First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.091803</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Jun 22 12:21:26 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/50758</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439
3 University of Athens, 11529, Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254, USA
8 University of California, Los Angeles, Los Angeles, California 90024, USA
9 University of California, San Diego, La Jolla, California 92093, USA
10 University of California, Santa Barbara, California 93106, USA
11 University of California, Santa Barbara, Santa Barbara, California 93106, USA
12 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19 University of Florida, Gainesville, Florida 32611, USA
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138, USA

091803-2
Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

The Johns Hopkins University, Baltimore, Maryland 21218, USA

Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju,500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea

Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

University College London, London WC1E 6BT, United Kingdom

Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

Institute of Particle Physics: McGill University, Montréal, Québec, H3A 2T8, Canada; Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; University of Toronto, Toronto, Ontario, M5S 1A7, Canada; and TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada

University of Michigan, Ann Arbor, Michigan 48109, USA

Michigan State University, East Lansing, Michigan 48824, USA

Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

University of New Mexico, Albuquerque, New Mexico 87131, USA

Northwestern University, Evanston, Illinois 60208, USA

The Ohio State University, Columbus, Ohio 43210, USA

Okayama University, Okayama 700-8530, Japan

Osaka City University, Osaka 588, Japan

University of Oxford, Oxford OX1 3RH, United Kingdom

Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

University of Padova, I-35131 Padova, Italy

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

University of Pisa, I-56127 Pisa, Italy

University of Siena, I-56127 Pisa, Italy

Scuola Normale Superiore, I-56127 Pisa, Italy

University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Purdue University, West Lafayette, Indiana 47907, USA

University of Rochester, Rochester, New York 14627, USA

The Rockefeller University, New York, New York 10021, USA

Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

Sapienza Università di Roma, I-00185 Roma, Italy

Rutgers University, Piscataway, New Jersey 08855, USA

Texas A&M University, College Station, Texas 77843, USA

Istituto Nazionale di Fisica Nucleare Trieste/ Udine, I-34100 Trieste, Italy

University of Trieste/ Udine, I-34100 Udine, Italy

University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Tufts University, Medford, Massachusetts 02155, USA

Waseda University, Tokyo 169, Japan

Wayne State University, Detroit, Michigan 48201, USA

University of Wisconsin, Madison, Wisconsin 53706, USA

Yale University, New Haven, Connecticut 06520, USA

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea (Received 28 May 2009; published 27 August 2009)
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb\(^{-1}\) of integrated luminosity of p\(\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 ± 239(stat) ± 144(syst) diboson candidate events and measure a cross section \(\sigma(p\bar{p} \rightarrow VV + X)\) of 18.0 ± 2.8(stat) ± 2.4(syst) ± 1.1(lumi) pb, in agreement with the expectations of the standard model.

DOI: 10.1103/PhysRevLett.103.091803

PACS numbers: 14.80.Bn, 12.15.\,-y, 14.70.\,-e

The production of heavy gauge boson pairs (WW, WZ, or ZZ) in p\(\bar{p}\) collisions has been observed in the fully leptonic final states at the Fermilab Tevatron [1,2]. Diboson production has not yet been conclusively observed in p\(\bar{p}\) collisions in decay channels involving hadrons [3]; however, evidence for diboson decays into an \(l\nu q\bar{q}\)\(^{(0)}\) final state (\(l = e, \mu, \tau; q = u, d, s, c, b\)) has been recently presented by the D0 collaboration [4]. Measurements of diboson production cross sections provide tests of the self-interactions of the gauge bosons. Deviations from the standard model (SM) prediction for the production rates could indicate new physics [5,6]. Furthermore, given that diboson production is topologically similar to associated Higgs boson production, \(p\bar{p} \rightarrow VH + X (V = W, Z)\), the analysis techniques described in this Letter are important for Higgs boson searches.

Here, we present the first observation at a hadron collider of diboson production with one boson decaying into leptons and the other into hadrons. The analysis is performed on a sample of events with large transverse momentum imbalance (\(E_T\)) and two jets whose invariant mass can be reconstructed. This signature is sensitive not only to \(l\nu q\bar{q}\)\(^{(0)}\), but also to \(\nu\bar{\nu} q\bar{q}\)\(^{(0)}\) decays because we do not explicitly require presence of identified charged leptons. The limited dijet mass resolution results in a significant overlap of the \(W \rightarrow q\bar{q}'\) and the \(Z \rightarrow q\bar{q}\) dijet mass peaks, and therefore the combination of the three diboson signals, WW, WZ, and ZZ, is considered.

We analyze a dataset of p\(\bar{p}\) collisions corresponding to an integrated luminosity of 3.5 fb\(^{-1}\) collected with the CDF II detector at the center-of-mass energy of 1.96 TeV. The CDF II detector is described in detail elsewhere [7]. The detector is cylindrically symmetric around the proton beam axis which is oriented in the positive \(z\) direction. The polar angle, \(\theta\), is measured from the origin of the coordinate system at the center of the detector with respect to the \(z\) axis. The pseudorapidity, transverse energy, and transverse momentum are defined as \(\eta = -\ln(\tan(\theta/2))\), \(E_T = E \sin(\theta)\), and \(p_T = p \sin(\theta)\), respectively. The central and plug calorimeters, which, respectively, cover the pseudorapidity regions of \(|\eta| < 1.1\) and \(1.1 < |\eta| < 3.6\), surround the tracking system with a projective tower geometry. The missing \(E_T\) is defined by \(\vec{E}_T = \sum E_j J_j\), where \(J_j\) is a unit vector perpendicular to the beam axis and pointing at the \(i\)th calorimeter tower. The sum \(E_T\) is defined by \(\sum E_j = \sum E_j^i\). Both sums are over all calorimeter towers with \(E_T > 100\) MeV.

The diboson signal (WW, WZ, and ZZ) is simulated using the PYTHIA V6.2 Monte Carlo generator [8]. The most significant backgrounds to the diboson signal are \(W(l\bar{\nu}) +\) jets, \(Z(l\bar{\nu}) +\) jets, and QCD multijet production (in the following referred to as multijet background or MJB). Other less significant backgrounds include \(Z(l\bar{l}) +\) jets, \(t\bar{t}\), and single \(t\)-quark production. The \(W +\) jets backgrounds are simulated using the fixed-order matrix element generator ALPGEN V2.1 [9] which is interfaced with PYTHIA V6.3 to simulate parton showering and fragmentation, the underlying event, and additional p\(\bar{p}\) interactions in the same bunch crossing. The \(Z +\) jets and \(t\)-quark production processes are simulated with PYTHIA V6.2. The detector response in all Monte Carlo samples is modeled by a GEANT-based CDF II detector simulation [10]. The MJB does not typically result in signatures of large intrinsic \(E_T\). However, when jet energy is not measured accurately, an event may be reconstructed with large \(E_T\) and pass the analysis selection criteria. Because of the large multijet production rate, this can still be a significant background in a \(E_T +\) jets based analysis. The MJB is determined from the data. All other background predictions are normalized using next-to-leading-order (NLO) calculations for SM cross sections.

The selection of signal proceeds as follows: first events are selected by a set of hardware triggers, then a series of analysis cuts reduces the backgrounds, and finally the signal is extracted using a minimization of a fitting procedure. The hardware triggers have benefited significantly from the calorimeter trigger upgrade completed in 2007 [11]. The majority (94\%) of events satisfy the inclusive \(E_T\) trigger, which requires \(E_T > 45\) GeV. Jets are reconstructed in the calorimeter using the JETCLU cone algorithm [12] with a cone radius of 0.4 in (\(\eta, \phi\)) space. We select events that have \(E_T > 60\) GeV and exactly two reconstructed jets with \(E_T > 25\) GeV and \(|\eta| < 2.0\). This ensures a trigger efficiency of 96\% ± 2\% on signal. We search for diboson production in the dijet mass range \(40 < M_{jj} < 160\) GeV/c\(^2\). The lower edge of the mass range is chosen to ensure that events are on the trigger efficiency plateau with respect to dijet mass. In addition to the requirements discussed above, the electromagnetic fraction of the total energy for each of the two jets is required to

091803-4
be less than 90% to ensure that electrons and photons are not counted as jets.

In order to suppress the MJB, we use a E_T resolution model to distinguish true E_T originating from undetected neutrinos from fake E_T due to jets that are not measured accurately. The E_T significance is a dimensionless quantity based on the energy resolution of the jets, on soft unclustered particles, and on the event topology. The E_T significance is typically low when E_T arises from mismeasurement. In addition to having a small significance, the E_T will often be aligned with a jet. We select events with E_T significance larger than 4 and azimuthal angle between E_T and the nearest jet ($\Delta \phi^\text{jet}$) greater than 0.4 radians.

Finally, we apply several requirements that suppress contamination due to cosmic-ray, beam-related, and other noncollision backgrounds. Events are required to have at least one reconstructed vertex formed by charged particle tracks. The transverse energies of all calorimeter towers are calculated with respect to the z position of the primary vertex with the largest $\sum \rho_T$ of associated tracks. The electromagnetic fraction of the total event energy has to be larger than 30% in order to reduce beam-related backgrounds. The arrival time of both leading jets as measured by the electromagnetic shower timing system [13] has to be consistent with the pp collision time. The remaining noncollision background has a smooth M_{jj} distribution and accounts for less than 0.2% of the final number of selected events. After all cuts were applied, we find 44,910 events in the final sample.

The shape and normalization of the MJB are determined from the data. A vector, \vec{p}_T, analogous to the calorimeter-based E_T, is constructed from the vector sum of the transverse momenta of particles measured in the tracking system, and is largely uncorrelated to E_T for events where jets are not reconstructed accurately. In the absence of E_T arising from mismeasurement in the calorimeter, the E_T and \vec{p}_T will be aligned in most events. The MJB is expected to be the dominant background component at larger values of $\Delta \phi(E_T, \vec{p}_T)$. The dijet mass shape and normalization for the remaining MJB contribution in the sample is found by selecting events with $\Delta \phi(E_T, \vec{p}_T) > 1.0$ and subtracting out the non-MJB backgrounds. The normalization is scaled up to account for the MJB contamination in the region $\Delta \phi(E_T, \vec{p}_T) < 1.0$. The shape of the MJB is fit to an exponential in M_{jj} to derive a dijet mass template. The MJB templates are fit to M_{jj} and $\Delta \phi(E_T, \vec{p}_T)$ distributions with a large statistics MC sample.

The signal extraction is performed using a minimization of the unbinned extended negative log likelihood with the ROOFIT program [14]. Three M_{jj} template distributions are used in the fit: the first is $V +$ jets and t-quark production [in the following referred to as “electroweak” (EWK) backgrounds] and is taken from Monte Carlo simulation; the second is the MJB template, where the slope and normalization are Gaussian constrained to their previously measured values; the third template describes the signal. The signal shape is comprised of the WW, WZ, and ZZ distributions. This template is obtained from a Gaussian + polynomial fit to the signal Monte Carlo simulation where the mean and the width of the Gaussian distribution are linearly dependent on the jet energy scale (JES).

To assess the effect of systematic uncertainties on the measurement, we address separately two classes of sources: those that affect the signal extraction procedure and those that affect the signal acceptance in the cross section calculation. The signal extraction systematic uncertainties come from uncertainties in signal and background shapes. The shape uncertainties take into account the effect of jet energy resolution (JER), JES, MJB shape, and the shape of the EWK background. The jet energy scale and the shape and the normalization of MJB are treated as nuisance parameters in the fit and Gaussian constrained to their independently measured values. These uncertainties are therefore accounted for in the statistical uncertainty of the extraction.

The shape uncertainty for the EWK background is determined by using $\gamma +$ jets data [15] as an alternative background model in the M_{jj} fit. All major non-MJB backgrounds include a gauge boson accompanied by jets. There are similarities between the $\gamma +$ jets and $V +$ jets production; however, due largely to the mass difference between the γ and the W/Z, the kinematics is not identical. To take this into account, the $\gamma +$ jets data are weighted by the ratio of the dijet mass distributions of the EWK background MC samples to $\gamma +$ jets PYTHIA MC sample. We use these adjusted $\gamma +$ jets data to determine a systematic uncertainty on the EWK M_{jj} template. Selection cuts applied to the $\gamma +$ jets events are not identical to those applied to the $E_T +$ jets sample. For example, the Z decay into neutrinos will register as E_T in the detector, while the photon E_T will be measured in the calorimeter. For this reason, we cut on the vector sum of the photon E_T and any E_T present in $\gamma +$ jets events at 60 GeV, treating this sum as analogous to E_T in $V +$ jets events. A further consideration in the construction of the $\gamma +$ jets template is the effect of $\gamma +$ jets events, as these events will cause a peak in the $\gamma +$ jets dijet mass distribution. We subtract this contribution using the $\gamma + V$ PYTHIA sample. Finally, we perform two signal extraction fits using the default EWK and $\gamma +$ jets templates, respectively. The uncertainty due to the shape of the EWK background is then estimated as the difference in the results obtained from these two fits. The described method accounts for a combined effect of JES, JER, and modeling of jets in MC simulations on the EWK M_{jj} template.

The uncertainty associated with the JES is the dominant source of systematic uncertainty on the acceptance and,
therefore, the cross section. Other less significant sources of systematic uncertainty that affect the measured cross section are jet energy resolution, initial and final state radiation (ISR/FSR), and parton distribution functions (PDF). A summary of all sources of systematic uncertainty is presented in Table I.

The measured yields for signal and backgrounds are given in Table II. Based on the MC simulation, the acceptances for the \(WW\), \(WZ\), and \(ZZ\) production is 2.5%, 2.6%, and 2.9%, respectively. In the calculation of the combined diboson cross section, we assume that each signal process contributes proportionally to its predicted SM cross section: 11.7 pb for \(WW\), 3.6 pb for \(WZ\), and 1.5 pb for \(ZZ\).

The number of signal events we extract, \(1516 \pm 239\) (stat), corresponds to a cross section of \(18.0 \pm 2.8\) (stat) \(\pm 1.1\) (syst) pb, in agreement with the SM prediction of \(16.8 \pm 0.5\) pb obtained using the MCFM V5.4 program [16] with CTEQ6.1M PDFs [17].

Figure 1 shows a comparison between the observed \(\Delta \phi_{E_T}\) distribution and the MJB and EWK (signal + background) components. This distribution provides a strong consistency check on our MJB model. Figure 2 shows the fit result and a comparison between the expected signal and data after background subtraction. We bin the data as in Fig. 2 and obtain a \(\chi^2\) of 9.4 for 9 degrees of freedom corresponding to a \(p\) value of 40%.

In summary, we use the \(E_T + \text{jets}\) final state to measure the \(WW + WZ + ZZ\) cross section in \(p\bar{p}\) collisions at 14 TeV.
$\sqrt{s} = 1.96$ TeV to be 18.0 ± 2.8 (stat) ± 2.4 (syst) ± 1.1 (lumi) pb. This is consistent with the SM prediction of 16.8 ± 0.5 pb. To assess the strength of the observed signal, the effects of parameter variations due to all relevant sources of uncertainty are studied by comparing the likelihood of the background-only fit with the full fit result, and converting the difference into significance numbers. We thus measure that the signal corresponds to a significance of at least 5.3 standard deviations from the background-only hypothesis. This is the first time the vector boson pair production has been observed in a hadronic final state at the Tevatron collider.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Foundation of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\[p = \frac{1}{s} \sum \frac{1}{|k_i|^2} \approx \frac{1}{s} \sum \frac{1}{|k_i|^2} \]

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Foundation of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Deceased.

Visitors from University of Massachusetts Amherst, Amherst, MA 01003, USA.

Visitors from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

Visitors from University of Bristol, Bristol BS8 1TL, United Kingdom.

Visitors from Chinese Academy of Sciences, Beijing 100864, China.

Visitors from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

Visitors from University of California Irvine, Irvine, CA 92697, USA.

Visitors from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

Visitors from Cornell University, Ithaca, NY 14853, USA.

Visitors from University of Cyprus, Nicosia CY-1678, Cyprus.

Visitors from University College Dublin, Dublin 4, Ireland.

Visitors from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

Visitors from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

Visitors from Kinki University, Higashi-Osaka City, Japan 577-8502.

Visitors from Universidad Iberoamericana, Mexico D.F., Mexico.

Visitors from University of Iberian, Iowa City, IA 52242, USA.

Visitors from University of Manchester, Manchester M13 9PL, England.

Visitors from Nagasaki Institute of Applied Science, Nagasaki, Japan.

Visitors from University of Notre Dame, Notre Dame, IN 46556, USA.

Visitors from University de Oviedo, E-33007 Oviedo, Spain.

Visitors from Texas Tech University, Lubbock, TX 79609, USA.

Visitors from IFIC (CSIC-Universitat de Valencia), 46071 Valencia, Spain.

Visitors from University of Virginia, Charlottesville, VA 22904, USA.

Visitors from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.

Visitors from On leave from J. Stefan Institute, Ljubljana, Slovenia.

