Transdermal drug delivery by localized intervention

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1109/MEMB.2008.931016">http://dx.doi.org/10.1109/MEMB.2008.931016</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Apr 05 10:34:40 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/52351">http://hdl.handle.net/1721.1/52351</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
oral and needle-based administration of drugs have long been accepted as a simple, convenient, and inexpensive mode of drug delivery. However, the systemic delivery of drugs degrades the compound during its passage through the low pH environment of the gastrointestinal (GI) tract. Also, these methods are not suited for the delivery of new and highly complex drugs. In addition, other concerns such as protection from needle-prick injuries, need for sustained delivery, and relief for needle-phobic patients have risen sharply. Several alternatives have been developed in the past few decades. These include pulmonary, transmucosal, transdermal, and buccal routes of delivery. These methods provide the advantages of local and minimally invasive delivery and are suited for the delivery of specific drugs.

Transdermal drug delivery systems have the potential to make a major impact on the way both traditional drugs and novel pharmaceuticals are administered. The skin offers an unobtrusive route for drug delivery, which encourages patients’ compliance in taking medication. A variety of low-molecular-weight (<300 Da) drugs are delivered by transdermal patches that utilize preexisting pathways in the skin, such as sweat ducts and hair follicles. However, the barrier properties of the stratum corneum (SC), the outermost layer of the skin, limit the rate, size, and type of molecules that can be delivered by patches. A number of active transdermal methods have been developed to enhance the rate of drug delivery by physical or chemical intervention [1], [2].

Chemical permeation enhancers are widely used to enhance the transport of drugs across the skin [3], [4]. Several physical means have been demonstrated to increase the throughput of small and macromolecules across the skin. For example, iontophoresis employs low-level electrical current to deliver drugs through the skin [5]. Low-frequency ultrasonic energy is used in sonophoresis to produce cavitation bubbles that create microchannels in the skin, through which drugs are delivered [6], [7]. Thermal poration creates small open pits by local heating [8]. Laser-ablated SC allows drugs to penetrate the skin [9]. Microneedles are used to penetrate the outer layers of the skin to provide pathways for drug delivery [10], [11]. In many needle-free devices, drugs in powder form enter the skin ballistically at a speed of up to 750 m/s [12].

Field-Confined Skin Electroporation

Skin electroporation [18] extends the concept of lipid bilayer membrane electroporation [19], in which a transient elevation of the transmembrane voltage is hypothesized to create aqueous pathways across the multilamellar bilayer membranes of the SC [20]. These pathways were shown to enhance the delivery of low-molecular-weight molecules (<1 kDa) but showed only a limited increase in macromolecular flux. The keratin matrix within the corneocytes acts as a sieve in trapping large molecules. Electroporation was then used to introduce low-toxicity keratolytic molecules into the corneocytes to disrupt the keratin matrix. The combination of new aqueous pathways through the multilamellar lipid bilayer membranes and disruption of the keratin matrix results in dislodgement of entire stacks of corneocytes, creating microconduits through the SC [14], [15], [20], [21].

We have previously shown that electroporation could be constrained to occur at predetermined sites (microholes in a thin insulating sheet), even with imperfect skin contact [13]. In these studies, an insulating sheet containing an array of microholes (50–150 μm diameter) that contacted the skin forced the electric field to penetrate the skin mainly through the regions exposed to the microholes. Using keratolytic molecules in conjunction with such localized electroporation, we created microconduits with a minimum size of 50 μm diameter. Such openings present a negligible steric hindrance to macromolecule transport. Microconduits were shown to support volumetric flow in the order of 0.01 mL/s by a pressure

Digital Object Identifier 10.1109/MEMB.2008.931016
Patient compliance in transdermal drug delivery that utilizes physical means will greatly improve if the intervention is localized and minimally invasive.

difference of only 0.01 atm (about $10^2$ Pa), demonstrating that the SC barrier had been completely removed within this microscopic area [14], [15].

Currently, skin electroporation employs HV pulses applied across skin pleats or between two sites on the skin. This causes the resulting electric field to penetrate deep into the skin, stimulating the underlying nerves. These fields may therefore cause involuntary muscle contraction and pain. To make skin electroporation a viable technology for transdermal drug delivery and analyte sampling, it should cause minimal sensation [16]. Here, we show that field-confined skin electroporation enables drug delivery with reduced sensation.

Transverse and Lateral Electroporation
Skin electroporation is achieved by applying HV electrical pulses across the skin using a pair of electrodes. Depending on the relative orientation of these electrodes, the resulting electroporation can predominantly be either transverse or lateral (Figure 1). In transverse electroporation, the electrodes are far apart (compared with the thickness of the insulating barrier of SC, which is approximately 20 μm), causing the field lines between the electrodes to penetrate deep into the skin. Such an arrangement would cause electroporation of SC, epidermis, and possibly deeper tissue. This would lead to muscle contraction and nerve stimulation. When the distance between the electrodes is small (<200–300 μm), the field lines travel from one electrode to another mainly through the superficial layers of the skin. This causes lateral electroporation of the SC and epidermal cells that lie between the electrodes. Because the main barrier for transdermal drug delivery is the SC, confining the electric field mostly to the SC by optimizing the electrode arrangement is beneficial (Figure 1).

Field-Confining Electrodes
The concept of lateral electroporation was applied in designing the electrodes of an electrode-reservoir device (ERD) to confine the electric field to SC (Figure 2). An insulating sheet with a conductive coating that contacts the skin serves as one electrode. The second electrode is kept away from the skin, with the intervening region filled with conducting fluid. The insulating sheet contains one or more holes, with an insulating annular region around the periphery. When the skin makes close contact with the sheet, the electric field is forced to go through the skin to reach the counter electrode. The dimension of the annular region relative to the SC thickness controls the depth of penetration of the electric field.
Electrode Array Fabrication

The electrode arrays were fabricated with a 50-μm thick polyimide (PI) sheet (DuPont V-Film Kapton). One side of the film was microroughened by oxygen plasma etching for 1–2 min. A 150-A˚ thick bonding layer of chrome was then electron-beam deposited on the etched side, followed by the deposition of a 3,000-A˚ thick layer of gold. An infrared (1,047 nm) laser mounted on a high-speed, 0.1 μm accuracy, x-y positioning system was used to open microholes selectively in the gold/chrome layer. Microholes were generated by repositioning the gold-coated PI in the pulsed laser beam repeatedly, opening overlapping concentric circles in the metal. One pulse per position clearly opened a 15-μm diameter microhole in the metal. A 200-μm diameter microhole required two concentric circles of eight and 16 microholes, respectively. A multiline (centered at 514 nm) green laser on a similar computer-controlled x-y table system was used to make the microholes through the PI. Residues in the PI microholes were removed using either a 1-min ultrasonic cleanup in water or an oxygen plasma etch. PI films having one microhole to arrays of 121 microholes containing 20–200-μm diameter PI microholes and 40–500-μm diameter gold microholes on 300–800-μm centers were fabricated. The completed film and electrode arrays were cut to fit the electrode holder.

In Vitro Drug Delivery

Two fluorescent model molecules, viz., calcein and sulforhodamine, were used to assess transdermal delivery in vitro by lateral and transverse electroporation. A piece of full-thickness human skin was used with an ERD (Figures 1 and 2), with an 11 × 11 array of 65-μm diameter microholes. The annular gap between a microhole and the thin film gold electrode was 140 μm, with a 500-μm microhole-to-microhole separation. A series of 360 exponentially decaying pulses (τ = 0.6 ms) of magnitude 260 V was applied. Figure 3(a) shows that the dye was delivered locally within the SC in the region exposed to the microholes in the insulating sheet. The array of bright spots in the skin [shown in more detail in Figure 3(b)]

---

Fig. 2. Main features of a prototype microelectrode-based ERD for painless skin electroporation. (a) ERD attached to syringe, with electrical leads (arrows) leading to a pulse source; $R_{far/arr}$ = resistance between far (internal) electrode and the gold film array electrode; $R_{far/ECG}$ = resistance between internal electrode and an electrocardiogram (ECG) electrode (see (d)). (b) Top or bottom view of gold film electrode with an array of microholes. (c) Enlarged view of one hole in gold electrode, with an annular gap and a smaller through-PI microhole (filled with phosphate buffered saline (PBS) or donor solution). (d) ECG electrode (in vivo experiments) located about 20 cm away. Negligible electrical conduction across the intervening dry skin was measured. $R_{far/ECG}$ involves a pathway from the internal electrode (see (e)) through the skin at the sites of the microholes, through the underlying tissue (only about 100 Ω) and across the skin at the ECG electrode (about 2,000 Ω). A decrease in the total resistance of this pathway indicates the electroporation of the skin in the slot. (e) Main portion of an ERD, showing the housing, internal electrode within the solution reservoir, PI membrane (f), the gold film electrode, and the skin (SC, epidermis, and dermis). The reservoir can contain molecules to be transported across the skin or can serve as a receptor volume for molecules taken out across the skin. (f) Enlarged view of one microhole, annular gap, and SC-contacting gold film electrode. The descending curved lines terminating in arrows show (one polarity) the local electric field (and current) lines, which are confined mainly to the SC. In transverse electroporation experiments, the electrode on the dermis side (e) was used as a counterelectrode. HV pulses were delivered by discharging a capacitor between the pulse source terminals.
coincided with the array of microholes in the electrode sheet. Two different electrode arrangements were tested. In the first arrangement, the gold sheet served as an electrode, corresponding to the case of lateral electroporation. The resulting fluorescence distribution, as seen in the skin cross section [Figure 3(c)], confirms lateral electroporation. The dye is localized to the outer layer of the skin directly below the annular gap in the electrode. In the second arrangement, the second electrode is placed on the dermis side of the skin specimen, conductive for transverse electroporation. The fluorescent molecules, in this case, are delivered as deep as 80 μm below the skin surface [Figure 3(d)]. This result is consistent with the

Because the main barrier for transdermal drug delivery is the SC, confining the electric field mostly to the SC by optimizing the electrode arrangement is beneficial.

---

Fig. 3. Delivery of fluorescent molecules into the SC of full-thickness human skin in vitro by an ERD, with an 11×11 array of 65-μm diameter microholes. The annular gap between a microhole and the thin film gold electrode is 140 μm, with a 500-μm microhole-to-microhole separation. A total of 360 exponentially decaying pulses (τ = 0.6 ms; 260 V) was applied. The ERD reservoir medium contained two fluorescent molecules: 1 mM calcein (charge, −4; molecular weight, 623) and 1 mM sulforhodamine (charge, −1; molecular weight, 607). The skin was secured either from the abdomen, arm, or back of adult human cadavers (National Disease Research Interchange (NDRI), Philadelphia, Pennsylvania; Ohio Valley Tissue and Skin Center, Cincinnati, Ohio). (a) Top view of skin by fluorescence microscopy. Dark spots (red fluorescence of sulforhodamine) at the 500-μm spacing are surrounded by light rings (green fluorescence of calcein). The autofluorescence of the skin is seen as a diffuse green background. (b) Magnified image of two sites from the array. The dark center and surrounding ring regions are evident. (c) Cross section of microtomed (10-μm-thick sections) skin specimen (scale bar, 100 μm). This shows fluorescence within the SC at distances corresponding to the 500-μm separation (10× magnification). This localized fluorescence is consistent with predominantly lateral electroporation. (d) A similarly sectioned skin shows penetration of dyes deeper into the skin for the transverse skin electroporation configuration (Figure 2).
electroporation of skin clamped in a side-by-side chamber [13]. Lateral skin electroporation was evident from the large decrease in skin resistance, from 25 to 2 kΩ, with most of the reduction occurring over the first 20 pulses [Figure 4(a)]. After the pulsing, the resistance recovers slowly, reaching 7 kΩ in 1 h [Figure 4(b)].

**Painless In Vivo Lateral Electroporation**

The ERD was tested in vivo on a senior investigator, according to a protocol (protocol no. 2218) approved by the Institutional Review Board of the Massachusetts Institute of Technology (MIT) Committee on use of humans as experimental subjects. The subject’s forearm was placed over the ERD, with the skin forming a tight seal around the openings in the gold electrode. The ERD (Figure 2) had an 11 × 11 array of 65-μm diameter microholes, with an annular gap between a microhole and the thin film gold electrode of 140 μm and a microhole-to-microhole separation of 500 μm. A series of 0.6-ms, 250-V exponential pulses was applied between the internal electrode and the gold film electrode. The skin impedance was reduced from 17 to 12 kΩ within the first ten pulses [Figure 4(c)]. The subject verbally reported the level of sensation experienced during pulsing. The subject felt no sensation during the ten pulses. However, as the annular gap between the gold surface and the edge of the opening in the PI sheet was increased, the sensation increased (Table 1). Although sensation evaluation was subjective, there was a clear transition from no sensation to various clear sensation levels, which is consistent with the ERD causing significant lateral electroporation (enhanced electric field confinement) and increasing amounts of transverse electroporation as the annular gap (half the differences in diameters) was increased. This result demonstrates that lateral skin electroporation that spans approximately 20 μm thickness of the SC can be achieved by using field-confining electrodes. The data show that, for a certain range of microhole dimensions, the microconduits can be created painlessly. Such an approach may be amenable to a painless way of delivering drugs across human skin.

**Microscissioning Materials and Methods**

The experimental setup used in the microscissioning study is shown in Figure 5. Experiments were performed using a modified Airbrasive model K, series II (S. S. White Technologies, Piscataway, NJ) instrument. The transdermal experiments were performed on senior investigators, according to a protocol approved by the MIT Committee on use of humans as experimental subjects. A hand-held unit containing multiple nozzles supported moderate velocity flow of scissoring particles was coupled to a mask that contacted the subject’s skin. A 75-μm thick Kapton mask with one or four microholes with a specified diameter and center-to-center distance was used to constrain [17]. By using a mask with microholes contacting the skin during the process, scissioning is confined to small areas of the skin. The mask also serves to limit the depth of intervention. The particles that bounce off the skin and skin fragments are removed by suction. If filled with saline, the electrical impedance between the microconduit and an unperturbed site on the skin can be used to gauge the depth of the microconduit.

**Table 1. Painless-to-pain transition using an ERD with sterile saline.**

<table>
<thead>
<tr>
<th>PI Microhole Diameter (μm)</th>
<th>Gold Film Microhole Diameter (μm)</th>
<th>Sensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>140</td>
<td>None</td>
</tr>
<tr>
<td>50</td>
<td>180</td>
<td>None</td>
</tr>
<tr>
<td>65</td>
<td>160 or 180</td>
<td>None</td>
</tr>
<tr>
<td>65</td>
<td>300</td>
<td>Very slight</td>
</tr>
<tr>
<td>65</td>
<td>500</td>
<td>Considerable</td>
</tr>
<tr>
<td>155</td>
<td>450 (7 × 7 microhole array)</td>
<td>Sharp</td>
</tr>
</tbody>
</table>
the area of the skin exposed to the abrasive particles. The mask was mounted on a holder with a provision to position the gas nozzle directly above the mask. The device was connected by a hose to a reservoir of particles pressurized by a portable nitrogen gas cylinder. A vacuum attachment to the mask holder collected residual particles and skin fragments. Aluminum oxide (Al-602) (Atlantic Equipment Engineers, Bergensfield, NJ) was selected as the scissioning particle because of its inertness [22], size (20–70 μm), irregularity, and sharpness. The particles in a nitrogen stream under a pressure of 550 kPa were directed toward a site on the inner left wrist, 10 cm from the center of the palm of the subject.

**Microscissioned Microconduits**

The use of a mask with an array of small openings of specified dimension and spacing enables the creation of well-defined microconduits in the skin. In addition, the use of multiple nozzles to direct the particle stream to localized sites on the skin

---

**Fig. 5.** (a) Microscissioning schematic. Microscissioning is achieved by a collimated flux of accelerated inert particles in a gas stream passing through the aperture in a mask held against the skin [17]. The particles incise (cut) the tissue by removing the tissue fragments in the process, resulting in a microconduit that is fully open and is between 50 and 200 μm deep. (b) A 75-μm-thick Teflon mask with one or four holes, with a specified diameter and center-to-center distance, was used to constrain the area of the skin exposed to the abrasive particles. The mask was mounted on a holder, with the provision to position the gas nozzle directly above the mask. The mask with a single 200-μm diameter opening, a 450-μm diameter nozzle, and a nozzle to mask spacing of 1,500 μm was used. The particles in a nitrogen stream under a pressure of 550 kPa were directed toward a site on the inner left wrist, 10 cm away from the center of the palm of an adult subject. The depth of cut, saline-filled microconduits could be approximately controlled by monitoring the decrease of electrical impedance between an ECG electrode on the subject’s unperturbed skin and the mask holder. A SR715 LCR meter operating at 1 V and 1 kHz was used to measure the skin impedance. The metal mask holder was electrically connected to the microconduit by saline contained in the conducting ring to which the mask was bonded. Since the mask was held tightly against the skin, the saline did not leak between the mask and skin, thus providing electrical continuity with the microconduit.

**Fig. 6.** Typical microconduits created by microscissioning [17]. (a) A four-nozzle, four-hole mask was used to create a $2 \times 2$ array of microconduits 150 μm in diameter and 450 μm apart by microscissioning for 5 s. Some residual particles are seen within some of the microconduits. (b) On blowing the site gently with a stream of air and rinsing the site with saline, most of the particles are removed from the microconduit. (c) An example of a microconduit generated with a single hole in the mask. The scissioning time was increased to 18 s (for a single microconduit) to create a deeper microconduit that reached a blood vessel. A drop of blood is seen flowing out of the microconduit. This result shows that microconduits created by microscissioning may be useful for sampling blood and analytes. (d) The microconduit is shown after blotting out the blood drop.
ensures that different microconduits penetrate the skin to nearly identical depths. Typical microconduits created by a 2–5-s microscissioning procedure are shown in Figure 6. Immediately after the scissioning procedure, some particles are left inside the resulting microconduits [Figure 6(a)]. Blowing the site gently with a stream of air and rinsing the site with saline removed most of the particles from the microconduit [Figure 6(b)]. The impedance between the saline-filled microconduit site and an unperturbed site decreased from a prescissioning value of 2–3 MΩ to less than 100 kΩ. The depth of the microconduit was between 10 and 30 µm. Extending the microscissioning procedure to a longer time created a deeper microconduit. For example, a 18-s procedure created a microconduit that was at least 100–160 µm deep [Figure 6(c)]. The microconduit reached the depth of blood capillaries and reduced the skin impedance to 18–24 kΩ. Once the drop of blood emerging from the microconduit was blotted out, the actual dimensions of the microconduit were evident [Figure 6(d)].

The process of microscissioning the outer layer of skin using accelerated sharp particles did not cause pain. For example, after a scissioning procedure that lasted for 7 s, the subject reported a pricking sensation. Even when a deeper microconduit was created with a visible blood drop at the site, the process was essentially pain-free, with a barely perceptible sensation attributed to the blood entering the tissue.

**Recovery of Microconduits**

Microscissioned sites were monitored for several days. Surrounding tissue and microconduits were imaged using an in vivo near-infrared reflectance-mode confocal microscope (Vivascope 1000) [23]. A mask with a 2 × 2 array of 150-µm microholes, 450 µm apart, was used in creating a microconduit array. The resulting microconduits were approximately

<table>
<thead>
<tr>
<th>D0</th>
<th>Surface</th>
<th>20 µm</th>
<th>48 µm</th>
<th>66 µm</th>
<th>88 µm</th>
<th>132 µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4</td>
<td>Surface</td>
<td>25 µm</td>
<td>35 µm</td>
<td>78 µm</td>
<td>92 µm</td>
<td></td>
</tr>
<tr>
<td>D6</td>
<td>Surface</td>
<td>24 µm</td>
<td>42 µm</td>
<td>59 µm</td>
<td>86 µm</td>
<td></td>
</tr>
<tr>
<td>D8</td>
<td>Surface</td>
<td>25 µm</td>
<td>43 µm</td>
<td>73 µm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 7.** Recovery of microconduits. Microconduits were imaged using a Vivascope 1000 (Lucid, Rochester, NY) in vivo near-infrared reflectance-mode confocal microscope, with an 830 nm illumination wavelength, 30 mW power, and a 30 ×, 0.9 numerical aperture (NA) water immersion objective lens. Images were taken at different focal planes showing the microconduit at different depths from the surface of the skin. Images were acquired on several days following microscissioning. Each row of images shows the depth profile of the microconduit on different days (indicated on the left). It is seen that immediately after microscissioning, the microconduit is at least 130 µm deep, with residual particles seen at around 90 µm deep. As the days progress, the residual particles are carried outward and the depth of the microconduit begins to decrease. On day 8, very few particles are seen in the microconduit that is now only 70 µm deep.
160 µm in diameter. One of these four microconduits is shown in Figure 7. Images were taken at different focal planes, showing the microconduit at different depths from the surface of the skin. It is seen that, immediately after microscissioning, the microconduit was at least 130 µm deep, with the residual particles being seen at about 90 µm depth. The particles left in the microconduit were tracked several days after. As time progressed, the residual particles were carried outward and the depth of the microconduit began to decrease. By day 8, very few particles were seen in the microconduit, which was now only 70 µm deep.

**Transdermal Delivery of Lidocaine**

Transdermal drug delivery through microscissioned microconduits was investigated by delivering lidocaine, a local anesthetic [17]. A mask with a single 160-µm diameter microhole was used. Lidocaine (50% solution: 5 g lidocaine hydrochloride in 5 mL normal saline) was topically applied over the microconduit site and a control site in saturated filter paper pads with Finn chambers taped over each site for 5 min. A pin stick test for sensation was used to determine the minimum time for full anesthetic effect. Here, the subject’s skin was probed with a sharp pin at different distances from the microconduit (or center of control site) at different times after microscissioning. The test was done on a single 160-µm diameter microconduit, 100–150-µm deep on the left inner wrist.

Microscissioning created a 160-µm diameter, 100–150-µm deep microconduit. A cotton pad saturated with 50% lidocaine applied over the microconduit site showed a clear decrease in sensation in less than 2 min (Figure 8). In 4 min, the anesthetized region’s radius increased to 2.8–3 mm with complete numbness. This contrasts with the 60–90-min duration it takes for passive delivery of lidocaine to take effect [25]. The anesthetic effect lasted for more than 1 h in this region.

**Ungual Drug Delivery**

Topical delivery of medications to treat nail fungal infection and nail psoriasis is largely ineffective because of the poor permeability of fingernails and toenails to such drugs [26]–[28]. Most of the approaches developed for transdermal drug delivery are not suited for enhancing drug delivery through nail. Different types of pulsed laser systems have been used to ablate nail [29]. Ungual microconduits (openings in nail) created by microscissioning offer pathways for effective delivery of medications to the underlying nail bed (transungual drug delivery). Four microconduits were microscissioned in the toenail of a senior investigator (Figure 9). The subject did not feel any sensation during the creation of microconduits. An antifungal drug, 1% Lamisil cream (terbinafine hydrochloride), was introduced into the microconduits once every day for more than four months. The thickness of treated nail returned to a normal value at the end of four months. Also, the treated nail showed no discoloration associated with fungal infection four months into treatment.

**Conclusions**

Both field-confined skin electroporation and microscissioning offer minimally invasive methods for delivering drugs across skin and nail with minimal sensation [16]. Both methods create high permeability pathways in a pain-free manner. These openings are similar in dimension to commonly experienced scratches and nicks on the skin. These localized openings provide pathways for sustained delivery of drugs either passively using a patch or actively using pressure or iontophoresis.
T. R. Gowrishankar received his B.E. degree from Bangalore University, India, in 1986, an M.S. degree from George Mason University, Fairfax, Virginia, in 1989, and a Ph.D. degree in medical physics from the University of Chicago, Illinois, in 1996. He is currently a research scientist at the Harvard-MIT Division of Health Sciences and Technology at the MIT, Cambridge. He is also the vice president of R&D at Carlisle Scientific Inc. and Path Scientific Inc. in Carlisle, Massachusetts. His research interests include experimental and simulation studies of bioelectric phenomena, drug delivery, and medical devices.

Terry O. Herndon received his B.S. degree in electrical engineering from the Antioch College in 1957. He was a research staff in MIT Lincoln Laboratory for more than 40 years. He holds more than a dozen patents in integrated circuit fabrication and medical technologies. He developed electronic chips to act as light sensors and power source for artificial retina. He has published many research papers on integrated circuit fabrication techniques and drug-delivery methods. He has served on the editorial board of the Electrochemical Society. He is the founding president of two drug delivery companies, Carlisle Scientific and Path Scientific in Carlisle, Massachusetts. His research interests include drug delivery, medical devices, and microelectronics.

James C. Weaver Photograph and biography not available.

Address for Correspondence: James C. Weaver, MIT, E25-213A, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. E-mail: jcw@mit.edu.

References