp. MIT 01-6242 contained comparable numbers of protein coding sequences and RNA genes as the representative Helicobacter genomes. Using PATRIC’s proteome comparison service to perform a multi-genome bi-directional BLASTP (parameters: 30% minimum coverage, 10% minimum identity, 1e-5 minimum E-value), more than 50% of the annotated protein sequences from Helicobacter sp. MIT 01-6242 were noted to be homologous to those from the other Helicobacter spp. (Table 3).

Virulence factors from the RASTtk annotated genomes of Helicobacter mustelae 12198 (NCBI GenBank: FN555004.1), Helicobacter pylori 26695 (NCBI GenBank: AE000511.1), Helicobacter cetorum MIT 99-5656 (NCBI GenBank: CP003481.1), Helicobacter hepaticus ATCC 51449 (NCBI GenBank: AE017125.1), Helicobacter canis NCTC 12740 (NCBI Reference Sequence: NZ_KI669458.1), Helicobacter canadensis MIT 98-5491 (NCBI GenBank: ABQS0000000.1), and Campylobacter jejuni subspecies jejuni NCTC 11168 (NCBI Reference Sequence: NC_002163.1) were identified from the Victors database through PATRIC and then cross-referenced against Helicobacter sp. MIT 01-6242 using the proteome comparison results. Sixty-five genes homologous to known virulence factors from Helicobacter and Campylobacter sp were detected in Helicobacter sp. MIT 01-6242 (full list in supplemental table). Notable
virulence genes included two copies of flagellin (flaA) necessary for infection colonization, and
pathogenicity by *H. mustelae*, high temperature requirement A (htrA) that cleaves E-cadherin,
the pro-inflammatory cytokine stimulator neutrophil-activating protein (nap), and the
adherence/colonization factors fibronectin/fibrinogen-binding protein (cadF) and chaperone
protein DnaJ (dnaJ) (Table 3). Homologous sequences to urease (ure), cytotoxin-associated
gene A (cagA), *virB/D* type IV secretion system components (T4SS), vacuolating cytotoxin
(vacA), cytolethal distending toxin (cdtA/B/C), and gamma-glutamyltranspeptidase (ggt) were
not found in *Helicobacter* sp. MIT 01-6242. Although the gene encoding *Helicobacter* surface
rings (hsr), a unique morphological feature of *Helicobacter mustelae* 12198 required for
pathogenic gastric infection, was not present in *Helicobacter* sp. MIT 01-6242, a protein
sequence with a homologous C-terminal autotransporter domain to hsr was annotated as a major
ring-forming surface antigen precursor (Patterson et al. 2003).

Additionally, multi-genome proteome comparison revealed numerous locations in the
genome of *Helicobacter* sp. MIT 01-6242 that contained clusters of protein sequences, almost
exclusively annotated as hypothetical proteins, lacking corresponding homologs in the
representative *Helicobacter* genomes (Figure 3). The two largest regions, 46 genes from
positions 1,157,093 to 1,215,003 bp and 82 genes from 1,446,155 to 1,478,648 bp, both
consisted of more than 60% hypothetical proteins, but also contained several genes associated
with viral/phage replication and structure, such as integrase and capsid proteins. Batch CD-
Search was used as an attempt to identify conserved domains in the hypothetical proteins within
these clusters (supplemental table). Four hypothetic proteins within the ~1.15 Mb to ~1.2 Mb
cluster contained domains found in bacterial polymorphic toxin systems, such as secreted RNase
toxins, which may have virulence functionality (Supplemental table) (Jamet & Nassif 2015).
Lastly, throughout the genome in smaller cluster regions, a total of 30 hypothetical proteins were identified and assigned autotransporter domains secreted by a type V system and associated with virulence (supplemental table) (Tseng et al. 2009). This finding was corroborated by identification of the gene components needed for a complete Sec translocase, and thus a putatively functional type V secretion system (T5SS) exists in the genome of Helicobacter sp. MIT 01-6242.

Histopathology findings: Histological changes in gastric tissues from PCR and/or culture-positive sea otters ranged from mild cystic degeneration of gastric glands, to severe erosions and ulcers. In severely affected animals the erosions and ulcers were characterized by partial or complete loss of gastric mucosa (Fig. 4). The affected areas were disrupted by minimal to moderate amounts of cellular and karyorrhectic debris, hemorrhage, and covered by abundant bacilli. The underlying mucosa and submucosa were infiltrated by low numbers of neutrophils, macrophages, and sparse lymphocytes. The submucosa was mildly expanded by inflammatory cells, fibrin, and edema. Adjacent venules contained fibrin thrombi, and lymphatics were ectatic. Occasionally, the lumen of gastric glands adjacent to affected areas were dilated, with variable surface erosion or attenuated epithelium, and contained scant cellular debris. On some sections the gastric mucosa and submucosa were disrupted by lymphoid aggregates and well defined lymphoid follicles composed of mature lymphocytes admixed with rare immunoblasts (Figure 5). On Warthin-Starry stained slides, numerous 1-2 µm by 0.5-1.0 µm bacilli lined the mucosa and extended deep into gastric pits and gastric glands (Figure 6). Bacteria comparable with H. enhydrae were also noted at the margins of ulcers in 7 of the affected stomachs (Figure 7).
DISCUSSION

We identified by culture, ultrastructure, biochemical characterization, 16S rRNA and 23S rRNA sequence analysis, and whole genome sequencing, a novel helicobacter, which we propose the name *Helicobacter enhydrae*. Like *H. mustelae*, which colonizes ferrets with gastritis and ulcers, the gastric bacteria were identified by PCR and culture in the inflamed gastric tissue of stranded southern sea otters. Interestingly, the ultrastructure of the novel *Helicobacter* sp. is similar to *H. mustelae* with lateral and polar sheathed flagella (O'Rourke et al. 1992). The slightly curved silver-stained bacterial rods noted at the periphery of gastric ulcers and within crypts and on surface gastric epithelium in *H. enhydrae*-infected southern sea otters has the same histologic morphology and anatomic distribution as *H. mustelae* in infected ferrets (Fox et al. 1990, O'Rourke et al. 1992).

Although closely related taxonomically, one distinct difference is that *H. mustelae* is urease positive, whereas *H. enhydrae* is urease negative. *H. pylori*, the human gastric pathogen that causes gastritis, peptic ulcers, and occasionally gastric cancer, is also urease positive. The large gastric *Helicobacter* sp., *H. suis*, which occasionally colonizes humans, also infects the stomachs of pigs and nonhuman primates, and the gastric spirals that colonizes dogs and cats, *H. felis*, are also urease positive (Haesebrouck et al. 2009). The ability of these *Helicobacter* spp. to colonize the stomach is largely attributed to the urease enzyme, which enzymatically converts urea to ammonia, which in turn buffers the organisms from the acidic pH of the stomach. It is of interest that *H. enhydrae* can apparently colonize the sea otter stomach without the buffering capacity of urease. *H. cinaedi*, a urease-negative enteric *Helicobacter* sp. which normally colonizes the lower intestine of humans and other mammals including cats, dogs, and rodents, has been identified on occasion in the stomachs of humans (Pena et al. 2002, Han et al. 2010).
Experimentally, *H. cinaedi* also persistently colonizes the gastrointestinal tract of mice, including the stomach (Shen et al. 2009). This may be partially attributed to the higher gastric pH noted in the mouse and the coprophagic nature of the mouse, which allows steady exposure to *H. cinaedi* that persistently colonizes the lower bowel (Shen et al. 2009). Given sea otters do not routinely practice coprophagy, this feature is unlikely to be operative in the southern sea otter. However, given the ferret and southern sea otter have short GI transit times and the ferret is also noted to have episodes of hypochlorhydria, which in combination facilitates the ease of culturing *H. mustelae* from ferret’s feces (Fox et al. 1992, Fox et al. 1993), raises the possibility that sea otters have the same anatomic and physiologic features observed in the ferret, thus allowing gastric colonization of urease negative *Helicobacter* spp. *Helicobacter mustelae* and *H. enhydrae* cluster phylogenetically more closely to enterohepatic *Helicobacter* spp., which may suggest that both of the mustelid *Helicobacter* spp. could be classified as gastrointestinal *Helicobacter* spp., rather than strictly gastric species. *H. mustelae* is easily cultured from the feces of ferrets which may infer intestinal colonization or simply transit of the organism from its nice in the stomach (Fox et al. 1988). Whether *H. enhydrae* colonizes the lower gastrointestinal tract, a more suitable environment inhabited by several urease negative EHS, requires further studies. In addition, *H. cinaedi*, a urease negative EHS, has been identified in the stomachs of humans and colonizes the stomachs of experimentally infected mice (Pena et al. 2002). These data in part may explain why urease negative *H. enhydrae* can colonize the stomachs of sea otters. However, in contrast, it should be noted that isogenic mutants of *H. mustelae* and *H. pylori* lacking urease activity don’t colonize the stomach of ferrets and gnotobiotic swine, respectively (Eaton & Krakowka 1994, Andrutis et al. 1995).
It is tempting, but premature to ascribe the gastric ulcers observed in the sea otters examined in this study to the gastric colonization of the novel bacteria *H. enhydrae*. However it is interesting that Warthin–Starry-positive bacteria with morphology consistent with *H. enhydrae* were observed in the periphery of the gastric ulcers and inflamed gastric tissue histologically. Further studies will be needed to better characterize this relationship. Whether stress, inadequate food supply, exposure to chemical contaminants or a myriad of other factors contribute to gastric ulcer formation is unknown. Whether *H. enhydrae* identification by PCR and culture in this study reflects the true prevalence is unknown, and could be lower (or higher) than the actual prevalence of the organism in southern sea otter stomachs, because sampling was restricted to small areas and specific anatomic locations, and was performed postmortem on stranded animals. Because the bacteria were identified in only 40-80% of gastric samples with grossly apparent ulcers requires more extensive evaluation of otters with and without gastric ulcers or mural inflammation. In ferrets, *H. mustelae* colonizes a high percentage of ferrets, and like *H. pylori* in humans, only a small percentage of *H. mustelae*-infected ferrets develop gastric ulcers (Fox et al. 1990).

There are reports describing *H. acinonychis*, a helicobacter colonizing the cheetah stomach. In captivity, cheetahs infected with this bacteria have severe gastritis and gastric ulcers; in the wild, though colonized with the same gastric helicobacter, stomachs histologically are, in large part, normal (Eaton et al. 1993a, Eaton et al. 1993b). Authors have attributed the severe gastric disease noted in captive cheetahs to stress of captivity and other undefined variables that trigger gastritis and ulcers (Terio et al. 2012). Authors have also argued that generations of inbreeding of the cheetah has created a genetic bottleneck, resulting in the lack of genetic diversity in this species, resulting in a population, when subjected to captivity, expresses
increased susceptibility to gastric *H. acinonychis* (O'Brien et al. 1987, Munson et al. 2005). A similar circumstance could be playing a role in the sea otter, which suffered at least one historic population bottleneck due to hunting of these mammals for fur in the 18th and 19th century (Larson et al. 2012). Indeed of the sea otter populations along the pacific coast, California sea otters have the lowest genetic diversity. Perhaps this accounts for increased susceptibility to certain infectious diseases, including gastric ulcers associated with “*H. enhydrae*” infection.

The sea otter is not unique among aquatic living mammals in being colonized with gastric helicobacters. We first isolated a gastric *H. cetorum* from gastric ulcers and inflamed stomachs of dolphins in 2003 (Harper et al. 2000, Harper et al. 2002a), followed by the identification of novel gastric helicobacters in harp seals, sea lions, and beluga whales (Harper et al. 2002b, Harper et al. 2003). These novel helicobacters are also urease-positive, except for a novel *Helicobacter* sp. isolated from the stomach of harp seals, which was urease-negative (Harper et al. 2003). It is likely that these novel *Helicobacter* spp. in sea mammals persist in the stomachs of these animals in a manner similar to that of *H. pylori* and *H. mustelae*. The finding of *H. enhydrae* in sea otters in 2001 and again in 2015 supports this hypothesis.

In summary, we have identified a novel helicobacter, *H. enhydrae*, in the stomach of the southern sea otter. Whether the novel *Helicobacter* sp. is involved in gastric ulcer disease in these sea mammals will require further study. In addition, it will be interesting to ascertain whether *H. enhydrae* also colonizes the stomachs of northern sea otters.

Description of Helicobacter enhydrae sp. nov.: *Helicobacter enhydrae* sp. nov. (en.hy'drae. N.L. gen. n. *enhydrae* of the sea otter *Enhydra*). The organism is motile; cells are slightly curved...
Novel *Helicobacter* sp. Isolated from Southern Sea Otters

(2-3 µm) with lateral and polar sheathed flagella. The bacteria is gram negative and non-sporulating. The organism grows slowly at 37°C and 42°C, but not at 25°C, under microaerobic conditions. It appears on solid agar as single colonies. The bacterium is oxidase and catalase positive, but urease, alkaline phosphatase, indoxyl acetate hydrolysis and nitrate reduction are negative. It grows on 1% glycine and is sensitive to nalidixic acid and is resistant to cephalothin.

The type strain MIT 01-6242 has a DNA G+C content of 40.8% and its genome is ~1.6 Mb in length. The genome of *Helicobacter* sp. MIT 01-6242 has been submitted under accession number GenBank CP016503.

ACKNOWLEDGEMENTS

We thank Professor Aharon Orenfor of the Hebrew University of Jerusalem for providing taxonomic expertise in naming of this novel Helicobacter, and Alyssa Pappa for assistance with manuscript preparation. We also thank the staff at CDFW-MWVCRC for their assistance with project completion, along with all organizations and individuals that have submitted stranded southern sea otters for postmortem examination. Grant Support: NIH T32-OD010978, P01-CA028842, P30-ES002109, and R01-CA093405 (all to J.G.F.).

LITERATURE CITED

Novel *Helicobacter* sp. Isolated from Southern Sea Otters

Fox JG, Dewhirst FE, Shen Z, Feng Y and others (1998) Hepatic *Helicobacter* species identified in bile and gallbladder tissue from Chileans with chronic cholecystitis. Gastroenterology 114:755-763

Novel *Helicobacter* sp. Isolated from Southern Sea Otters

Patterson MM, O'Toole PW, Forester NT, Noonan B and others (2003) Failure of surface ring mutant strains of *Helicobacter mustelae* to persistently infect the ferret stomach. Infect Immun 71:2350-2355

Novel Helicobacter sp. Isolated from Southern Sea Otters
Table 1. Prevalence of *Helicobacter* spp. detection in gastric mucosal biopsies from necropsied southern sea otters (*Enhydra lutris nereis*)

<table>
<thead>
<tr>
<th>Studies</th>
<th>H. sp in Antrum (pylorus)</th>
<th>H. sp in Body</th>
<th>H. sp in Animals</th>
<th>Ulcer rates</th>
<th>H. sp in Ulcer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001: PCR</td>
<td>9/11 (82%)</td>
<td>5/11 (45%)</td>
<td>9/11 (82%)</td>
<td>5/11 (45%)</td>
<td>4/5 (80%)</td>
</tr>
<tr>
<td>2001: culture</td>
<td>1/9 (11%)</td>
<td>0/9 (0%)</td>
<td>1/9 (11%)</td>
<td>3/9 (33%)</td>
<td>0/3 (0%)</td>
</tr>
<tr>
<td>2015: PCR</td>
<td>9/20 (45%)</td>
<td>2/20 (10%)</td>
<td>9/20 (45%)</td>
<td>10/20 (50%)</td>
<td>5/10 (50%)</td>
</tr>
<tr>
<td>2015: culture</td>
<td>8/20 (40%)</td>
<td>0/20 (0%)</td>
<td>8/20 (40%)</td>
<td>10/20 (50%)</td>
<td>4/10 (40%)</td>
</tr>
</tbody>
</table>
Table 2. Biochemical properties of *Helicobacter enhydrae* isolates from southern sea otters (*Enhydra lutris nereis*) in relation to other *Helicobacter* spp.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Catalase</th>
<th>Oxidase</th>
<th>NO₃</th>
<th>urease</th>
<th>IAH</th>
<th>GGT</th>
<th>PO₄</th>
<th>25°C</th>
<th>37°C</th>
<th>42°C</th>
<th>1% glycin</th>
<th>NA</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea otter isolates</td>
<td>(+) 5/5</td>
<td>(+) 5/5</td>
<td>(-) 5/5</td>
<td>(-) 5/5</td>
<td>(-) 5/5</td>
<td>(-) 5/5</td>
<td>(-) 5/5</td>
<td>(+) 5/5</td>
<td>(+) 5/5</td>
<td>(+) 5/5</td>
<td>(S) 5/5</td>
<td>(S) 5/5</td>
<td></td>
</tr>
<tr>
<td>H. mustelae</td>
<td></td>
<td>S</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>H. cetorum</td>
<td></td>
<td>ND</td>
<td>R/S</td>
<td>S</td>
</tr>
<tr>
<td>H. acinonychis</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>H. pylori</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>H. macacae</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>H. bilis</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>H. marmotae</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>H. canis</td>
<td></td>
<td>ND</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>H. hepaticus</td>
<td></td>
<td>ND</td>
<td>R</td>
<td>R</td>
</tr>
</tbody>
</table>

NO3: Nitrate reduction; IAH: Indoxyl Acetate Hydrolysis; GGT: Gamma-Glutamyl Transpeptidase; PO4: Alkaline phosphatase hydrolysis; NA: Nalidixic acid 30µg; CE: Cephalothin 30 µg; S: susceptible; R: resistant; I: intermediate; ND: not done
Table 3. Profile characteristics and comparison of *H enhydrae* and other related Helicobacter species genomes

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>H. enhydrae</th>
<th>H. hepaticus</th>
<th>H. mustelae</th>
<th>H. cetorum</th>
<th>H. pylori</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic size (bp)</td>
<td>MIT01-6242</td>
<td>ATCC 51449</td>
<td>12198</td>
<td>MIT 99-5656</td>
<td>26695</td>
</tr>
<tr>
<td>G+C content</td>
<td>1,594,790</td>
<td>1,799,146</td>
<td>1,578,097</td>
<td>1,833,666</td>
<td>1,667,867</td>
</tr>
<tr>
<td>No. of protein genes</td>
<td>1,699</td>
<td>1,853</td>
<td>1,667</td>
<td>1,822</td>
<td>1,688</td>
</tr>
<tr>
<td>No. of RNA genes</td>
<td>43</td>
<td>38</td>
<td>43</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>Genes homologous to H. enhydrae</td>
<td>-</td>
<td>1,079 (64.7%)</td>
<td>1,048 (62.8%)</td>
<td>975 (58.6%)</td>
<td>965 (57.9%)</td>
</tr>
</tbody>
</table>

^a Genomes downloaded from NCBI and annotated with RASTtk: Helicobacter hepaticus ATCC 51449 (GenBank: AE017125.1), Helicobacter mustelae 12198 (GenBank: FN555004.1), Helicobacter cetorum MIT 99-5656 (GenBank: CP003481.1), and Helicobacter pylori 26695 (GenBank: AE000511.1)

^b Virulence factor genes: cadF, fibronectin/fibrinogen-binding protein; cagA, cytotoxin-associated gene A; cdtB, cytolethal distending toxin subunit B; dnaJ, chaperone protein DnaJ; flaA, flagellin; ggt, gamma-glutamyltranspeptidase; hsr, Helicobacter surface rings; htrA protease; nap, neutrophil-activating protein; ure, urease; vacA, vacuolating cytotoxin
Figure 1: Transmission electron micrograph of negatively stained *Helicobacter enhydræ* MIT 01-6242, demonstrating a slightly curved bacterial rod with sheathed lateral flagellae (A), and a more coccoid bacterial form (B).
Figure 2A: Phylogenetic placement of *Helicobacter enhydrae* in relation to other *Helicobacter* 16S rRNA gene sequences, based on neighbor-joining analysis.
Figure 2B: Phylogenetic placement of *Helicobacter enhydrae* in relation to other *Helicobacter* 23S rRNA gene sequences based on neighbor-joining analysis.
Figure 3: PATRIC proteome comparison. The RASTtk annotated protein sequences from *H. enhydrae* were compared to those of *H. hepaticus* ATCC 51449, *H. mustelae* 12198, *H. cetorum* MIT 99-5656, and *H. pylori* 26695 using bi-directional BLASTP. Homologs are presented as bidirectional or unidirectional best hits in accordance with percent protein sequence identity in reference to *H. enhydrae*. Rings from outer to inner represent *H. enhydrae*, *H. hepaticus* ATCC 51449, *H. mustelae* 12198, *H. cetorum* MIT 99-5656, and *H. pylori* 26695.
Figure 4: The gastric submucosal interstitium was mildly expanded by neutrophils, macrophages, edema and scant fibrin (asterisk). The lumen of adjacent venules was obstructed by fibrin thrombi (arrows). (20x Scale-100 µm H&E Stain)
Figure 5: (A) Cross-section of gastric body: Multiple lymphoid follicles are present at the junction of the mucosa and submucosa (H&E, 4x); (B) Higher magnification view of a single lymphoid follicle, with a predominance of mature lymphocytes (H&E, 20X).
Figure 6: Mucosa of gastric pylorus: Numerous short, stout and mildly-recurved bacilli are scattered within and adjacent to pyloric glands exhibiting epithelial necrosis and surface erosion (40X Scale 50 µm Warthin-Starry Stain).
Figure 7: Mucosa of gastric pylorus: Higher magnification view of bacilli clustered within and adjacent to the gastric glands (100X Scale 20 μm Warthin-Starry Stain)