A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion

Regina Lee Sohn1, 2, Ping Huang1, 2, Genri Kawahara1, Matthew Mitchell1, Jeffrey Guyon1, 3, Raghu Kalluri1, Louis M. Kunkel1, 4, and Emanuela Gussoni1, 4

1Division of Genetics and Program in Genomics, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115; and the Manton Center for Orphan Disease Research, Children's Hospital Boston and the Howard Hughes Medical Institute, Boston, MA 02115; and 2Division of Matrix Biology, Beth Israel Deaconess Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115

Contributed by Louis M. Kunkel, April 22, 2009 (sent for review February 10, 2009)

Skeletal muscle is formed via fusion of myoblasts, a well-studied process in Drosophila. In vertebrates however, this process is less well understood, and whether there is evolutionary conservation with the proteins studied in flies is under investigation. Sticks and stones (Sns), a cell surface protein found on Drosophila myoblasts, has structural homology to nephrin. Nephrin is a protein expressed in kidney that is part of the filtration barrier formed by podocytes. No previous study has established any role for nephrin in skeletal muscle. We show, using two models, zebrafish and mice, that the absence of nephrin results in poorly developed muscles and incompletely fused myotubes, respectively. Although nephrin-knockout (nephrinKO) myoblasts exhibit prolonged activation of MAPK/ERK pathway during myogenic differentiation, expression of myogenin does not seem to be altered. Nevertheless, MAPK pathway blockade does not rescue myoblast fusion. Co-cultures of unaffected human fetal myoblasts with nephrinKO myoblasts or myotubes restore the formation of mature myotubes; however, the contribution of nephrinKO myoblasts is minimal. These studies suggest that nephrin plays a role in secondary fusion of myoblasts into nascent myotubes, thus establishing a possible functional conservation with Drosophila Sns.

Results

Nephrin Is Expressed in Embryonic, Adult Diseased, or Adult Injured Muscle. If nephrin is important for fusion of myoblasts into myotubes, its expression should be up-regulated when myoblast fusion is occurring. Indeed, nephrin message was present by nested reverse transcription–polymerase chain reaction (RT-PCR) in embryonic murine skeletal muscle (Fig. 1A, E15.5), in the skeletal muscle of young mice with muscular dystrophy, which exhibit spontaneous muscle degeneration/regeneration (14) (Fig. 1A, mdx Y (dystrophin null); Scg Y (6-sarcoglycan-null), both 3–4 weeks old) and in wild-type muscle after acute injury with cardiotoxin (Fig. 1A, Ctx). No message was detected in uninjured adult wild-type mouse skeletal muscle (Fig. 1A, Wt), in 4-month old mdx (Fig. 1A, mdx O) or 6-sarcoglycan (Fig. 1A, Scg O) muscles. In multiple independent PCR reactions followed by sequence analysis, the full nephrin message, including most of exon 1a through the 3’UTR was confirmed to be the same transcript as that found in kidney (data not shown).

Nephrin was also transiently up-regulated in human fetal skeletal myoblasts (isolated from 17-week-old fetus) undergoing fusion in culture for 2 days (Fig. 1 C–E), after which nephrin expression returned to the low baseline levels (Fig. 1D).

The authors declare no conflict of interest.

1R.L.S. and P.H. contributed equally to this work.

2Present address: PAREXEL International, 200 West Street, Wallingford, WA 06492.

3Present address: National Marine Fisheries Service, Auke Bay Laboratories, Ted Stevens Marine Research Institute, 17109 Pt Lena Loop Road, Juneau, AK 99801.

4To whom correspondence should be addressed. E-mail: gussoni@enders.tch.harvard.edu. This article contains supporting information online at www.pnas.org/cgi/content/full/0904398106/DCSupplemental.
Nephrin expression is exquisitely controlled and is present when myoblast fusion is expected to occur. It was also confirmed that one nephrin-associated protein, Nephl (kirre), is ubiquitously present in all of the muscles tested, regardless of age, disease, or injury (Fig. 1B).

Downregulation of Nephrin Expression in Developing Zebrafish. Zebrafish nephrin has been localized to the pronephros as in mammalian kidneys (15). Loss of nephrin by morpholino knockdown results in altered podocyte morphology and nephrosis at 96 hpf. Whether the muscles were affected was not indicated. Nephrin morpholino experiments were therefore conducted. Two morpholinos, one directed against nephrin (MO1) and a mismatched morpholino (MIS-MO1), were injected into fertilized eggs. The morpholino MO1 (kindly provided by I. Drummond) is directed against the transmembrane domain of nephrin and results in an in-frame deletion that prevents localization of nephrin to the membrane (15). The injected embryos were examined at 1 and 4 dpf (days postfertilization). Morpholino disruption of nephrin expression resulted in shorter, slightly curved embryos that were unable to swim properly and that sank to the bottom of the dish (Fig. 2A and B). Analysis of 120 embryos at 1 dpf injected with the nephrin morpholino MO1 demonstrated that 55% of the embryos were curved, short, and poor swimmers, whereas no embryos displayed this phenotype when injected with the control MIS-MO1. At 4 dpf, 37% of the embryos injected with nephrin morpholino MO1 had died, and 10% were curved and short. The embryos injected with MIS-

![Fig. 1.](image1.png)

Fig. 1. Nephrin mRNA is present in low quantities in vertebrate skeletal muscle. Nested RT-PCR was performed on RNA isolated from the skeletal muscles of different mice. The expected PCR products (1.2 kb) were gel purified, sequenced and confirmed to be nephrin. (A) RT-PCR product resulting from nested PCR, 1.2 kb (arrow). (B) Nephrin, a protein associated with nephrin, is present throughout (expected product is 546 bp). Lanes: M, 1-kb markers; 1, embryonic skeletal muscle, E15.5; 2, mdx skeletal muscle, 3 weeks (Mdx Y); 3, mdx skeletal muscle 4 months old (Mdx O); 4, δ-sarcoglycan null 3.5 weeks (Scg Y); 5, δ-sarcoglycan null 1 year (Scg O); 6, 8, and 10, WT gastrocnemius, 3 months; 7, 9, and 11, contralateral WT gastrocnemius 9 days after cardiotoxin injection; 12, no RT, 13, kidney. (C) Human fetal myoblasts (17 weeks) at the indicated stages of fusion. (D) Transient up-regulation of nephrin mRNA in nascent myotubes as determined by real-time quantitative PCR analysis. The fold change value in the myoblasts was set as 1, and the fold change values in nascent and mature myotubes were plotted accordingly. GAPDH was used as a reference gene in the amplification. Mb: myoblasts, Mt: myotubes. (E) Agarose gels of end products of qRT-PCR. Lanes: M, 1kb plus markers; 1, myoblasts; 2, nascent myotubes; 3, mature myotubes; 4, negative control.

![Fig. 2.](image2.png)

Fig. 2. Nephrin morpholino experiments in zebrafish reveal smaller muscles. (A) Light micrograph of variable phenotypes noted with nephrin morpholino in zebrafish embryos at 4 days post fertilization (dpf). Many of the embryos appear curved and shorter (red arrows) compared with control (black arrow). (B) Light micrograph of wild-type (top) mismatched (middle) and nephrin morpholino embryos (MO1) at 4 dpf. (C) RT-PCR analysis of mismatched and nephrin morpholino-injected embryos confirms the expected splicing defect leading to an in-frame deletion of the transmembrane domain, rendering a protein no longer able to anchor at the membrane; this is manifest by a decrease in RT-PCR product size (from 398 bp to 272 bp). Lane 1, molecular weight markers; lane 2, uninjected wild-type embryo; lane 3, 1.25 ng nephrin morpholino MO1; lane 4, 1.25 ng mismatched morpholino; lane 5, 2.5 ng nephrin morpholino MO1; lane 6, 2.5 ng mismatched morpholino. (D-I) Morphometric analyses performed on whole-mount embryos stained with anti-β-dystroglycan antibody确认 that the myosepta to myosepta distance of embryos injected with nephrin morpholino MO1 are smaller than those injected with mismatched morpholino (E, H) or wild-type uninjected embryo (D, G). (J) Bar graph of myosepta length measurements from wild-type, mismatched MO1 and nephrin morpholino MO1 injected embryos. Asterisk denotes a statistically significant P value by t test (P < 0.000000004). Individual measurements are listed in Table S1. Whole-mount control (K) and nephrin morpholino (L) embryos stained with anti-laminin (red) and anti-myosin heavy chain antibody (green); nuclei are stained in blue with DAPI. Nephrin morpholinos displayed shorter myosepta and presence of clustered nuclei (white arrows). (M-O) Whole-mount 1 dpf embryos are stained with anti-β-catenin antibody (red), and nuclei are stained in blue with DAPI. (M) Wild-type control; (N) control mismatched morpholino (MIS-MO1); (O) nephrin morpholino (MO1). Open arrows in (M) and (N) point to nuclei that appear regularly aligned, whereas arrows in (O) point to clustered nuclei.
MO1 appeared to be normal (wild-type) (Fig. 2B). RT-PCR analysis confirmed the splicing defect in the embryos injected with the nephrin morpholino MO1 (Fig. 2C). To study whether the abnormal length of MO1-injected embryos was caused by shorter individual myosepta, the distance between myosepta was determined by microscopic analysis on whole-mount embryos at 96 hpf stained for alpha-dystroglycan (Fig. 2 D–I). Ten embryos each were analyzed for myosepta length in non-injected control, MIS-MO1, and nephrin MO1-injected embryos. Within each embryo, five myosepta were measured starting from the same anatomical position (Fig. 2 D–I, [supporting information (SI) Table S1]). Compared with MIS-MO1–injected embryos, the nephrin MO1-injected zebrafish displayed shorter myosepta to myoseptum distance, consistent with a muscle defect (Fig. 2J; \(P < 4 \times 10^{-8} \) via \(t \) test). Comparison using a \(t \) test of the myoseptum to myoseptum distance in wild-type compared with MO1-injected embryos was also significant (\(P < 2.08\times 10^{-8} \)), whereas no significant difference was observed by comparing wild-type and MIS-MO1–injected embryos (\(P = 0.75 \)). Finally, whole-mount control, MIS-MO1–injected, or MO1-injected zebrafish embryos were stained at 1 dpf using antibodies directed to laminin and myosin heavy chain (MHC, F59) (Fig. 2 K and L) or with anti-\(\beta \)-catenin (Fig. 2 M–O). Wild-type (Fig. 2 K and M) and MIS-MO1–injected embryos (Fig. 2N) displayed regularly aligned nuclei (Fig. 2 M and N open arrowheads) and compacted myofibers (Fig. 2K). In contrast, zebrafish embryos injected with nephrin morpholino MO1 exhibited a less organized structure in several (but not all) myosepta, with compacted clusters of nuclei (Fig. 2L and O, arrows) that were not observed in wild-type or MIS-MO1–injected embryos. Therefore, downregulation of nephrin expression in developing zebrafish results in a phenotype consistent with muscle defects.

Assessment of Myocyte Fusion in Nephrin-Knockout Myoblast Cultures. To assess whether nephrin plays a role in myoblast fusion and determine when its expression is necessary, we turned to a murine model. Methods for propagation and differentiation of muscle cells are well established for mouse compared with zebrafish tissue (16–19). Skeletal myoblasts were isolated from neonate nephrin KO and wild-type mice, as nephrin KO mice die within the first 2 days of life because of kidney failure (11). The fusion ability of nephrin KO and wild-type cultures were assessed in vitro. For each culture, equal numbers of mononuclear cells were plated, allowed to differentiate and the fusion indices (FI; number of nuclei in myotubes divided by total number of nuclei) were calculated over 4 successive days. Wild-type and nephrin KO myoblasts began to fuse from day 1 (Fig. 3 A and D), but by day 2 clear differences arose: more of the knockout myocytes remained mononuclear and the overall myotube size was small (Fig. 3E and F), whereas myotubes in the wild-type cultures were branching and twitching (Fig. 3 B and C, twitching not shown). The nephrin KO myocytes had lower fusion indices (Fig. 3G) and were also inefficient in forming large myotubes (containing five or more nuclei) compared with wild-type myocytes (Fig. 3H). Immunohistochemistry with an antibody against desmin, a myogenic specific marker, demonstrated that the mononuclear cells in the knockout cultures were indeed myogenic, even if they were not fusing (Fig. 3F, arrows). Moreover, the number of desmin-positive mononuclear cells was significantly higher in knockout cultures compared with wild-type cultures at days 2, 3, and 4 in differentiation medium (Fig. 3J). These findings raised the question as to whether nephrin KO mononuclear cells had impaired differentiation potential because of persistent proliferative activity.

Nephrin KO Myocytes Have Constitutively Activated MAPK/ERK Pathway, but This Does Not Seem to Affect Myogenin Expression. Wild-type and knockout myoblasts were plated at equal numbers and cultured under proliferation conditions. Cell numbers were counted daily for 4 days and although there was no significant difference during the first 2 days, nephrin KO cells subsequently grew much faster than wild-type cells (Fig. S1A). Samples from the cultures were immunostained at day 4 for desmin and the percentage of positive cells was similar in both cultures (Fig. S1B). Cell cycle analyses were also performed using flow cytometry, and control cultures were found to contain half the number of cells in S phase compared with nephrin KO cultures (Fig. S1 C and D).

Studies by others have suggested that the p42/44 (Erk1/Erk2) MAPK pathway is necessary for the activation and proliferation of satellite cells upon injury (20, 21). To address whether the decreased fusion ability of nephrin KO myoblasts could be caused by a persistent activation of Erk1/Erk2, wild-type and nephrin KO myoblasts differentiated cultures were analyzed by Western blot using antibodies directed against total and phospho-p42/44 MAPK (Fig. S1 E–G). Whereas the p42/44 MAPK pathway appeared nearly inactive during differentiation in control cultures, it was persistently active in the nephrin KO samples (Fig. S1E).

To address whether the constitutive activation of the MAPK pathway could result in slowed myogenic differentiation and, consequently, fusion of nephrin KO myocytes, wild-type and nephrin KO myoblast cultures were differentiated over the course of 4 days, and myogenin expression was monitored (Fig. S2). It was found that myogenin expression was similar in wild-type and nephrin KO cultures, suggesting that early myogenic differentiation is not altered by the persistent activation of MAPK/ERK in nephrin KO myoblasts. Next, the MAPK inhibitor PD98059 was applied during myoblast differentiation. Treatment of nephrin KO cells with 50 \(\mu M \) PD98059 markedly blocked the phosphorylation of Erk1/2; however nephrin KO myoblasts treated with the inhibitor remained small (Fig. S3), suggesting that the persistent
The fusion index (number of fused nuclei, irrespective of their species/total number of nuclei) was calculated by mixing murine myoblasts (wild-type or nephrin KO) with human myoblasts for 1 and 4 days in DM. Myotubes were then fixed and stained with anti-human nuclei antibody (red). Nuclei were stained with DAPI. The myotubes with dual labeling were analyzed for contribution of human and mouse nuclei. Representative images showing the fusion of wild-type (B, C, F, G) or nephrin KO (D, E, H, I) myoblasts to human myoblasts after coculture for 1 day (B-E) and 4 days (F-I). The fusion index (number of fused nuclei, irrespective of their species/total number of nuclei) was similar at both days 1 and 4. The contribution of human versus mouse-derived nuclei to the myotubes was also assessed (K). At day 1, there was no statistical difference between the number of wild-type or nephrin KO mouse myoblasts that had fused to human myoblasts; however, at day 4, many more human-derived nuclei were detected within the myotubes of the nephrin KO:human myoblast hybrid cultures compared with wild-type mouse myoblasts:human myoblasts (P = 8.68204 E-11 by t test). White arrows in (B) through (I) point to nuclei of murine origin.

Discussion

Nephrin is a cell surface protein expressed in the kidney glomerulus at the epithelial podocytes. Podocytes interdigitate with one another to form a filtration barrier that allows water and ionic salts, but not proteins, to leave the bloodstream (9). Although nephrin function in the kidney is still largely unknown, it seems to be involved in the “outside-in” signaling that maintains the communication between podocyte foot processes and sustains the podocyte barrier function (24, 25). Despite structural similarities to *Drosophila Sns*, a cell-surface protein expressed by fusion-competent myoblasts, nephrin has been reported as “absent” in skeletal muscle (26). The results reported here indicate that process of myoblast fusion in *Drosophila* may be replicated by homologous players in mammalian cells.

Nephrin is expressed in skeletal muscle when cell fusion is occurring, during development and during injury or disease that require myofiber regeneration. Overall, the level of nephrin expression is low, and it is present in a narrow window of time. Nephrin is not detected in wild-type adult muscle, whereas it is present in murine embryonic muscle and in the muscle of young, but not old, mice with muscular dystrophy, which undergo a spontaneous phase of myofiber regeneration at ~2–3 weeks of age (14). Myofiber regeneration requires fusion of mononuclear cells into nascent myofibers, supporting the need for nephrin expression. Consistently, young patients (>1 year of age) affected by Duchenne Muscular Dystrophy (DMD), express higher levels of nephrin mRNA in their muscle than unaffected individuals or older DMD patients (27, 28). With age, both mice and humans with muscular dystrophy exhibit impaired muscle regeneration capacity accompanied by increased fibrosis, partly because of exhaustion of resident satellite cells (29–31). Therefore, a decline of nephrin expression in aged mice is consistent with the loss of resident satellite cells. In contrast, nephrin KO myoblasts initially formed hybrid myotubes with human cells 1 day after differentiation (Fig. 4 D, E, and K), but by day 4 the contribution of human-derived cells was more predominant (Fig. 4 H, I, and K). Thus, consistent with our previous findings, nascent myotube formation is not affected by nephrin depletion, whereas lack of nephrin expression results in a small additional contribution of murine knockout myoblasts to hybrid myotubes.
with the hypothesis of a decline in the number of ‘fusion-competent’ myoblasts in the chronic disease state.

Lack of nephrin in myogenic cells unveils a defect in recruitment of fusion-competent myoblasts to nascent myotubes. Myoblasts from nephrinKO mice are unable to form large myotubes and to maintain a constitutively active MAPK/ERK pathway, regardless of their origin (mouse or human), does not differ in wild-type and knockout myotubes co-cultures. (*P < 0.01 via t test). The percentage of human nuclei in myotubes, regardless of their origin, does not differ in the co-cultures (M); however, the percentage of mouse nuclei in myotubes was significantly decreased when knockout myoblasts were mixed with human myotubes compared with wild-type myoblasts (N). *P < 0.01 via t test.

Nephrin in the vertebrate kidney is part of a complex network of proteins that are necessary for the structural and signaling integrity of the podocyte slit diaphragm (9). Future work must be done to determine other structural partners for nephrin in skeletal muscle and factors that modulate the expression of nephrin in the vertebrate kidney. Nephrin in the vertebrate kidney is part of a complex network of proteins that are necessary for the structural and signaling integrity of the podocyte slit diaphragm (9). Future work must be done to determine other structural partners for nephrin in skeletal muscle and factors that modulate the expression of nephrin in the vertebrate kidney. Nephrin in the vertebrate kidney is part of a complex network of proteins that are necessary for the structural and signaling integrity of the podocyte slit diaphragm (9). Future work must be done to determine other structural partners for nephrin in skeletal muscle and factors that modulate the expression of nephrin in the vertebrate kidney. Nephrin in the vertebrate kidney is part of a complex network of proteins that are necessary for the structural and signaling integrity of the podocyte slit diaphragm (9). Future work must be done to determine other structural partners for nephrin in skeletal muscle and factors that modulate the expression of nephrin in the vertebrate kidney.
nephrin. Studies suggest that nephrin expression can be increased in the kidney by PPAR-γ agonists, such as pioglitazone, a drug for diabetes (36). Perhaps similar treatment with myoblasts can also increase nephrin expression and thereby increase myoblast fusion. Thus, with more knowledge of the regulation of nephrin in the skeletal muscle, it may become possible to improve the efficiency of cell-based therapies for skeletal muscle diseases such as Duchenne Muscular Dystrophy.

Materials and Methods

RNA Isolation and RT-PCR Amplification of Nephrin mRNA. Total RNA was isolated from primary myocyte cultures using Qiagen RNAeasy kit (Qiagen) and from gastrocnemius muscles of C57Bl6, mdxScv, delta-sarcoglycan null mice as previously described (37). Detailed methods, including cardiotoxin injury, primer sequences, and RT/PCR amplification conditions can be found in **SI Materials and Methods**.

Zebrafish Morpholino Experiments. Zebrafish experiments were performed using previously described procedures (38), with 1.25 and 2.5 ng of nephrin morpholino or mismatched morpholino oligonucleotides. Morpholino sequences, RT-PCR, and whole-mount immunostaining analyses are detailed in **SI Materials and Methods**.

Primary Muscle Cell Culture and Fusion Experiments. Primary muscle cultures were derived from the limb muscles of 1–2-day-old wild-type and nephrin(−/−) neonates as described (18). Differentiation experiments were performed by plating mouse myoblasts at a density of 8 × 10⁴ cells/well in 12-well plates. Detailed information on culture conditions and determination of the fusion indices is described in **SI Materials and Methods**.

Cell Cycle Analysis. Flow-cytometry analyses of the cell cycle were performed according to a previously described protocol (39). Additional details including Western blot analyses of ERK1/2 proteins can be found in **SI Materials and Methods**.

Co-Culturing Experiments of Murine and Human Myoblasts. Murine myoblasts were cultured with 5 μM CellTracker green CMFDA (Molecular Probes). Labeled mouse and human myoblasts were plated together in equal numbers and allowed to differentiate for 1 and 4 days in differentiation medium. Cells were then stained with anti-human nuclei antibody (Millipore, clone 235–1, MAB 1281). Additional information can be found in **SI Materials and Methods**.

Co-Cultures of Myoblasts with Nascent Myotubes. To form nascent myotubes, mouse or human myoblasts at ~70% confluency were switched to differentiation medium (DM) for 24 hours. Meanwhile, 20–30% confluent myoblasts were cultured in DM for 24 hours to produce differentiated, mononucleated cells. After 24 hours, murine myoblasts or myotubes were labeled with 5 μM CellTracker green CMFDA. Murine and human cells were then triple stained, plated in 12-well plates at equal cell numbers, and co-cultured for another 4 hours. Cells were then fixed, permeabilized, and stained with anti-human nuclei antibody (Millipore) as detailed in **SI Materials and Methods**.

Acknowledgments. The authors thank Ian Drummond for the nephrin morpholino (MO1). The authors also thank the MRDDRC flow cytometry facility, the MRDDRC sequencing facility and MDDR Imaging Core for confocal microscopy, all supported by a grant from the National Institute of Health (SP30HD018655). The authors express their gratitude to the members of the G虞sler and Kunke laboratories for helpful discussions and a critical review of this manuscript. This work was supported by funding from the Muscular Dystrophy Association to E.G. (MDA 3589 and MDA 4146), the National Institutes of Health (RO1NS047727 to E.G. and SP50NS040828 to L.M.K.). L.M.K. is an investigator supported by the Howard Hughes Medical Institute (HHMI). R.L.S. was supported by a Mentored Clinical Scientist Development Award from the National Heart, Lung, and Blood Institute (NHI-K08HL042142). P.H. is supported by a Scientist Development Grant from the American Heart Association (0730285N) and by the Joshua F. Rush Foundation. R.K. is supported by the NIH grant DK 55001. The authors have no conflicts of interest to declare.