Search for Exclusive Z-Boson Production and Observation of High-Mass pp-bar→p gamma

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.102.222002</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Mar 16 08:34:57 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/51354</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for Exclusive Z-Boson Production and Observation of High-Mass $p\bar{p} \rightarrow p\gamma\gamma \rightarrow pl^+l^-\bar{p}$ Events in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7Brandeis University, Waltham, Massachusetts 02254, USA
8University of California, Davis, Davis, California 95616, USA
9University of California, Los Angeles, Los Angeles, California 90024, USA
10University of California, San Diego, La Jolla, California 92093, USA
11University of California, Santa Barbara, Santa Barbara, California 93106, USA
12Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17Duke University, Durham, North Carolina 27708, USA
18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19University of Florida, Gainesville, Florida 32611, USA
20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21University of Geneva, CH-1211 Geneva 4, Switzerland
22University of Glasgow, Glasgow G12 8QQ, United Kingdom
This Letter presents a search for exclusive Z boson production in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV, using the CDF II detector. No exclusive $Z \rightarrow l^+l^-$ candidates are observed and the first upper limit on the exclusive Z cross section in hadron collisions is found to be $\sigma_{\text{excl}}(Z) < 0.96$ pb at 95% confidence level. In addition, eight candidate exclusive dilepton events from the process $Z \rightarrow l^+l^-$ are observed.
At the Tevatron $p\bar{p}$ collider it is possible to produce Z bosons exclusively, in association with no other particles except the p and \bar{p}: $p\bar{p} \rightarrow p\gamma\gamma\bar{p} \rightarrow p\ell^+\ell^-\bar{p}$ are observed, and a measurement of the cross section for $M_\ell > 40$ GeV/c2 and $|\eta| < 4$ is found to be $\sigma = 0.24^{+0.15}_{-0.10}$ pb, which is consistent with the standard model prediction.

For the $\gamma\gamma \rightarrow \ell^+\ell^-$ event selection a sample of $\ell^+\ell^-$ pairs was selected in a kinematic region where this process has not previously been observed, with $M_{\ell\ell} > 40$ GeV/c2 and lepton transverse momenta $p_T > 20$ GeV/c. For the exclusive Z search a subsample was selected with an invariant mass close to the Z mass, $82 < M_{\ell\ell} < 98$ GeV/c2, and $p_T > 25$ GeV/c. The $\mu^+\mu^-$ events were collected with a trigger requiring one muon with $p_T > 18$ GeV/c. Offline two candidate muons were required. One muon was required to have been detected in the COT, the central calorimeter, and the muon chambers, and therefore to have $|\eta_\mu| < 1.0$. To increase the acceptance the second muon was only required to be detected in the COT and therefore to have $|\eta_\mu| < 1.5$. Events consistent with cosmic rays were eliminated with an identification algorithm [13] that used the timing of the COT drift chamber hits. The muon kinematics were found from the COT track momentum measurement. The e^+e^- events were collected with a trigger requiring one central electron with $p_T > 18$ GeV/c. Offline we required one candidate electron to be reconstructed in the central EM calorimeter and matched to a COT track, and a second electron to be reconstructed either in the same way or in the end-plug EM calorimeter where no matching COT track was required, since the tracking efficiency is lower in this region. The central electrons have $|\eta_e| < 1.3$ and the end-plug electrons have $1.3 < |\eta| < 3.6$, respectively, with separate electromagnetic (EM) and hadronic (HAD) compartments. Outside the calorimeters, drift chambers measure muons in the region $|\eta| < 1.0$. The regions $3.6 < |\eta| < 5.2$ are covered by lead-liquid scintillator calorimeters called the miniplugs [9]. At higher pseudorapidities, $5.4 < |\eta| < 7.4$, scintillation counters called beam shower counters (BSC) are located along the beam pipe. Gas Čerenkov detectors covering $3.7 < |\eta| < 4.7$ measure the luminosity with a 6% uncertainty [10]. Tracking detectors in a Roman pot spectrometer [11] can detect antiprotons with small p_T and $0.03 \leq \xi(p) \leq 0.08$, where $\xi(p)$ is the fractional momentum loss of the antiproton [12]. These detectors were operational for approximately 30% of the data set used in this analysis.

FIG. 1. (a) Exclusive photoproduction of a Z boson and (b) exclusive dilepton production via two-photon exchange.
trons have $1.3 < |\eta| < 3.6$. The electron kinematics were found from the calorimeter energy measurement, but if a track was matched to the calorimeter cluster it was used to determine the electron direction. If no track was matched the z position of the interaction was measured from the other electron track, and was used to determine the kinematics. With an integrated luminosity of 2.20(2.03) fb$^{-1}$ in the electron (muon) channels we found a total of 317 712 candidate dileptons with $M_\ell^2 > 40 $ GeV/c^2, of which 183 332 were in the Z region $82 < M_\ell^2 < 98 $ GeV/c^2.

Starting with the dilepton samples, events that were consistent with arising from exclusive production were selected by requiring that no other particles were produced in the collision. We vetoed events with any additional tracks reconstructed in the COT or the silicon tracker, or in which any of the calorimeters had a total energy deposition above that expected from noise. For this purpose the calorimeters were divided into five subdetectors (the central EM, the plug EM, the plug HAD, and the East and West miniplug) and the energy of all towers was summed, excluding those traversed by and surrounding the charged leptons, to give five ΣE values. Each ΣE was required to be less than a threshold, which was determined by studying two control samples: (1) events selected with a random bunch-crossing (zero bias) trigger with no tracks in the event, which should give distributions dominated by noise and (2) $W \to l\nu$ events with no detected tracks other than that of the charged lepton, which should give the distributions expected for nonexclusive $Z \to l^+ l^-$ events with no additional tracks. The production mechanism for nonexclusive W bosons is very similar to that for Z bosons and the cross section for exclusive W production ($p\bar{p} \to nW\bar{p}$) is negligible, making them an excellent control sample.

These exclusivity cuts rejected exclusive events that were in coincidence with additional inelastic $p\bar{p}$ collisions. It was therefore necessary to define an effective integrated luminosity $\int \mathcal{L}_{\text{eff}}$, for single interactions. The fraction of bunch crossings, selected from the zero bias trigger, that passed the exclusivity cuts was used to establish that $\int \mathcal{L}_{\text{eff}} = 20.6\%$ of the total integrated luminosity. The fraction was found from distributions reweighted to account for the difference in the instantaneous luminosity profiles between the zero bias events and the Z events. This method properly accounts for events with no interactions that failed the cuts due to noise in the calorimeters and fake reconstructed tracks, and with a very soft interaction that passed the exclusivity cuts. We found $\int \mathcal{L}_{\text{eff}} = (403 \pm 45)$ pb$^{-1}$ and (467 \pm 50) pb$^{-1}$ for the $\mu^+\mu^-$ and e^+e^- samples, respectively. The uncertainty includes a contribution of 9% obtained from an independent determination of $\int \mathcal{L}_{\text{eff}}$ (to be 18.7% of the total integrated luminosity) using Poisson statistics and the mean number of expected interactions per bunch crossing as a function of instantaneous luminosity, and a contribution of 6% from the uncertainty on the CDF luminosity measurement.

In order to reduce the background from $\gamma\gamma \to l^+l^-$ events where the proton dissociates into forward-going hadrons, we also made cuts on hits in the BSC detectors. An event was vetoed if any photomultiplier had hits above threshold. The inefficiency of this requirement was included in the acceptance.

A total of eight events passed the $\gamma\gamma \to l^+l^-$ selection criteria and no events passed the tighter exclusive $Z \to l^+l^-$ criteria. We used these events to measure the cross section for the $\gamma\gamma \to l^+l^-$ process and we set an upper limit on the cross section for exclusive Z production. To do this it was necessary to determine the acceptance for reconstructing the events, and the expected number of background events.

We calculated the acceptance for reconstructing $\gamma\gamma \to l^+l^-$ events using the LP AIR [14] Monte Carlo (MC) event generator together with a GEANT [15] simulation of the CDF detector. We applied corrections to account for changes in the acceptance due to internal bremsstrahlung from the leptons, using the PHOTOS [16] MC event generator. The acceptance for the exclusive Z search was found from the PYTHIA [17] MC event generator, which simulates nonexclusive $Z/\gamma^* \to l^+l^-$ events. Corrections were applied to account for the difference in kinematics between nonexclusive and exclusive production. We considered the Zp_T distribution, which was assumed to be between 0 and 2 GeV/c for exclusive Z production, the Z rapidity y_Z distribution, obtained from Ref. [4], and the angular distribution of the leptons.

The backgrounds to the $\gamma\gamma \to l^+l^-$ events were nonexclusive $Z/\gamma^* \to l^+l^-$ events that pass the exclusivity cuts, and $\gamma\gamma \to l^+l^-$ events where the proton or antiproton dissociates and the products were not detected in the forward detectors. The former was found to be 0.28 ± 0.19 events by assuming the fraction of nonexclusive $Z/\gamma^* \to l^+l^-$ events passing the exclusivity cuts to be the same as that for nonexclusive $W \to l\nu$ events. This fraction was found from $W \to l\nu$ data samples, selected by requiring a high p_T lepton and large missing transverse energy, to be $(9 \pm 6) \times 10^{-7}$, where the uncertainty is from the statistics of the samples. The latter was found from the LP AIR event generator, which also simulates $\gamma\gamma \to l^+l^-$ events where either the proton or antiproton or both dissociate. We used the minimum bias Rockefeller MC [18], which fragments the excited (anti)proton into a nucleon and pions, to predict the fraction of dissociation events that failed our exclusivity cuts due to particles in the region $|\eta| < 7.4$, which is the edge of the BSC acceptance. We predicted a total background of 1.45 ± 0.61 events, where the uncertainty came from varying the exclusivity cuts and observing how the number of events changes.

The backgrounds to exclusive Z events were nonexclusive $Z/\gamma^* \to l^+l^-$ events that passed the exclusivity cuts and exclusive $\gamma\gamma \to l^+l^-$ events with M_ℓ^2 in the Z mass window. The former was found to be 0.163 ± 0.099 events.
using the method described above, and the latter was found from the LPAIR MC samples to be 0.492 ± 0.061 events. We did not include a dissociation background for the exclusive Z search; instead we quote an upper limit on the cross section for a Z produced with no other particles with |η| < 7.4.

From a study of the acolinearity and timing of the tracks it was deduced that none of the candidate events were consistent with being induced by cosmic rays.

We calculated a cross section for each final state using the formula

\[\sigma = \frac{N - N_{\text{bck}}}{\alpha \int L_{\text{eff}}} \]

where \(N \) is the number of candidate events, \(N_{\text{bck}} \) is the expected number of background events, and \(\alpha \) is the acceptance. Assuming equal rates for the \(\mu^{+}\mu^{-} \) and \(e^{+}e^{-} \) processes, a combined cross section was found by forming a joint likelihood for the final states, which is the product of the Poisson probabilities to observe \(N \) events in each final state. The method is described in Ref. [19]; a prior that is flat for positive cross sections was assumed. The combined cross section for one lepton flavor was found to be \(\sigma(p\bar{p} \rightarrow \gamma\gamma \rightarrow p\ell^{+}\ell^{-}\bar{p}) = 0.24^{+0.13}_{-0.10} \text{ pb} \) for \(M_{\ell\ell} > 40 \text{ GeV}/c^2 \) and |η| < 4, which is in good agreement with the LPAIR prediction of 0.256 pb.

Some of the kinematic properties of the candidate events are given in Table I, where \(p_T(1) \) and \(p_T(2) \) are the lepton transverse momenta, \(\Delta \phi_{\ell\ell} \) is the difference in the azimuthal lepton angles (i.e., \(\Delta \phi_{\ell\ell} = \phi_{\ell\ell}^{\text{data}} - \phi_{\ell\ell}^{\text{MC}} \)), and \(p_T(\ell) \) is the \(p_T \) of the lepton pair. The resolution of the lepton transverse momenta is approximately 3.5 (1.4)% for electrons (muons). All of the events have lepton pairs that are back-to-back in azimuth with low \(p_T(\ell) \) values, which is expected for \(\gamma\gamma \rightarrow \ell^{+}\ell^{-} \) events. Figures 2(a) and 2(b) show the dilepton invariant mass and 180° minus \(\Delta \phi_{\ell\ell} \) distributions for the data together with the QED spectrum from LPAIR and the GEANT detector simulation. A good agreement with the data is observed.

No events passed our exclusive \(Z \rightarrow l^{+}l^{-} \) selection criteria, therefore we place an upper limit on the cross section of exclusive \(Z \) production at the Tevatron. We summed the final states to give \(\sum N = 0, \sum N_{\text{bck}} = 0.66 \pm 0.11, \text{ and } \alpha \int L_{\text{eff}} \times \text{BR}(l^{+}l^{-}) = 3.22 \pm 0.38 \text{ pb}^{-1} \). Here we have used \(\text{BR}(l^{+}l^{-}) = 3.37% \) as the branching fraction of the Z to decay to one lepton flavor pair. We used a Bayesian limit technique to set an upper limit on the exclusive Z cross section of \(\sigma_{\text{excl}}(Z) < 0.96 \text{ pb} \) at 95% confidence level. We also set an upper limit on the differential cross section with respect to \(y_Z \) at \(y_Z = 0 \) using the theoretical prediction of the \(y_Z \) distribution [4]. We took 0.257 as the ratio of \(\frac{d\sigma}{dy} |_{y=0} \) to \(\sigma_{\text{excl}}(Z) \) and find \(\frac{d\sigma}{dy} |_{y=0} < 0.25 \text{ pb} \) at 95% confidence level.

At hadron colliders the lepton kinematics in \(\gamma\gamma \rightarrow l^{+}l^{-} \) events determine the momenta of the forward (anti)protons through the relation \(\xi(p_{1(2)}) = \frac{1}{\sqrt{2}} \sum_{i=1,2} p_T^{(i)} e^{(i)\gamma}\gamma \) [11,12], where \(\xi(p_{1(2)}) \) is the fractional momentum loss of the forward (backward) hadron. In principle this relation could be used to calibrate both the momentum scale and resolution of forward proton spectrometers. In our eight candidate events, only one—that with \(M_{\ell\ell} > 40 \text{ GeV}/c^2 \) was from a period when the Roman pot spectrometer was operational and with \(\xi(p) \) in its acceptance; a track is observed, as expected for exclusive dilepton production. This is an encouraging sign that exclusive dilepton events at the large hadron collider (LHC) may be used to calibrate forward proton spectrometers [20].

In conclusion, we have observed exclusive production of high mass (\(M_{\ell\ell} > 40 \text{ GeV}/c^2 \)) \(e^{+}e^{-} \) and \(\mu^{+}\mu^{-} \) pairs and...
measured a cross section that agrees with QED expectations. We observed no candidates for exclusive Z production and put an upper limit on the photoproduction of Z at a level $\approx 3,000$ times higher than SM predictions.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

$^\text{a}$Deceased.

$^\text{b}$Visitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.

$^\text{c}$Visitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

$^\text{d}$Visitor from University of Bristol, Bristol BS8 1TL, U.K.

$^\text{e}$Visitor from Chinese Academy of Sciences, Beijing 100864, China.

$^\text{f}$Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

$^\text{g}$Visitor from Texas Tech University, Lubbock, TX 79409, USA.

$^\text{h}$Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

$^\text{i}$Visitor from Cornell University, Ithaca, NY 14853, USA.

$^\text{j}$Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.

$^\text{k}$Visitor from University College Dublin, Dublin 4, Ireland.

$^\text{l}$Visitor from University of Edinburgh, Edinburgh EH9 3JZ, U.K.

$^\text{m}$Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

$^\text{n}$Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

$^\text{o}$Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.

$^\text{p}$Visitor from Queen Mary, University of London, London, E1 4NS, U.K.

$^\text{q}$Visitor from University of Manchester, Manchester M13 9PL, U.K.

$^\text{r}$Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

$^\text{s}$Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.

$^\text{t}$Visitor from University de Oviedo, E-33007 Oviedo, Spain.

$^\text{u}$Visitor from Texas Tech University, Lubbock, TX 79409, USA.

$^\text{v}$Visitor from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.

$^\text{w}$Visitor from University de Oviedo, E-33007 Oviedo, Spain.

$^\text{x}$Visitor from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.

$^\text{y}$On leave from J. Stefan Institute, Ljubljana, Slovenia.

[1] A cylindrical coordinate system is used with the z axis along the proton beam direction; θ is the polar angle and ϕ is the azimuthal angle. The transverse momentum p_T is the momentum perpendicular to the z axis. We define rapidity as $y = \frac{1}{2} \ln \left(\frac{E + p_T}{E - p_T} \right)$ where E and p_T are the energy and momentum parallel to the z axis, pseudorapidity as $\eta = -\ln \tan(\theta/2)$ and transverse energy as $E_T = E \sin \theta$.

[12] A forward p has fractional momentum loss $\xi(p) = 1 - \frac{p_T}{p}$, where p_T is the p momentum (GeV/c) after an interaction.

