Direct Bound on the Total Decay Width of the Top Quark in pp Collisions at $s=1.96\text{TeV}$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.102.042001</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Dec 14 09:10:37 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/51352</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

Direct Bound on the Total Decay Width of the Top Quark in \(p\bar{p} \) Collisions at \(\sqrt{s} = 1.96 \) TeV

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 Baylor University, Waco, Texas 76798, USA
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy; **6b** University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254, USA
8 University of California, Davis, Davis, California 95616, USA
9 University of California, Los Angeles, Los Angeles, California 90024, USA
10 University of California, San Diego, La Jolla, California 92093, USA
11 University of California, Santa Barbara, California 93106, USA
12 Instituto de Fisica de Cantabria, CSIC-Universidad de Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Košice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708, USA
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19 University of Florida, Gainesville, Florida 32611, USA
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QQ, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138, USA

PRL 102, 042001 (2009) PHYSICAL REVIEW LETTERS week ending 30 JANUARY 2009

042001-2
We present the first direct experimental bound on the total decay width of the top quark, Γ_t, using 955 pb$^{-1}$ of the Tevatron’s $p\bar{p}$ collisions recorded by the Collider Detector at Fermilab. We identify 253 top-antitop pair candidate events. The distribution of reconstructed top quark mass from these events is fitted to templates representing different values of the top quark width. Using a confidence interval based on likelihood-ratio ordering, we extract an upper limit at 95% C.L. of $\Gamma_t < 13$ GeV for an assumed top quark mass of 175 GeV/c^2.

DOI: 10.1103/PhysRevLett.102.042001 PACS numbers: 14.65.Ha, 13.85.Qk, 12.15.Ff
Because of its large mass, the top quark has the largest decay width and hence the shortest lifetime of the quarks in the standard model (SM). The total width of the top quark at the leading order is dependent on the top quark mass m_t and the Fermi coupling constant G_F:

$$\Gamma_t = \frac{G_F^2 m_t^5}{8 \pi^3}.$$

Higher order effects include the introduction of finite W boson and b quark masses (M_W, m_b), nonzero off-diagonal elements of the quark-mixing matrix, and higher order corrections in the strong coupling constant α_s. Neglecting terms of order m_b^2/m_t^2, α_s^2, and $(\alpha_s/m_t)^2$, the width predicted in the SM at next-to-leading-order is

$$\Gamma_t = \Gamma_0 \left(1 - \frac{m_b^2}{m_t^2}\right)^2 \left(1 + 2 \frac{m_b^2}{m_t^2} \left[1 - \frac{2 \alpha_s}{3 \pi} \left(\frac{2 \pi^2}{3} - \frac{5}{2}\right)\right]\right).$$

The total width of the top quark is calculated to a precision of about 1% in the SM; it is approximately 1.5 GeV for $m_t = 175$ GeV/c^2 [1,2].

A deviation from the SM prediction could indicate a significant contribution from top quark decays to non-SM particles such as $t \rightarrow bH^+$ (where H^+ is the charged Higgs boson in the supersymmetric model), or from rare SM processes such as $t \rightarrow dW^+$ and $t \rightarrow sW^+$. Although such scenarios have not been observed experimentally [3–7], a general way to rule out the presence of a large top quark decay rate to non-SM channels, including those with nondetectable final states, is through experimental constraints on Γ_t. To date, there have been no direct experimental measurements of the total width of the top quark.

The data set for the analysis presented in this Letter is collected by the CDF II detector, a multipurpose particle detector for $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron. A charged particle tracking system immersed in a magnetic field consists of a silicon microstrip tracker and a drift chamber. Electromagnetic and hadronic calorimeters surround the tracking system and measure particle energies. Drift chambers and scintillators located outside the calorimeters detect muons. The detector is described in detail elsewhere [8].

We employ a cylindrical coordinate system where θ and ϕ are the polar and azimuthal angle, respectively, with respect to the proton beam. Transverse energy and momentum are $E_T = E \sin \theta$ and $p_T = |p| \sin \theta$, respectively, where E and p are energy and momentum. Missing transverse energy, E_T^m, is defined as the magnitude of the vector $-\sum_i E_{T_i} \hat{n}_i$, where E_{T_i} is the magnitude of transverse energy contained in each calorimeter tower i, and \hat{n}_i is the unit vector from the collision point to the tower in the transverse plane.

Top quarks are produced primarily by strong interaction in top-antitop ($t\bar{t}$) pairs at the Tevatron. Top quarks decay almost exclusively to W boson and a b quark through the weak interaction in the SM. We identify candidate $t\bar{t}$ events in the “lepton + jets” channel, where one W boson decays to an electron or a muon, and a neutrino, while the other W boson decays to a $q\bar{q}$-antiquark pair. We select events consistent with this topology, requiring a high-p_T electron or muon candidate, missing transverse energy denoting the presence of a neutrino, and four jets. Jets are reconstructed using a cone algorithm with radius $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$. At least one jet with $E_T > 15$ GeV must be identified as a b quark candidate through the presence of a displaced vertex within the jet cone arising from the decay of a long-lived bottom hadron (b-tag). The event selection criteria are listed in Table I. Detailed information on event selection is available elsewhere [9,10].

We divide the candidate events into two exclusive classes: one (1-tag) containing events with one b-tagged jet among the leading four, and another (2-tag) with two or more such jets. Separating these subsamples results in a more efficient use of statistical information due to their different reconstructed top mass resolution and signal-to-background ratios. Background events are expected primarily from W production in association with jets ($W +$ jets), multijet processes where a jet is misidentified as a charged lepton and E_T results from energy mismeasurement of the jets (non-W), and small contributions from electroweak backgrounds (EWK) composed of single top quark and diboson (WW, WZ, ZZ) production. Table II summarizes the expected sample compositions that are determined by scaling to 955 pb$^{-1}$ from a previous $t\bar{t}$ analysis with 318 pb$^{-1}$ [11]. A detailed description of the background estimation is given in Ref. [9].

After event selection, the analysis proceeds in three steps. First, we reconstruct a top quark mass $m_{t\bar{t}}^{\text{reco}}$ from each event using a kinematic fitter. The width of the reconstructed mass distribution for the selected events is sensitive to Γ_t. The second step is a likelihood fit of the reconstructed mass distributions using simulated signal and background distributions that yields an estimator of Γ_t. Finally, we use a frequentist prescription (with Bayesian treatment of systematic uncertainties [12]) to determine a 95% C.L. upper limit on Γ_t in the physically allowed region.

We perform a χ^2 minimization to fit the momenta of the $t\bar{t}$ decay products and determine $m_{t\bar{t}}^{\text{reco}}$ for each event using the four leading jets. We assume that the final state arises from the decay of a $t\bar{t}$ pair into W bosons and b quarks. To

Table I. Event selection requirements for the 1-tag and 2-tag event samples.

<table>
<thead>
<tr>
<th>Event selection category</th>
<th>1-tag</th>
<th>2-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^m (GeV) or p_T^b (GeV/c)</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>E_T (GeV)</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>Jets 1 – 3 E_T (GeV)</td>
<td>>15</td>
<td></td>
</tr>
<tr>
<td>Jet 4 E_T (GeV)</td>
<td>>15</td>
<td>>8</td>
</tr>
<tr>
<td>Number of b tags</td>
<td>1</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>
TABLE II. The sources and expected numbers of background events, and the number of events observed for the 1-tag and 2-tag event samples in our 955 pb$^{-1}$ data set.

<table>
<thead>
<tr>
<th>Background source</th>
<th>1-tag</th>
<th>2-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + jets</td>
<td>21.4 ± 4.9</td>
<td>4.6 ± 1.5</td>
</tr>
<tr>
<td>non-W</td>
<td>7.0 ± 1.5</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>EWK</td>
<td>2.8 ± 0.6</td>
<td>0.17 ± 0.04</td>
</tr>
<tr>
<td>Total background</td>
<td>31.2 ± 7.0</td>
<td>5.7 ± 1.8</td>
</tr>
<tr>
<td>Observed events</td>
<td>171</td>
<td>82</td>
</tr>
</tbody>
</table>

We resolve the ambiguity arising from the different ways of assigning the jets to the four quarks, we require that b-tagged jets are assigned to b quarks and select the assignment with the lowest χ^2. This kinematic fitter is used in other CDF analyses and is described in detail in Ref. [11]. In the χ^2 fit, both sets of W decay daughters are constrained to have the invariant mass of the W boson, and both Wb states are constrained to have the same mass. Although the top and antitop quark will likely be produced with different masses, we confirmed that there is no significant difference in the sensitivity resulting from the $m_t = m_{\bar{t}}$ condition even for a large value of Γ_t.

To distinguish between different values of Γ_t, we compare the $m_{\text{fit}}^{\text{rec}}$ distribution from our data to a series of samples created using the PYTHIA 6.216 event generator [13] and a full detector simulation. We use samples with $m_t = 175$ GeV/c^2 and various values of Γ_t between 0.001 GeV and 100 GeV. Although PYTHIA does not fully account for quantum interference with irreducible background diagrams and off-shell effects, for $\Gamma_t \leq 30$ GeV these effects are small, and the existing description is expected to be adequate [14]. W + jets background events are generated using ALPGEN 1.3 [15], with parton showering and fragmentation in HERWIG 6.504 [16]. An unbinned extended maximum likelihood fit [17] is performed using parameterized signal and background $m_{\text{fit}}^{\text{rec}}$ templates. As an example, Fig. 1 shows templates for the signal $m_{\text{fit}}^{\text{rec}}$ distribution in the 2-tag subsample at three values of Γ_t. We parameterize the $m_{\text{fit}}^{\text{rec}}$ distributions as a function of Γ_t. Small shifts in the mean of the templates are induced by the interplay between the top mass Breit-Wigner distribution and the parton distribution functions that preferentially produce events with low quark masses. In the likelihood fit, we constrain the background templates in the 2-tag and 1-tag samples to the levels given in Table II. The best fit value Γ_t^{fit} is the width which maximizes the likelihood.

We allow negative Γ_t^{fit} values that represent $m_{\text{fit}}^{\text{rec}}$ distributions narrower than the nominal due to statistical fluctuations. The expected $m_{\text{fit}}^{\text{rec}}$ distribution for a negative Γ_t^{fit} is derived from an extrapolation of the parameterization to the unphysical region. The reconstructed top mass distributions from the data and the results of the likelihood fit are shown in Fig. 2. The data are consistent with the fitted curves with the preferred value of $\Gamma_t^{\text{fit}} = -4.8$ GeV. For the data sample used in this analysis, we expect to measure a negative Γ_t^{fit} about 40% of the time and Γ_t^{fit} less than -4.8 GeV about 25% of the time if the total width is
Corresponds to a limit of Γ_t, however, will be constrained to the physical region.

To set a limit on the true value of Γ_t, we employ the Neyman construction [18] to ensure a coverage of at least 95%. The likelihood-ratio ordering principle due to Feldman and Cousins [19] provides a smooth transition from one-sided to two-sided limits and usually guarantees a nonempty interval. We derive the confidence belts from ensembles of simulated experiments in which signal events are selected from the simulated samples generated with different values of Γ_t. The Γ_t^{fit} distribution from each such ensemble is convoluted with a shape that represents the effects of systematic uncertainties as described below.

Since the top quark mass reconstruction is dominated by the measurement of jet energy, and since our fit is largely determined by the peak and the width of the $m_t^{ reco}$ distribution, the uncertainties on the jet energy scale and the jet energy resolution are the dominant uncertainties in the top width measurement. The uncertainties on the jet energy scale calibration are extensively studied using a combination of simulated and data control samples [20] and amount to about 3% of the measured jet energy for jets in the $t\bar{t}$ sample. The effect on the Γ_t^{fit} distribution is nonlinear, with larger Γ_t^{fit} being more likely for larger jet energy scale shifts in either direction. This is because the only degree of freedom in the templates is the width, and a signal template with a larger Γ_t accommodates the events with the shifted peak.

We select events with one jet and one high-p_T photon and compare their energies to study the jet energy resolution. Data and PYTHIA events show similar jet resolution of 15%–10% for jet transverse energies between 20 GeV and 200 GeV, respectively. Taking into account statistical uncertainty of the data, we define a p_T-dependent systematic uncertainty on jet resolution of 10%–4% to cover the difference. Then, we add Gaussian smearing with corresponding uncertainty to each jet in signal Monte Carlo events. We also study smaller systematic uncertainties in Γ_t^{fit} related to the background $m_t^{ reco}$ shape, Monte Carlo statistics, the Monte Carlo generator, the parton distribution functions, and other signal modeling effects [11]. The combined convolution shape, accounting for all systematic uncertainties, has a shift of -0.4 GeV and an rms of 4.6 GeV. This can be compared to the rms from statistical effects only: between 6.6 and 10.1 GeV for simulated experiment ensembles using Γ_t of 1.5–30 GeV. Figure 3 shows the 95% confidence belts after including systematic uncertainties. The fitted value from data, $\Gamma_t^{fit} = -4.8$ GeV, corresponds to a limit of $\Gamma_t < 13.1$ GeV at 95% C.L.

Our measurement assumes a fixed value for the top quark mass of 175 GeV/c2. The one-dimensional likelihood is sensitive to this assumption in the same way as described above for jet energy scale uncertainties. In particular, if the top quark mass is consistent with the current world average of 171.2 ± 2.1 GeV/c2 [21], the confidence belts would shift to higher Γ_t^{fit} values, resulting in an upper limit of Γ_t lower than what we quoted in this Letter.

In summary, using 253 top-antitop pair candidate events we present the first direct experimental upper limit on the total decay width of the top quark, $\Gamma_t < 13.1$ GeV at 95% C.L. for $m_t = 175$ GeV/c2. This corresponds to a limit on the top quark lifetime of $\tau_t > 5 \times 10^{-26}$ s. This measurement is statistically limited and its dominant systematic uncertainties are likely reducible with statistics. The precision of this measurement, therefore, will continue to improve over the course of run II of the Tevatron.

We thank Torbjörn Sjöstrand, Stephen Mrenna, Peter Skands, Alessandro Ballestrero, and Ezio Maina for discussions related to the Monte Carlo modeling of the top quark lineshape. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for

![Figure 3](color online). The confidence band in Γ_t^{fit} for a 95% C.L. is shown. Results from simulated experiments assuming a 955 pb$^{-1}$ data set at different values of Γ_t are convoluted with a smearing function to account for systematic uncertainties. The fitted value from the data is indicated by an arrow.

References

1. Neyman construction
2. Feldman and Cousins
3. Monte Carlo generator
4. Parton distribution functions
5. Signal modeling effects
6. Statistical effects
7. Systematic uncertainties
8. Jet energy resolution
9. Monte Carlo statistics
10. Signal modeling effects
11. Combined convolution shape
12. Systematic uncertainties
13. Jet energy scale
14. Jet energy resolution
15. Central value
16. Upper limit
17. Top quark mass
18. Current world average
19. Statistical effects
20. Systematic uncertainties
21. U.S. Department of Energy and National Science Foundation
Basic Research; the Comisión Interministerial de Ciencia y Tecnología, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

\[\text{(1) A. Czarnecki and K. Melnikov, Nucl. Phys. B544, 520 (1999).} \]
\[\text{(2) K. G. Chetyrkin, R. Harlander, T. Seidensticker, and M. Steinhauser, Phys. Rev. D 60, 114015 (1999).} \]
\[\text{(4) D. Acosta et al. (CDF Collaboration), Phys. Rev. Lett. 95, 102002 (2005).} \]
\[\text{(5) V. M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 100, 192003 (2008).} \]
\[\text{(6) T. Aaltonen et al. (CDF Collaboration), arXiv:0805.2109v1 [Phys. Rev. Lett. (to be published)].} \]
\[\text{(7) F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 80, 2525 (1998).} \]
\[\text{(8) D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).} \]
\[\text{(9) D. Acosta et al. (CDF Collaboration), Phys. Rev. D 71, 052003 (2005).} \]
\[\text{(10) A. Abulencia et al. (CDF Collaboration), J. Phys. G 34, 2457 (2007).} \]
\[\text{(11) A. Abulencia et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).} \]
\[\text{(13) T. Sjöstrand et al., Comput. Phys. Commun. 135, 238 (2001).} \]
\[\text{(14) T. Sjöstrand, S. Mrenna, and P. Skands (private communication).} \]
\[\text{(18) J. Neyman, Phil. Trans. R. Soc. A 236, 333 (1937).} \]
\[\text{(19) G. J. Feldman and R. D. Cousins, Phys. Rev. D 57, 3873 (1998).} \]