First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.091803</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 16 16:08:54 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/50758</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

University of Illinois, Urbana, Illinois 61801, USA

The Johns Hopkins University, Baltimore, Maryland 21218, USA

Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea

Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

University College London, London WC1E 6BT, United Kingdom

Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

Institute of Particle Physics: McGill University, Montréal, Québécois, H3A 2T8, Canada; Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; University of Toronto, Toronto, Ontario, M5S 1A7, Canada; and TRIUMF, Vancouver, British Columbia, V6T 2A3, Canada

University of Michigan, Ann Arbor, Michigan 48109, USA

Michigan State University, East Lansing, Michigan 48824, USA

Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

University of New Mexico, Albuquerque, New Mexico 87131, USA

Northwestern University, Evanston, Illinois 60208, USA

The Ohio State University, Columbus, Ohio 43210, USA

Okayama University, Okayama 700-8530, Japan

Osaka City University, Osaka 588, Japan

University of Oxford, Oxford OX1 3RH, United Kingdom

Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

Instituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

Purdue University, West Lafayette, Indiana 47907, USA

University of Rochester, Rochester, New York 14627, USA

The Rockefeller University, New York, New York 10021, USA

Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

Sapienza Università di Roma, I-00185 Roma, Italy

Rutgers University, Piscataway, New Jersey 08855, USA

Texas A&M University, College Station, Texas 77843, USA

Istituto Nazionale di Fisica Nucleare Trieste/ Udine, I-34100 Trieste, Italy

University of Trieste, Udine, I-34100 Udine, Italy

University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Tufts University, Medford, Massachusetts 02155, USA

Waseda University, Tokyo 169, Japan

Wayne State University, Detroit, Michigan 48201, USA

University of Wisconsin, Madison, Wisconsin 53706, USA

Yale University, New Haven, Connecticut 06520, USA

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea (Received 28 May 2009; published 27 August 2009)
We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (WW, WZ, or ZZ) in p̅p collisions has been observed in the fully leptonic final states at the Fermilab Tevatron collider[1,2]. Diboson production has not yet been conclusively observed in p̅p collisions in decay channels involving hadrons [3]; however, evidence for diboson decays into an lνq̅q̅(0) final state (l = e, µ, τ; q = u, d, s, c, b) has been recently presented by the D0 collaboration [4].

Measurements of diboson production cross sections provide tests of the self-interactions of the gauge bosons. Deviations from the standard model (SM) prediction for the production rates could indicate new physics [5,6]. Furthermore, given that diboson production is topologically similar to associated Higgs boson production, p̅p → VH + X (V = W, Z), the analysis techniques described in this Letter are important for Higgs boson searches.

Here, we present the first observation at a hadron collider of diboson production with one boson decaying into leptons and the other into hadrons. The production of heavy gauge boson pairs (WW, WZ, or ZZ) in p̅p collisions has been observed in the fully leptonic final states at the Fermilab Tevatron. We observe 1516 ± 239(stat) ± 144(syst) diboson candidate events and measure a cross section α(p̅p → VV + X) of 18.0 ± 2.8(stat) ± 2.4(syst) ± 1.1(lumi) pb, in agreement with the expectations of the standard model.

DOI: 10.1103/PhysRevLett.103.091803
PACS numbers: 14.80.Bn, 12.15.−y, 14.70.−e

The production of heavy gauge boson pairs (WW, WZ, or ZZ) in p̅p collisions has been observed in the fully leptonic final states at the Fermilab Tevatron. The data correspond to 3.5 fb⁻¹ of integrated luminosity of p̅p collisions at √s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 ± 239(stat) ± 144(syst) diboson candidate events and measure a cross section α(p̅p → VV + X) of 18.0 ± 2.8(stat) ± 2.4(syst) ± 1.1(lumi) pb, in agreement with the expectations of the standard model.
be less than 90\% to ensure that electrons and photons are not counted as jets.

In order to suppress the MJB, we use a E_T resolution model to distinguish true E_T originating from undetected neutrinos from fake E_T due to jets that are not measured accurately. The E_T significance is a dimensionless quantity based on the energy resolution of the jets, on soft unclustered particles, and on the event topology. The E_T significance is typically low when E_T arises from mismeasurement. In addition to having a small significance, the E_T will often be aligned with a jet. We select events with E_T significance larger than 4 and azimuthal angle between E_T and the nearest jet ($\Delta \phi(E_T, \text{jet})$) greater than 0.4 radians.

Finally, we apply several requirements that suppress contamination due to cosmic-ray, beam-related, and other noncollision backgrounds. Events are required to have at least one reconstructed vertex formed by charged particle tracks. The transverse energies of all calorimeter towers are calculated with respect to the z position of the primary vertex with the largest $\sum p_T$ of associated tracks. The electromagnetic fraction of the total event energy has to be larger than 30\% in order to reduce beam-related backgrounds. The arrival time of both leading jets as measured by the electromagnetic shower timing system [13] has to be consistent with the pp collision time. The remaining noncollision background has a smooth M_{jj} distribution and accounts for less than 0.2\% of the final number of selected events. After all cuts were applied, we find 44,910 events in the final sample.

The shape and normalization of the MJB are determined from the data. A vector, \mathbf{p}_T, analogous to the calorimeter-based E_T, is constructed from the vector sum of the transverse momenta of particles measured in the tracking system, and is largely uncorrelated to E_T for events where jets are not reconstructed accurately. In the absence of E_T arising from mismeasurement in the calorimeter, the \mathbf{p}_T and \mathbf{E}_T will be aligned in most events. The MJB is expected to be the dominant background component at larger values of $\Delta \phi(\mathbf{E}_T, \mathbf{p}_T)$. The dijet mass shape and normalization for the remaining MJB contribution in the sample is found by selecting events with $\Delta \phi(\mathbf{E}_T, \mathbf{p}_T) > 1.0$ and subtracting out the non-MJB backgrounds. The normalization is scaled up to account for the MJB contamination in the region $\Delta \phi(\mathbf{E}_T, \mathbf{p}_T) < 1.0$. The shape of the MJB is fit to an exponential in M_{jj} to derive a dijet mass template. The MJB shapes of M_{jj} and $\Delta \phi(\mathbf{E}_T, \mathbf{p}_T)$ distributions are verified with a large statistics MC sample.

The signal extraction is performed using a minimization of the unbinned extended negative log likelihood with the ROOFIT program [14]. Three M_{jj} template distributions are used in the fit: the first is $V +$ jets and $t\bar{t}$-quark production [in the following referred to as “electroweak” (EWK) backgrounds] and is taken from Monte Carlo simulation; the second is the MJB template, where the slope and normalization are Gaussian constrained to their previously measured values; the third template describes the signal. The signal shape is comprised of the WW, WZ, and ZZ distributions. This template is obtained from a Gaussian + polynomial fit to the signal Monte Carlo simulation where the mean and the width of the Gaussian distribution are linearly dependent on the jet energy scale (JES).

To assess the effect of systematic uncertainties on the measurement, we address separately two classes of sources: those that affect the signal extraction procedure and those that affect the signal acceptance in the cross section calculation. The signal extraction systematic uncertainties come from uncertainties in signal and background shapes. The shape uncertainties take into account the effect of jet energy resolution (JER), JES, MJB shape, and the shape of the EWK background. The jet energy scale and the shape and the normalization of MJB are treated as nuisance parameters in the fit and Gaussian constrained to their independently measured values. These uncertainties are therefore accounted for in the statistical uncertainty of the extraction.

The shape uncertainty for the EWK background is determined by using $\gamma +$ jets data [15] as an alternative background model in the M_{jj} fit. All major non-MJB backgrounds include a gauge boson accompanied by jets. There are similarities between the $\gamma +$ jets and $V +$ jets production; however, due largely to the mass difference between the γ and the W/Z, the kinematics is not identical. To take this into account, the $\gamma +$ jets data are weighted by the ratio of the dijet mass distributions of the EWK background MC samples to $\gamma +$ jets PYTHIA MC sample. We use these adjusted $\gamma +$ jets data to determine a systematic uncertainty on the EWK M_{jj} template. Selection cuts applied to the $\gamma +$ jets events are not identical to those applied to the $E_T +$ jets sample. For example, the Z decay into neutrinos will register as E_T in the detector, while the photon E_T will be measured in the calorimeter. For this reason, we cut on the vector sum of the photon E_T and any E_T present in $\gamma +$ jets events at 60 GeV, treating this sum as analogous to E_T in $V +$ jets events. A further consideration in the construction of the $\gamma +$ jets template is the effect of $\gamma + V$ events, as these events will cause a peak in the $\gamma +$ jets dijet mass distribution. We subtract this contribution using the $\gamma + V$ PYTHIA sample. Finally, we perform two signal extraction fits using the default EWK and $\gamma +$ jets templates, respectively. The uncertainty due to the shape of the EWK background is then estimated as the difference in the results obtained from these two fits. The described method accounts for a combined effect of JES, JER, and modeling of jets in MC simulations on the EWK M_{jj} template.

The uncertainty associated with the JES is the dominant source of systematic uncertainty on the acceptance and,
therefore, the cross section. Other less significant sources of systematic uncertainty that affect the measured cross section are jet energy resolution, initial and final state radiation (ISR/FSR), and parton distribution functions (PDF). A summary of all sources of systematic uncertainty is presented in Table I.

The measured yields for signal and backgrounds are given in Table II. Based on the MC simulation, the acceptances for the WW, WZ, and ZZ production is 2.5%, 2.6%, and 2.9%, respectively. In the calculation of the combined diboson cross section, we assume that each signal process contributes proportionally to its predicted SM cross section: 11.7 pb for WW, 3.6 pb for WZ, and 1.5 pb for ZZ.

The number of signal events we extract corresponds to a cross section of 18.0 ± 2.8(stat) ± 1.1(lumi) pb, in agreement with the SM prediction of 16.8 ± 0.5 pb obtained using the MCFM V5.4 program [16] with CTEQ6.1M PDFs [17].

Figure 1 shows a comparison between the observed $\Delta \phi_{\not{E}_T}$ distribution and the MJB and EWK (signal + background) components. This distribution provides a strong consistency check on our MJB model. Figure 2 shows the fit result and a comparison between the expected signal and data after background subtraction. We bin the data as in Fig. 2 and obtain a χ^2 of 9.4 for 9 degrees of freedom corresponding to a p value of 40%.

In summary, we use the \not{E}_T + jets final state to measure the WW + WZ + ZZ cross section in $p\bar{p}$ collisions at

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fitted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale, JES</td>
<td>0.985 ± 0.019</td>
</tr>
<tr>
<td>Yield of EWK background events</td>
<td>36, 140 ± 1230</td>
</tr>
<tr>
<td>Yield of MJB events</td>
<td>7249 ± 1130</td>
</tr>
<tr>
<td>Yield of diboson candidates</td>
<td>1516 ± 239</td>
</tr>
</tbody>
</table>
\(\sqrt{s} = 1.96\) TeV to be 18.0 \(\pm 2.8\) (stat) \(\pm 2.4\) (syst) \(\pm 1.1\) (lumi) pb. This is consistent with the SM prediction of 16.8 \(\pm 0.5\) pb. To assess the strength of the observed signal, the effects of parameter variations due to all relevant sources of uncertainty are studied by comparing the likelihood of the background-only fit with the full fit result, and converting the difference into significance numbers. We thus measure that the signal corresponds to a significance of at least 5.3 standard deviations from the background-only hypothesis. This is the first time the vector boson pair production has been observed in a hadronic final state at the Tevatron collider.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacio n and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\(^a\)Deceased.

\(^b\)Visitors from University of Massachusetts Amherst, Amherst, MA 01003, USA.

\(^c\)Visitors from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

\(^d\)Visitors from University of Bristol, Bristol BS8 1TL, United Kingdom.

\(^e\)Visitors from Chinese Academy of Sciences, Beijing 100864, China.

\(^f\)Visitors from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

\(^g\)Visitors from University of California Irvine, Irvine, CA 92697, USA.

\(^h\)Visitors from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

\(^i\)Visitors from Cornell University, Ithaca, NY 14853, USA.

\(^j\)Visitors from University of Cyprus, Nicosia CY-1678, Cyprus.

\(^k\)Visitors from University College Dublin, Dublin 4, Ireland.

\(^l\)Visitors from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

\(^m\)Visitors from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

\(^n\)Visitors from Kinki University, Higashi-Osaka City, Japan 577-8502.

\(^o\)Visitors from Universidad Iberoamericana, Mexico D.F., Mexico.

\(^p\)Visitors from University of Iberia, Iowa City, IA 52242, USA.

\(^q\)Visitors from Queen Mary, University of London, London, E1 4NS, England.

\(^r\)Visitors from University of Manchester, Manchester M13 9PL, England.

\(^s\)Visitors from Nagasaki Institute of Applied Science, Nagasaki, Japan.

\(^t\)Visitors from University of Notre Dame, Notre Dame, IN 46556, USA.

\(^u\)Visitors from University de Oviedo, E-33007 Oviedo, Spain.

\(^v\)Visitors from Texas Tech University, Lubbock, TX 79609, USA.

\(^w\)Visitors from IFIC (CSIC-Universitat de Valencia), 46071 Valencia, Spain.

\(^x\)Visitors from University of Virginia, Charlottesville, VA 22904, USA.

\(^y\)Visitors from Bergische Universitat Wuppertal, 42097 Wuppertal, Germany.

\(^z\)Visitors from On leave from J. Stefan Institute, Ljubljana, Slovenia.

