Search for High-Mass Resonances Decaying to Dimuons at CDF

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>CDF Collaboration et al. “Search for High-Mass Resonances Decaying to Dimuons at CDF.” Physical Review Letters 102.9 (2009): 091805. © 2009 The American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.102.091805</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Dec 31 07:20:26 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/52313</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

(CDF Collaboration)

1 Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2 Argonne National Laboratory, Argonne, Illinois 60439, USA
3 University of Athens, 157 71 Athens, Greece
4 Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5 University of Athens, 157 71 Athens, Greece
6a Istituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6b University of Bologna, I-40127 Bologna, Italy
7 Brandeis University, Waltham, Massachusetts 02254, USA
8 University of California, Davis, Davis, California 95616, USA
9 University of California, Los Angeles, Los Angeles, California 90024, USA
10 University of California, San Diego, La Jolla, California 92093, USA
11 University of California, Santa Barbara, Santa Barbara, California 93106, USA
12 Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
13 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14 Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15 Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16 Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17 Duke University, Durham, North Carolina 27708, USA
18 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19 University of Florida, Gainesville, Florida 32611, USA
20 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21 University of Geneva, CH-1211 Geneva 4, Switzerland
22 Glasgow University, Glasgow G12 8QO, United Kingdom
23 Harvard University, Cambridge, Massachusetts 02138, USA
We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb\(^{-1}\) collected in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on \(\sigma\text{BR}(p\bar{p} \rightarrow X \rightarrow \mu\bar{\mu})\), where \(X\) is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in \(R\)-parity-violating supersymmetric models, \(Z^0\) bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.
Neutral resonances decaying to muons have historically been a source of major discoveries. They also occur in a variety of theoretical models which attempt to unify the standard model (SM) forces or explain the large gap between the SM and gravitational energies. The gauge group $SU(3)C \times SU(2)L \times U(1)Y$ of the SM can be embedded in larger gauge groups such as $SU(5)$, $SO(10)$, and $E6$, to achieve unification in a grand unified theory [1–4].

In many schemes of grand unified theory symmetry breaking, $U(1)$ gauge groups survive to relatively low energies [2], leading to the prediction of neutral gauge vector (Z') bosons. Such Z' bosons typically couple with electroweak strength to SM fermions, and can be observed at hadron colliders as narrow, spin-1, dimuon resonances from $q\bar{q} \rightarrow Z' \rightarrow \mu\bar{\mu}$. Many other models, such as the $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ gauge group of the left-right model [5], and the “little Higgs” models [6,7], also predict heavy neutral gauge bosons.

Additional spatial dimensions are a possible explanation for the gap between the electroweak symmetry-breaking scale and the gravitational energy scale M_{Planck} [8,9]. The Randall–Sundrum (RS) model [9] predicts excited Kaluza-Klein modes of the graviton, which appear as spin-2 resonances G^* in the process $q\bar{q} \rightarrow G^* \rightarrow \mu\bar{\mu}$. These modes have a narrow intrinsic width when $k/M_{\text{Planck}} < 0.1$, where k^2 is the spacetime curvature in the extra dimension. In superstring theories with $O(1)$ couplings, $k/M_{\text{Planck}} = 0.01$ [10].

Spin-0 resonances such as the sneutrino $\tilde{\nu}$ in the process $q\bar{q} \rightarrow \tilde{\nu}, \tilde{\nu} \rightarrow \mu\bar{\mu}$ are predicted by supersymmetric theories with R-parity violation [11]. Scalar Higgs bosons can be produced as resonances and decay to dimuons.

The most sensitive direct searches for high-mass boson resonances, which have previously been performed at the Tevatron, have set 95% confidence level (C.L.) lower limits on the masses $M_{Z'}$, M_{G^*}, and M_{ν} of Z' bosons, RS gravitons, and sneutrinos, respectively. The previous dimuon publication from CDF II, based on ≈ 200 pb$^{-1}$ of integrated luminosity [12], set mass limits that vary from 170 to 885 GeV [13] depending on the boson spin and couplings to the SM fermions. Other dilepton and diphoton decay channels have also been explored at the Tevatron [14,15]. Using an order of magnitude more data, we present in this Letter the most sensitive direct search to date for Z', G^*, and $\tilde{\nu}$ bosons at high mass.

This analysis uses 2.3 fb$^{-1}$ of data from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV in the CDF II detector [16,17]. CDF II is a magnetic spectrometer surrounded by calorimeters and muon detectors. We use the central drift chamber (COT) [18], the central calorimeter [19], and the muon detectors [20] for identification and measurement of muons with $|\eta| < 1$ [13]. The online selection requires a COT track with $p_T > 18$ GeV [13], and matching muon detector hits. We select a pair of oppositely charged muons, each with a COT track with $p_T > 30$ GeV passing quality requirements, and a minimum-ionization signal in the calorimeter. Cosmic rays are rejected using COT hit timing [21]. The dimuon signal sample consists of 68 150 events in the control region $70 < m_{\mu\bar{\mu}} < 100$ GeV, where the $p\bar{p} \rightarrow Z \rightarrow \mu\bar{\mu}$ process dominates, and 3804 events in the search region $m_{\mu\bar{\mu}} > 100$ GeV.

The alignment of the COT is performed using a pure sample of high-momentum cosmic-ray muons, in order to obtain the best possible dimuon mass resolution. Each muon’s complete trajectory is fitted to a single helix [21]. The fits are used to determine the relative locations of the sense wires, including gravitational and electrostatic displacements, with a statistical accuracy of a few microns [17]. We constrain remaining misalignments, which cause a bias in the track curvature, by comparing (E/p) [13] for electrons and positrons. The tracker momentum scale and resolution are measured by template fitting the $Z \rightarrow \mu\bar{\mu}$ mass peak, and calibrating to the world average values [22] of the Z boson mass and width.

For a resonance with electroweak coupling and mass above 200 GeV, the observed width of the $m_{\mu\bar{\mu}}$ distribution is dominated by the track curvature resolution, resulting in an approximately constant resolution of $\delta m_{\mu\bar{\mu}}^{-1} = 0.17$ TeV$^{-1}$. Our search strategy is to construct templates of the observable $m_{\mu\bar{\mu}}^{-1}$ distribution for a range of boson Breit-Wigner pole masses, add the background distributions to the templates, and compare the templates to the $m_{\mu\bar{\mu}}^{-1}$ distribution from the data in the search region $m_{\mu\bar{\mu}} > 100$ GeV. The simulated templates (including backgrounds) are normalized to the data in the $70 < m_{\mu\bar{\mu}} < 100$ GeV region, thus canceling several sources of systematic uncertainty.

We determine the most likely number of signal events (N_S), and the corresponding confidence intervals [23], from the binned Poisson likelihood [17] for the observed data to be produced by a sum of signal and background templates. The use of the constant-resolution variable $m_{\mu\bar{\mu}}^{-1}$ simplifies the optimization of the template binning and the scan over the boson pole masses.

Signal and SM Drell-Yan background distributions are evaluated using a specialized Monte Carlo simulation [17] of boson production and decay, and of the detector response to the leptons and hadrons. The kinematics of boson production and decay are obtained from the PYTHIA [24] event generator using the CTEQ6M [25] set of parton distribution functions. QED radiation is simulated [17] based on the WGRAD program [26]. The Monte Carlo program performs a detailed hit-level simulation of the lepton tracks. COT hits are generated according to their resolution (≈ 150 μm) and measured efficiencies, and a helix fit is...
FIG. 1 (color online). The distribution of $m_{\mu\bar{\mu}}$ (TeV$^{-1}$) for the observed data (points), the individual backgrounds (dotted or dashed histograms) and the summed background (solid histogram). The Z boson peak is prominently seen. The inverse mass distribution has the useful feature that the detector resolution is constant (≈ 0.17 TeV$^{-1}$) over the range shown in the plot.

The likelihood fitter determines the 95% C.L. upper limit on the number of signal events, for each value of the resonance pole mass. We convert these limits to limits on the number of signal events, for each value of the resonance pole mass, using the total acceptance as a function of pole mass, the NNLO cross section for $Z \rightarrow \mu\mu$, and dividing by the observed number of $Z \rightarrow \mu\mu$ events. The acceptance is verified with the detailed GEANT-based simulation, and comparisons to data distributions. The muon identification efficiency is verified using a pure data sample of Z bosons triggered by one identified muon. The total acceptance, including kinematic and fiducial acceptance and dimuon identification, increases from $\approx 13\%$ ($\approx 20\%$) for a pole mass of 90 GeV to $\approx 40\%$ ($\approx 45\%$) for a Z' (graviton) pole mass of 1 TeV, and decreases for higher pole masses due to the kinematic limit of the parton collisions. The 95% C.L. upper limits on $\sigma BR(\tilde{\nu}, \tilde{v} \rightarrow \mu\bar{\mu}), \sigma BR(Z' \rightarrow \mu\bar{\mu})$, and $\sigma BR(G' \rightarrow \mu\bar{\mu})$ are shown in Fig. 3. The dominant mass-dependent systematic uncertainties arise from parton distribution functions (16%), the NNLO K factor (9%) [27], QED radiative corrections (3%) [32], and acceptance (3%), all quoted at 1 TeV. These uncertainties are incorporated as functions of $m_{\mu\bar{\mu}}$ and increase monotonically beyond 100 GeV. Uncertainties on the momentum scale and resolution, and on the non-Drell-Yan background predictions, have a negligible effect.

Our signal templates have been generated with a resonance pole width $\Gamma = 2.8% \times M$, based on the SM Z boson width. Thus our signal scan probes an observed width of $\approx [17\%(M/\text{TeV}) \Phi 2.8\%]M$. In a model where the observed width increases by a factor x, the cross section limits would increase by about a factor of \sqrt{x}.
We use PYTHIA to compute the cross sections for production of \(Z' \) bosons predicted by \(E_6 \) models [33] or having the same couplings to SM fermions as the \(Z \) boson, and of \(G^+ \) bosons for various \(k/M_{\text{Planck}} \) values. We apply the NNLO \(K \) factor to these leading order cross sections. The NLO \(\tilde{\nu} \) production cross sections are obtained from [11]. We derive the boson mass limits shown in Table I.

In conclusion, we have presented a direct search for high-mass neutral resonances with spin-0, 1, and 2, using an integrated luminosity of 2.3 fb\(^{-1} \) collected by the CDF II detector. Our dimuon invariant-mass spectrum is consistent with the SM expectation. We set the world’s tightest constraints on \(Z' \) bosons in various models, on Kaluza-Klein graviton modes in the RS model, and on sneutrinos in \(R \)-parity-violating supersymmetric models. At 95% C.L., we exclude \(100 < M_{Z'} < 982 \) GeV for a \(Z'_0 \) boson of the \(E_6 \) model, \(100 < M_{G^+} < 921 \) GeV for \(k/M_{\text{Planck}} = 0.1 \), and \(100 < M_{\tilde{\nu}} < 810 \) GeV for \(\lambda^2 BR(\tilde{\nu} \to \mu \bar{\mu}) = 0.01 \), where \(\lambda \) is the \(d\bar{d} \tilde{\nu} \) coupling and \(BR \) denotes the \(\tilde{\nu} \to \mu \bar{\mu} \) branching ratio.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, U.K.; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, Spain; the Slovak R&D Agency; and the Academy of Finland.

TABLE I. 95% C.L. lower limits on \(Z' \), graviton, and sneutrino masses (in GeV) for various model parameters [9,11,33]. For the \(R \)-parity-violating sneutrino model, \(\lambda \) is the \(d\bar{d} \tilde{\nu} \) coupling, and \(BR \) denotes the \(\tilde{\nu} \to \mu \bar{\mu} \) branching ratio.

<table>
<thead>
<tr>
<th>Model</th>
<th>Mass limit</th>
<th>(k/M_{\text{Planck}})</th>
<th>Mass limit</th>
<th>(\lambda^2 BR)</th>
<th>Mass limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z'_0)</td>
<td>789</td>
<td>0.01</td>
<td>293</td>
<td>0.0001</td>
<td>397</td>
</tr>
<tr>
<td>(Z'^{\text{sec}}_0)</td>
<td>821</td>
<td>0.015</td>
<td>409</td>
<td>0.0002</td>
<td>441</td>
</tr>
<tr>
<td>(Z'_0)</td>
<td>861</td>
<td>0.025</td>
<td>493</td>
<td>0.0005</td>
<td>541</td>
</tr>
<tr>
<td>(Z'^{\text{sec}}_0)</td>
<td>878</td>
<td>0.035</td>
<td>651</td>
<td>0.001</td>
<td>662</td>
</tr>
<tr>
<td>(Z'_0)</td>
<td>892</td>
<td>0.045</td>
<td>746</td>
<td>0.002</td>
<td>731</td>
</tr>
<tr>
<td>(Z'^{\text{sec}}_0)</td>
<td>904</td>
<td>0.05</td>
<td>824</td>
<td>0.005</td>
<td>810</td>
</tr>
<tr>
<td>(Z'^{\text{SM}}_0)</td>
<td>1030</td>
<td>0.1</td>
<td>921</td>
<td>0.01</td>
<td>866</td>
</tr>
</tbody>
</table>

\(^a \)Deceased.

\(^b \)Visitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.

\(^c \)Visitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

\(^d \)Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.

\(^e \)Visitor from Chinese Academy of Sciences, Beijing 100864, China.

\(^f \)Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.