Abl Kinase Inhibits the Engulfment of Apoptotic Cells in Caenorhabditis elegans

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1371/journal.pbio.1000099</td>
</tr>
<tr>
<td>Publisher</td>
<td>Public Library of Science</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/52592</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/2.5/</td>
</tr>
</tbody>
</table>
Introduction

Regulated reorganization of the cytoskeleton is a fundamental process in tissue morphogenesis and physiologic cell migration [1]. Dysregulation of the cytoskeleton is a hallmark of pathologic processes, such as cancer cell invasion and metastasis [2]. The engulfment of apoptotic cells requires a major cytoskeletal reorganization within the engulfing cell, which must extend its plasma membrane completely around the dying cell. In Caenorhabditis elegans, neighboring cells engulf apoptotic cells. Eleven genes appear to act in two parallel pathways required for engulfment: ced-1, ced-6, ced-7, and dyn-1; and ced-2, ced-10, ced-12, mig-2, unc-73, and psr-1 (Figure 1) [3]. These two pathways have been proposed to recruit membranes for cell surface extension and rearrange the cytoskeleton, respectively. The pathways together promote the extension of the engulfing cell around the apoptotic cell.

In the pathway for membrane recruitment, which we refer to as the CED-1 pathway (see below), four proteins have been identified (Figure 1). CED-7 is an ABC transporter required in both the engulfing cell and the engulfed cell and might expose a pro-engulfment signal on the surface of the apoptotic cell [4,5]. The role of CED-7 in the engulfing cell has not been defined. CED-7 is thought to signal through CED-1, a receptor on the engulfing cell surface homologous to Drosophila Draper and the mammalian EGF-like receptor MEGF10 [6]. CED-1, in turn, is proposed to signal through CED-6, a protein that contains a phosphotyrosine-binding domain [7]; CED-6 can bind a motif in the intracellular domain of CED-1 [8] and is thought to activate DYN-1, a C. elegans dynamin homolog [9]. DYN-1, by analogy to its role in vesicular transport in mammalian cells, might recruit membrane for the engulfment process. The CED-1 pathway also is involved in degrading apoptotic cells once they are engulfed [10,11].

The pathway for cytoskeletal rearrangement requires the small GTPase CED-10 Rac, and we refer to this pathway as the CED-10 Rac pathway. Two parallel pathways contribute to CED-10 Rac activation (Figure 1). CED-2, the C. elegans homolog of the oncoprotein CrkII, is an SH2 and SH3 domain-containing adaptor protein [12] that interacts with an atypical heterodimeric guanine nucleotide exchange factor (GEF) consisting of the proteins CED-5 [13] and CED-12 [14–16], homologs of mammalian DOCK180 and ELMO, respectively. In mammals, a signal from the apoptotic
known engulfment proteins, including apoptotic cell engulfment and cell migration. However, our analysis indicate that ABL-1, the C. elegans homolog of Abl, blocks ABL-1, the C. elegans homolog of the mammalian and Drosophila Abl-interactor (Abi) cytoskeletal-regulatory proteins. We propose that ABL-1 acts via Abi-1 to inhibit a newly identified pathway during cell corpse engulfment and cell migration.

Figure 1. Molecular Pathways Required for the Engulfment of Apoptotic Cells
Proteins of the CED-10 Rac pathway are labeled in yellow. Proteins of the CED-1 pathway are labeled in green. C. elegans protein names are written above their mammalian homologs are below. The dashed arrow from CED-6 to CED-10 indicates that CED-1, CED-6, and CED-7 might also signal through CED-10 [19]. The CED-1 pathway is required for engulfment only, whereas the CED-10 Rac pathway is required for both engulfment and DTC migration. PSR-1 might act upstream of CED-2 [21].

That Abl functions in multiple diverse biological processes is reflected by its complex domain structure. In addition to its tyrosine kinase and DNA-binding domains, Abl has several protein-binding domains: Src Homology 2 (SH2), SH3, and F- and G-actin binding domains. Over 70 Abl-interacting proteins have been identified, largely through biochemical studies and cell-culture experiments. The in vivo relevance of most of these interactions has not been conclusively determined.

The C. elegans genome encodes a single Abl homolog, ABL-1. As in other organisms, Abl in C. elegans has many functions. ABL-1 protects germline cells from programmed cell death in response to ionizing radiation by antagonizing a molecular pathway that contains cell cycle checkpoint proteins and the p53 homolog CEP-1 [32]. ABL-1 is required for Shigella flexneri pathogenesis through an unknown mechanism [33]. A function for ABL-1 in cytoskeletal regulation has also been described: ABL-1 regulates epidermal morphogenesis in the C. elegans embryo by opposing the Ena/VASP homolog UNC-34 [34].

We found that ABL-1 inhibits the engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 acts independently of both known engulfment pathways, suggesting the...
existence of another pathway for engulfment. We show that ABL-1, the C. elegans homolog of the Abi (Abl interactor) cytoskeletal and signaling family of proteins, is a member of this newly identified pathway.

Results

ABL-1 Inhibits the Engulfment of Apoptotic Cell Corpses

To test whether abl-1 has a role in engulfment, we counted the number of unengulfed apoptotic cell corpses in the heads of first larval stage (L1) animals harboring mutations in abl-1 and engulfment pathway genes. The number of unengulfed corpses varies with the strength of the engulfment defect and defines a quantitative assay of engulfment defects [35]. We used two presumptive null alleles of abl-1 in this study, n1963 and ok171. n1963 is a G-to-A transition at the splice acceptor of exon 10 (bp 16967 of the M79 cosmid sequence), resulting in removal of most of the kinase domain and the change of a conserved arginine to serine. ok171 is a deletion allele that removes the entire kinase domain, most of the SH2 domain, and results in a frameshift and an opal stop codon 52 bp later [32].

abl-1 mutation alone had no obvious effect on engulfment. However, mutation of abl-1 decreased the number of unengulfed corpses in the heads of ced-1, ced-6, and ced-7 mutants (alleles e1735, n2095, and n1892, respectively, all of which are nulls) (Table 1). dyn-1 mutants die as embryos and were not tested. ABL-1 function did not depend on the presence of functional CED-1, CED-6, or CED-7 and therefore ABL-1 acts independently of downstream of the CED-1 pathway. These data are consistent with a role for ABL-1 in the negative regulation of apoptotic cell engulfment. Experiments that address alternative explanations for the affect of ABL-1 on engulfment are presented in the next section.

We tested for interactions between abl-1 and the genes of the CED-10 Rac pathway. abl-1 mutation did not modify the engulfment defects of either ced-5(n1812) or ced-12(n3261) null mutants (Table 1). abl-1 mutation also did not modify the engulfment defect of ced-2(n1994); mig-2(gm38 mu133) null double mutants, in which both known inputs into the CED-10 Rac pathway are absent (Figure 1). However, abl-1 mutation did partially suppress the engulfment defect caused by ced-2(n1994) alone (the number of cell corpses decreased from 22.0 to 15.7, p < 0.0001) and by the partial loss-of-function allele ced-2(e1752) alone (a decrease from 18.9 to 13.2, p < 0.0001). mig-2 null mutations do not cause engulfment defects on their own so they were tested in combination with a CED-1 pathway mutant (see below). Animals completely lacking ced-10 die as embryos and were not tested, but the engulfment defect caused by a partial loss-of-function allele, ced-10(n1993), was suppressed by abl-1(lf) (the number of cell corpses decreased from 20 to 8.7, p < 0.0001).

Table 1. abl-1 Mutations Suppress the Engulfment Defects of Engulfment ced Gene Mutations

<table>
<thead>
<tr>
<th>Genotype</th>
<th>n Corpses ± sd</th>
<th>n</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>0 ± 0</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>abl-1(n1963)</td>
<td>0 ± 0</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(n1963)</td>
<td>22.1 ± 4.2</td>
<td>20</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994)</td>
<td>19.5 ± 4.3</td>
<td>21</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(n1963)</td>
<td>18.9 ± 3.0</td>
<td>21</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); mig-2(gm38 mu133)</td>
<td>13.2 ± 3.4</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); mig-2(gm38 mu133)</td>
<td>22.0 ± 4.3</td>
<td>21</td>
<td><0.0001a</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(n1963)</td>
<td>15.7 ± 3.1</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(n1963)</td>
<td>16.7 ± 3.4</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(ok171)</td>
<td>32.9 ± 4.0</td>
<td>16</td>
<td>>0.2</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); abl-1(ok171)</td>
<td>32.2 ± 6.4</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); ced-6(n2095)</td>
<td>26.8 ± 5.4</td>
<td>24</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); ced-6(n2095)</td>
<td>19.6 ± 5.1</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); ced-6(n2095)</td>
<td>35.6 ± 4.5</td>
<td>19</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); ced-6(n2095)</td>
<td>29.9 ± 2.2</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(e1735); ced-2(n1994); ced-6(n2095)</td>
<td>20.0 ± 3.6</td>
<td>23</td>
<td><0.0001a</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>8.7 ± 3.2</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>8.3 ± 3.3</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>15.3 ± 4.6</td>
<td>21</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>6.4 ± 3.5</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>22.7 ± 5.3</td>
<td>20</td>
<td><0.1</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>20.4 ± 4.3</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>35.5 ± 4.6</td>
<td>19</td>
<td>>0.2</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>34.5 ± 3.7</td>
<td>19</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963)</td>
<td>24.0 ± 4.0</td>
<td>22</td>
<td><0.0001</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963); mig-2(gm38 mu133)</td>
<td>18.3 ± 3.6</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963); mig-2(gm38 mu133)</td>
<td>32.7 ± 4.1</td>
<td>21</td>
<td>>0.2</td>
</tr>
<tr>
<td>ced-1(n2091); abl-1(n1963); mig-2(gm38 mu133)</td>
<td>32.4 ± 8.8</td>
<td>20</td>
<td>—</td>
</tr>
</tbody>
</table>

First larval stage (L1) worms were anaesthetized and viewed using DIC microscopy. The numbers of cell corpses in the heads were counted. sd, standard deviation.

*This p-value refers to comparisons between the strain with the engulfment mutation alone and the strains with the engulfment mutation with either the abl-1(n1963) or the abl-1(ok171) mutation.

doi:10.1371/journal.pbio.1000099.t001
We also tested whether the engulfment defect of a *ced-1*(e1735); *ced-2*(n1994) double mutant could be suppressed. A mutation in *abl-1* did not modify the engulfment defect of the double mutant, even though each single mutant was suppressed. This result is consistent with the possibility that ABL-1 acts upstream of both the CED-10 Rac and the CED-1 pathways. Alternatively, ABL-1 might suppress a pathway parallel to these two pathways, but its suppression might be too weak to modify an engulfment defect as severe as that of the *ced-1*(e1735); *ced-2*(n1994) double mutant. We present data below that support the latter model.

Because *mic-2* and *unc-73* mutations enhance the engulfment defects of other engulfment gene mutations but do not cause defects on their own [23], we tested whether ABL-1 acts through the *mic-2* branch of the CED-10 Rac pathway by testing whether an *abl-1* mutation could suppress the *mic-2* enhancement of *ced-1*(n2091). We observed fewer apoptotic cell corpses in the heads of *ced-1*(n2091); *mic-2*(gm38 mu133) animals when an *abl-1* mutation was present (Table 1), demonstrating that ABL-1 can act in the absence of *mic-2* function. Therefore, ABL-1 does not act solely through either the CED-2 branch or the CED-2 branch of the CED-10 Rac engulfment pathway.

In summary, *abl-1*(lf) suppressed partial but not complete loss of the CED-10 Rac pathway. The inability of *abl-1*(lf) to suppress the engulfment defects of the CED-10 Rac pathway when this pathway was completely nonfunctional (i.e., *ced-5* null, *ced-12* null, or *ced-2*; *mic-2* double null mutants, Figure 1) suggests that the CED-10 Rac pathway genes do not function by blocking the action of ABL-1. Instead, ABL-1 might inhibit the CED-10 Rac pathway, or ABL-1 might signal in parallel to the CED-10 Rac pathway through another group of effectors that require CED-10 Rac pathway function to accomplish apoptotic cell engulfment.

Notably, the observation that *abl-1*(lf) suppressed the engulfment defect of mutants that completely lack CED-2 function indicates that the effect of ABL-1 on engulfment is at least partially independent of CED-2, i.e., ABL-1 does not act only by inhibiting CED-2. Therefore, *C. elegans* ABL-1 can act to inhibit CED-2 CrkII-dependent pathways via a mechanism distinct from the known mechanism in mammals, in which Abl phosphorylates the CED-2 homolog CrkII.

ABL-1 Does Not Affect the Cell-Death Process Directly

The effect of *abl-1* mutation on the number of unengulfed corpses could be caused by mechanisms other than the direct inhibition of cell engulfment. *abl-1* mutation might (1) suppress programmed cell death, resulting in fewer cell corpses; (2) alter the timing of corpse appearance during development, resulting in fewer corpses at the time of observation; or (3) change cell-corpse so that they were not recognized as corpses or were unstable and were lost altogether.

To determine whether *abl-1* acts in programmed cell death, we evaluated whether cells known to undergo programmed cell death did so normally. In wild-type animals, 16 cells undergo programmed cell death in the anterior pharynx during embryogenesis [36], and their deaths can be scored by direct observation of their nuclei using DIC microscopy [35]. Mutants defective in programmed cell death, such as mutants with null mutations in the caspase *ced-3*, have up to 14 extra recognizable cell nuclei in the anterior pharynx [35,37]. We observed no extra nuclei in either *abl-1*(n1963) or *abl-1*(ok171) animals (Table 2). We also used a more stringent test for cell-death defects: enhancement of the death defect of *ced-3*(n2427) mutants, which are partially defective in programmed cell death [38]. As shown in Table 2, *ced-3*(n2427) animals had an average of 1.7 extra corpses, and *abl-1* mutation did not enhance the *ced-3*(n2427) death defect.

In the ventral nerve cord, six Pn.aap cells (P1.aap, P2.aap, and P9–12.aap) undergo programmed cell death postembryonically in wild-type animals, but not in death-deficient mutants [38,39]. Defects in programmed cell death are easily detected and quantified for five of these cells (P2.aap, P9–12.aap) using a *lin-11::gfp* transcriptional reporter transgene, which is expressed by surviving Pn.aap cells [38]. As in the pharynx, in the ventral nerve cord *abl-1* mutation neither caused excess cell survival on its own nor enhanced the death defect caused by the *ced-3*(n2427) mutation (Table 2). We conclude that ABL-1 did not promote programmed cell death of non-germline cells. ABL-1 does protect against programmed cell death in the germline, most notably after radiation exposure [32]. In the germline *abl-1* loss-of-function therefore causes excess cell death, not suppression of cell death. If this function of ABL-1 were present in non-germline cells, we would expect increased numbers of corpses, not the reduction of unengulfed corpses that we observed.

To test whether ABL-1 affects the timing, persistence, or morphology of cell corpses, we used time-lapse DIC microscopy to observe wild-type and *abl-1*(n1963) embryos for 150 min after the first appearance of a cell corpse [9]. During this time, approximately 70 cell corpses appear in the wild-type animal. We observed no significant difference between wild-type animals and *abl-1* mutants with respect to the number of corpses that appeared or when they appeared (Figure 2A). Also, the length of time that corpses persisted was similar between wild-type and *abl-1*(n1963) animals (Figure 2B). In addition, apoptotic cell corpses in *abl-1*(n1963) animals looked identical to wild-type corpses (Figure 2C). We conclude that loss of ABL-1 did not affect the time of appearance or morphology of apoptotic cell corpses.

Table 2. *abl-1* Mutation Does Not Block Cell Death

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Genotype</th>
<th>n Extra Cells</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharynx</td>
<td>Wild-type</td>
<td>0.0 ± 0.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2436)</td>
<td>6.1 ± 1.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>ced-3(n717)</td>
<td>10.8 ± 1.4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>abl-1(n1963)</td>
<td>0 ± 0</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>abl-1(ok171)</td>
<td>0 ± 0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2427)*</td>
<td>1.7 ± 1.1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2427); abl-1(n1963)*</td>
<td>1.4 ± 1.0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2427); abl-1(ok171)*</td>
<td>1.1 ± 1.1</td>
<td>7</td>
</tr>
<tr>
<td>Ventral nerve cord</td>
<td>Wild-type</td>
<td>0.0 ± 0.2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>abl-1(n1963)*</td>
<td>0.0 ± 0.2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2427)*</td>
<td>2.3 ± 1.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ced-3(n2427); abl-1(n1963)*</td>
<td>2.1 ± 1.1</td>
<td>100</td>
</tr>
</tbody>
</table>

Third larval stage (L3) worms were anaesthetized and viewed using DIC microscopy. The number of extra cell nuclei in the anterior pharynx were counted, sd, standard deviation.

These strains contained nls6 [lin-1::gfp] V. doi:10.1371/journal.pbio.0000999.t002
abl-1 Mutation Suppresses Other Defects Associated with Engulfment Pathway Genes

Mutants defective in corpse engulfment are also partially defective in programmed cell death, indicating that cell-corpse engulfment promotes cell killing [38,40]. A role for engulfment genes in promoting programmed cell death has also been found in Drosophila [41], showing that the pro-apoptotic function of cell engulfment is evolutionarily conserved.

In C. elegans mutants partially defective in cell-killing (e.g., ced-3 caspase partial loss-of-function mutants), some cells that are fated to die undergo some of the morphological changes that accompany programmed cell death but then recover and persist as normal cells [38,40]. Most cells fated to die will nonetheless die. In C. elegans mutants with a partial loss of ced-3 function and a mutation in an engulfment gene, a much larger number of cells fated to die will survive.

We tested whether abl-1 mutations suppress the cell-death defect caused by engulfment gene mutations. The anterior pharynges of animals doubly mutant for ced-3(n2427), a partial loss-of-function mutation, and a mutation in an engulfment gene, a much larger number of cells fated to die will survive.

Figure 2. abl-1 Mutation Does Not Affect the Timing or Morphology of Cell Corpses
(A) The number and time of appearance of apoptotic cell corpses that occurred from 200–340 min after the first embryonic cell cleavage was recorded at 3-min intervals in wild-type and abl-1(n1963) animals using time-lapse DIC microscopy (see Materials and Methods). Mean numbers of corpses at each time point were calculated from three embryos for both wild-type and abl-1(n1963) animals. The curves are similar (p = 0.49).
(B) The duration of cell-corpse appearance is similar in wild-type and abl-1(n1963) embryos. The percentage of cell corpses that lasted for a given period were recorded. The duration of appearance of all cell corpses recorded from three wild-type (n = 162 cell corpses) and three abl-1(n1963) (n = 171) embryos was analyzed. The curves are similar (p = 0.97).
(C) The morphology of cell corpses in wild-type and abl-1(n1963) embryos are similar. Arrowheads, apoptotic corpses. Embryos were at a similar stage of development, approximately 300 min after the first cell corpse appeared.

doi:10.1371/journal.pbio.1000099.g002
example, ced-1(e1735); ced-3(n2427) animals had an average of 5.9 extra cells in their pharynges, whereas ced-1(e1735); ced-3(n2427); abl-1(n1963) animals had an average of 4.2 extra cells (p < 0.001). However, abl-1 mutation did not affect the number of extra cells seen in ced-12(n3261); ced-3(n2427) animals. These findings are consistent with our observations concerning the role of ABL-1 in engulfment: abl-1 mutation suppressed the death defect of a null mutation in the CED-1 pathway but did not suppress the death defect of a null mutation in the CED-10 Rac pathway (ced-12(n3261)).

We also examined the effect of an abl-1 mutation on engulfment gene-related death defects in the ventral nerve cord. Animals doubly mutant for ced-3 and an engulfment gene with or without abl-1(n1963) were scored for the presence of extra cells in two tissues. (A) abl-1 suppresses the engulfment gene cell-killing effect in the pharynx. Extra cell nuclei in the pharynges of animals in the early third larval stage (early L3) were counted using DIC microscopy. All animals harbored the ced-3(n2427) mutation. Means and standard deviations are shown. Error bars, standard deviation. At least ten animals were scored for each genotype, *, p < 0.05; **, p < 0.001.

(B) abl-1 suppresses the engulfment gene cell-killing effect in the ventral nerve cord. Extra GFP+ cells were counted in the ventral nerve cords of late fourth larval stage (L4) animals. All animals carried the ced-3(n2424) mutation and the insertion nIs96[lin-11::gfp], which labels VC neurons (P3–8.aap) and VC neuron-like cells (P1.aap, P2.aap, and P9–12.aap) that are normally fated to die. P1.aap is variably labeled by nIs96[lin-11::gfp] and was not scored. 100 animals of each genotype were scored. The number of extra VC-like cells were compared between strains containing ced-3(n2424) and a mutation in an engulfment gene with or without abl-1(n1963). p-Values for differences between strains were as follows: for ced-10(n1993)-containing strains, p = 2.2 × 10^-16; for ced-12(tp2)-containing strains, p = 3.3 × 10^-8. For all other strains, p > 0.7.

doi:10.1371/journal.pbio.1000099.g003

Figure 3. abl-1 Suppresses the Cell-Killing Effect of Engulfment Pathway Genes

Animals doubly mutant for ced-3 and an engulfment gene with or without abl-1(n1963) were scored for the presence of extra cells in two tissues. (A) abl-1 suppresses the engulfment gene cell-killing effect in the pharynx. Extra cell nuclei in the pharynges of animals in the early third larval stage (early L3) were counted using DIC microscopy. All animals harbored the ced-3(n2427) mutation. Means and standard deviations are shown. Error bars, standard deviation. At least ten animals were scored for each genotype, *, p < 0.005; **, p < 0.001.
24.2% in analysis indicates that ABL-1 negatively regulates DTC percentage in **

Statistical analysis used Fisher’s exact test, *, strains used the 100 gonad arms were scored for all other genotypes. All mutant microscopy. Scoring was as described in Materials and Methods.

Figure 4. *abl-1* Mutation Suppresses the DTC Migration Defects of all CED-10 Rac Pathway Gene Mutations

The gonads of animals mutant for an engulfment gene with or without abl-1 mutation were observed and scored for morphology using DIC microscopy. Scoring was as described in Materials and Methods. Percentages of abnormal gonad arms are shown. At least 50 gonad arms were scored for the wild-type and *abl-1(n1963)* mutants. More than 100 gonad arms were scored for all other genotypes. All mutant *abl-1* strains used the *abl-1(n1963)* allele except for *ced-10(n3417)*, which used *abl-1(ok171)*. Statistical analysis used Fisher’s exact test, *, p < 1x10^-5; **, p < 0.005.
doi:10.1371/journal.pbio.1000099.g004

cord using the lin-11::gfp transgene and the n2424 partial loss-of-function allele of *ced-3*. As in the anterior pharynx, the death defects of weak alleles of *ced-1* and *ced-12* were suppressed by loss of *abl-1*, but a null *ced-12* allele was not strikingly suppressed (Figure 3B). Loss of *abl-1* also suppressed the death defect of the partial loss-of-function allele *ced-10(n1993)* in this assay. However, unlike what was seen in the pharynx, *abl-1* loss did not suppress the *ced-1* null defect appreciably in the ventral nerve cord (Figure 3A). While it is possible that this disparity is caused by differences in the role of *abl-1* in the ventral nerve cord and the pharynx, we prefer the hypothesis that the lack of suppression results from a relative insensitivity of the assay for ventral cord survival, i.e., loss of *abl-1* is insufficient to suppress the effect of the loss of *ced-1* function in this assay.

Mutants of the CED-10 Rac pathway have defects in cell migration. The two distal tip cells (DTCs) each migrate along a U-shaped trajectory during the development of the animal, guiding the formation of the gonads [42]. The gonads of CED-10 Rac pathway mutants often have an extra turn or have extra arms caused by abnormalities in DTC migration [43]. We tested whether *abl-1* mutation could reduce the percentage of gonadal abnormalities in CED-10 Rac pathway mutants. We observed no effect of *abl-1* mutation alone on DTC migration. Notably, *abl-1* mutation suppressed the gonadal morphology defects of all CED-10 Rac pathway mutants tested, including those caused by null *ced-5* and *ced-12* mutations (Figure 4). The percentage of defective gonadal arms in *ced-5(n1812)* animals decreased from 40.8% to 21.7% in *ced-5(n1812); abl-1(n1963)* animals (p < 1 x 10^-5), and the percentage in *ced-12(n3261)* animals decreased from 45.2% to 24.2% in *ced-12(n3261); abl-1(n1963)* animals (p < 1 x 10^-5). This analysis indicates that ABL-1 negatively regulates DTC migration and does not act through the genes of the CED-10 Rac pathway to do so.

We also examined the effect of a loss of *abl-1* function on the DTC migration defect of an animal harboring the *ced-10(n3417)* deletion mutation, a putative *ced-10* null allele [22]. Because the *ced-10(n3417)* mutation causes maternal-effect lethality (i.e., homozygous null animals produce no live progeny), we analyzed the homozygous progeny of *ced-10* heterozygotes (*ced-10(n3417);lin-1(e1275) dpy-13(e184sd)* with or without the *abl-1(ok171)* deletion mutation. These *ced-10(n3417)* homozygous animals presumably survived because they have *ced-10* protein derived from maternally provided *ced-10* mRNA. As with *ced-2*, *ced-5*, and *ced-12* null mutants, the DTC defect of these *ced-10* null mutants was suppressed by an *abl-1* loss-of-function mutation: the percentage of defective gonadal arms in *ced-10(n3417)* animals decreased from 20.7% to 7.6% in *ced-10(n3417); abl-1(ok171)* animals (p < 0.005) (Figure 4). We note that these *ced-10* animals are unlikely to totally lack *ced-10* function, since the *ced-10* null phenotype is maternal-effect lethal, indicating that *ced-10* homozygotes derived from *ced-10(n195)* heterozygotes have some *ced-10* function; that *ced-10(n195)* heterozygotes indeed have some *ced-10* function is supported by the observation that only 20.7% of the DTCs of the *ced-10(n3417)* animals migrated inappropriately, which is far less than that seen in *ced-5(n1812), ced-12(n3261),* or *ced-10(n1993)* animals. Therefore, no compelling conclusion about whether ABL-1 acts in parallel to or downstream of the CED-10 pathway can be made on the basis of this experiment.

Notably, *ced-10(n3417); abl-1(ok171)* animals produced a small number of live progeny (unlike *ced-10(n3417)* animals), some of which achieved adulthood; none of these was fertile.

Our findings concerning engulfment and gonadal migration are consistent with two models of ABL-1 function. In one model, ABL-1 acts through different molecular pathways to inhibit the morphological changes that drive engulfment of apoptotic cells and to inhibit migration of DTCs, i.e., ABL-1 acts directly on CED-10 or another protein in the CED-10 Rac pathway in engulfment and on a different set of proteins in DTC migration. Alternatively, ABL-1 acts in a pathway distinct from the CED-10 Rac pathway but common to both processes, and this common pathway is more important in DTC migration than in engulfment. For example, in gonadal cell migration, either the CED-10 Rac pathway or a second ABL-1-inhibited pathway might be sufficient for normal DTC migration. If this were the case, loss of ABL-1 function would derepress the ABL-1-regulated pathway and suppress DTC migration defects even in the absence of any CED-10 Rac pathway function, as we observed. In engulfment, the requirement for the CED-10 Rac pathway might not be able to be overcome by derepression of the ABL-1-regulated pathway. We present data below supporting the second model, namely that ABL-1 acts in a common pathway distinct from the CED-10 Rac and CED-1 pathways in engulfment and gonadal cell migration.
ABL-1 Probably Acts in Engulfing Cells

To determine whether ABL-1 acts in the engulfing or the engulfed cell, we performed ectopic expression experiments in which abl-1 was expressed from a transgene in an abl-1 mutant background. Specifically, we used a protocol adapted from Reddien and Horvitz [12] and expressed abl-1 under the control of C. elegans heat-shock promoters at a time at which all embryonic deaths are complete; we then counted the number of embryonic cell corpses in the heads of first larval stage (L1) animals. Any rescue that cannot involve transgene function in the engulfed cells, which have already died. All cells in the head that die during embryogenesis do so prior to 5 h before hatching, and we scored engulfment within 5 h of heat shock. We found that expression of abl-1 in *ced-10(n1993); abl-1(n1963)* animals increased the number of unengulfed corpses in L1 heads from 9.8 to 18.2 (Table 3) (for comparison, *ced-10(n1993)* animals had 20.0 corpses, Table 1). abl-1 expression almost completely abrogated the effect of the abl-1(n1963) mutation, whereas expression of a gfp-only control transgene had minimal effects on the engulfment defect (Table 4). Moreover, high levels of ABL-1 protein might have nonphysiologic activity that allows ABL-1 to bypass the requirement for its kinase activity. Alternatively, the K340R substitution might destabilize the ABL-1 protein, resulting in lower ABL-1 protein levels, and a consequent decrease in the rescuing activity of the *abl-1*(K340R) transgene.

Table 3. Overexpression of abl-1 Reverses the Effect of abl-1 (n1963) on Engulfment in ced-10(n1993); abl-1(n1963) Animals

<table>
<thead>
<tr>
<th>Transgene</th>
<th>Heat Shock</th>
<th>n Corpses ± sd</th>
<th>n</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hspgfp</td>
<td>–</td>
<td>9.4 ± 4.1</td>
<td>41</td>
<td><0.005</td>
</tr>
<tr>
<td>hspgfp</td>
<td>+</td>
<td>11.7 ± 3.7</td>
<td>36</td>
<td>—</td>
</tr>
<tr>
<td>hspabl-1</td>
<td>–</td>
<td>9.8 ± 4.2</td>
<td>30</td>
<td><0.0001</td>
</tr>
<tr>
<td>hspabl-1</td>
<td>+</td>
<td>18.2 ± 4.1</td>
<td>34</td>
<td>—</td>
</tr>
<tr>
<td>hspabl-1(K340R)</td>
<td>–</td>
<td>9.9 ± 4.2</td>
<td>33</td>
<td><0.0001</td>
</tr>
<tr>
<td>hspabl-1(K340R)</td>
<td>+</td>
<td>14.5 ± 3.6</td>
<td>40</td>
<td>—</td>
</tr>
</tbody>
</table>

ced-10(n1993); abl-1(n1963) embryos containing the transgenes indicated above were heat shocked at 33 °C for 1 h and then allowed to recover for 3–3.5 h at 20 °C. The numbers of cell corpses in the heads of anesthetized first larval stage (L1) worms were counted using DIC microscopy within 0.5 h of hatching. The number of persistent corpses was determined from two independent transgenic lines for each transgene. sd, standard deviation.

doi:10.1371/journal.pbio.1000099.003

ABL-1 Acts in Engulfment and DTC Migration

We tested whether ABL-1, the only *C. elegans* homolog of the Abi cytoskeletal regulatory gene family (Figure 5A), affects engulfment and gonadal cell migration. The Abi proteins (Abi-1/E3b1, Abi-2, and Abi-3/NESH in humans) were discovered as Abl interactors in yeast two-hybrid screens [48–50]. In different contexts, Abi and Abl proteins have been shown either to activate or suppress each other [48,49,51–57]. Abi proteins are part of the Scar/WAVE complex [58] and can interact with Formins [59], N-WASP [60], and Ena [52], all important regulators of the actin cytoskeleton. In addition, Abi proteins interact with signaling proteins that are important for cytoskeletal regulation, such as Ep8, Sos-1, and c-Cbl [50,55,61].

The Abi proteins have an N-terminal wave-binding domain [62], proline-rich repeats, and a C-terminal SH3 domain (Figure 5A). *C. elegans* Abi-1 is 31% identical to its closest human homolog, Abi-1 (Figure 5B), and has higher conservation in predicted functional domains. Our determination of *abi-1* transcript structures is described in Text S1.

We tested ABI-1 function using the deletion mutation *tm494*, which removes a 66-amino acid region just before the SH3 domain and changes the frame of the remaining sequence, resulting in a C-terminal truncation just before the SH3 domain. We also used *abi-1* RNAi by feeding to reduce *abi-1* expression [63,64], because RNAi by injection [65] causes embryonic lethality [66]. We showed that *abi-1(tm494)* and feeding *abi-1* RNAi probably caused a very weak loss of function, given that animals were viable and fertile. *abi-1(tm494)* or *abi-1* RNAi in wild-type animals caused a weak engulfment defect (Table 4). Also, the *tm494* mutation or *abi-1* RNAi significantly enhanced the engulfment defects of all engulfment mutants tested (in both the CED-10 Rac and CED-1 pathways) (Table 4). In addition, *abi-1* RNAi significantly enhanced the engulfment defect of a *ced-1(e1735); ced-5(n1812)* double mutant, in which both engulfment pathways are nonfunctional. To determine whether ABI-1 function requires ABL-1, we assayed the effect of *abi-1* RNAi in strains doubly mutant for engulfment genes and *abl-1*. Loss of *abi-1* function enhanced the engulfment defects of these strains to the same degree, whether *abl-1* mutation was present or absent. Therefore, ABI-1 does not act by modulating ABL-1 function.

We also assayed the effect of *abi-1* RNAi on gonadal migration. *abi-1* RNAi enhanced the *ced-5* defect in gonadal cell migration (from 47.5% to 58.8%, *p < 0.04*) (Figure 6). Strikingly, *abi-1(lf)* completely abrogated the effect of *abl-1* mutation on gonadal cell migration in *ced-5* and *ced-12* animals.

Because Abi proteins are in the Scar/WAVE complex and other Scar/WAVE complex members have been implicated in engulfment (GEX-2 and GEX-3, the *C. elegans* homologs of Sra-1 and Nap, respectively) [67], we asked whether the localization of GEX-3 is altered in animals with a loss of *abi-1* function. We assessed the localization of a rescuing
GFP::GEX-3 fusion protein (kindly provided by M. Soto) in embryos of animals that contain a gex-3 null mutation (zu196) with either a wild-type abl-1 allele or abl-1(ok171). We found no localization of the fusion protein around embryonic cell corpses and no apparent difference in the pattern of fluorescence in both strains (Figure S1). Therefore, Scar/WAVE complexes do not appear to localize around apoptotic cell corpses at least at the time that corpses become visible by DIC optics. Furthermore, the absence of ABL-1 protein does not appear to alter the localization of Scar/WAVE complexes. However, ABL-1 probably only interacts with a fraction of the Scar/WAVE complexes present, and this fraction might not be sufficiently large to detect a difference in the overall localization of Scar/WAVE complexes using this method. Moreover, the rescuing GFP::GEX-3 fusion transgene is located on an extrachromosomal array and might be expressed at much higher levels than wild-type GEX-3. For these reasons, we cannot unambiguously interpret these results.

In summary, loss of ABI-1 function enhanced the engulfment defects caused by the inactivation of either the CED-10 Rac pathway or the CED-1 pathway or both together and enhanced the DTC migration defects of the CED-10 Rac pathway.

Figure 5. abi-1 Is a C. elegans Abi Gene
(A) Alignment of three Homo sapiens Abi proteins (Abi-1, Abi-2, and Abi-3) with C. elegans ABI-1. The dashed line indicates the Wave-binding domain. The dotted line shows the proline-rich region. The continuous line shows the SH3 domain. The boxed residues in ABI-1 indicate the sequence removed by the tm494 deletion. Dark gray indicates identities, light gray similarities.

(B) Similarity and identity indices between ABI-1 and each of the three human Abi proteins.
doi:10.1371/journal.pbio.1000099.g005

GFP::GEX-3 fusion protein (kindly provided by M. Soto) in embryos of animals that contain a gex-3 null mutation (zu196) with either a wild-type abl-1 allele or abl-1(ok171). We found no localization of the fusion protein around embryonic cell corpses and no apparent difference in the pattern of fluorescence in both strains (Figure S1). Therefore, Scar/WAVE complexes do not appear to localize around apoptotic cell corpses at least at the time that corpses become visible by DIC optics. Furthermore, the absence of ABL-1 protein does not appear to alter the localization of Scar/WAVE complexes. However, ABL-1 probably only interacts with a fraction of the Scar/WAVE complexes present, and this fraction might not be sufficiently large to detect a difference in the overall localization of Scar/WAVE complexes using this method. Moreover, the rescuing GFP::GEX-3 fusion transgene is located on an extrachromosomal array and might be expressed at much higher levels than wild-type GEX-3. For these reasons, we cannot unambiguously interpret these results.

In summary, loss of ABI-1 function enhanced the engulfment defects caused by the inactivation of either the CED-10 Rac pathway or the CED-1 pathway or both together and enhanced the DTC migration defects of the CED-10 Rac pathway.
ABL-1 and ABI-1 Interact In Vitro

In mammals, Abl and Abi-2 interact in vitro in two ways. The SH3 domain of Abl binds to a site in the first 157 amino acids of Abi-2, likely a proline-rich site. The SH3 domain of Abi-2 binds to a proline-rich region near the center of Abl (amino acids 593–730) [49]. To test whether *C. elegans* ABL-1 and ABI-1 interact directly, we performed in vitro binding experiments with glutathione-S-transferase fused to the N terminus of ABL-1 and in vitro translated portions of ABL-1. We made two ABL-1 constructs, an N-terminal fragment (amino acids 112–611) and a C-terminal fragment (amino acids 606–1,224). ABL-1(112–611) bound to ABI-1, but to a small degree also bound to GST alone. Quantitation of the bands using phosphorimagery revealed 8-fold higher binding in the ABI-1 lane than in the GST lane despite a much smaller amount of ABI-1 than GST loaded on the gel (note Coomassie Blue-stained gel next to the autoradiograph) (Figure 7). ABL-1 did not bind to the control Luciferase; we also failed to observe ABL-1(606–1,224) binding. ABL-1(112–611) contains the SH3, SH2, and tyrosine kinase domains of ABL-1. ABL-1(606–1,224) contains the entire C-terminal half of ABL-1, including the region homologous to mammalian Abl where the Abi-2 SH3 domain binds. However, the polypeptide stretch is within the first 60 amino acids of ABL-1(606–1,224) and might not have folded appropriately to bind to the ABL-1 SH3 domain. The direct binding of the N-terminal half of ABL-1 to ABI-1 strengthens the hypothesis that a direct interaction between these proteins exists in vivo and suggests that ABI-1 directly inhibits ABI-1 in its roles in the engulfment of apoptotic cells and DTC migration.

We also tested whether ABL-1 binds to the product of the *abi-1(tm494)* allele, which contains only the first 350 amino acids of the 470 amino acid protein. We called this protein ABL-1(112–611). ABL-1(112–611) bound to ABI-1 but less than ABL-1(112–1,224); ABI-1 bound less to ABL-1(112–611) than to ABL-1(112–1,224) or to Luciferase (Figure 7). This result is consistent with the fact that the region of ABL-1 thought to bind to the N terminus of ABL-1 on the basis of mammalian Abl/Abi interactions is intact in ABL-1Δ [49]. Although the amount of ABL-1(112–611) bound by ABI-1Δ was approximately 3-fold less than that bound by ABL-1, it is difficult to know how much ABL-1Δ was loaded onto the gel, because ABI-1Δ comigrates with a nonspecific band. Alternatively, truncation of ABI-1 might cause changes in folding that decrease its ability to bind substrates, which might reflect decreased binding to ABL-1 in vivo and possibly explain the decreased function of the *abi-1(tm494)* allele.

![Figure 6. Loss of *abi-1* Function Enhances the DTC Migration Defects of Engulfment Pathway Genes](image-url)

The gonads of animals mutant for an engulfment gene with or without *abi-1* were treated with *abi-1* RNAi or a control RNAi, observed, and scored for morphology using DIC microscopy. Scoring was as described in Materials and Methods. Percentages of abnormal gonad arms are shown. At least 50 gonad arms were scored for each genotype. Statistical analysis used Fisher’s exact test, *, p < 0.04; **, p < 1 × 10^−3.

doi:10.1371/journal.pbio.1000099.g006
Discussion

We have demonstrated that the C. elegans Abl ortholog ABL-1 negatively regulates the engulfment of apoptotic cells. abl-1 inhibits the engulfment process as well as the engulfment-related cell-killing process and the migration of DTCs during gonadogenesis. Our genetic analysis suggests that ABL-1 acts in a manner that does not require the known engulfment pathways. Ectopic expression experiments indicate that ABL-1 acts in engulfing cells and that its function at least partially depends on its kinase activity. Moreover, our studies show that the Abi ortholog ABI-1 acts in engulfment and DTC migration. Finally, our genetic and biochemical studies both suggest that ABL-1 directly inhibits ABI-1 in a pathway distinct from the known engulfment gene pathways.

How Do ABL-1 and ABI-1 Interact In Vivo?

Our genetic analysis indicates that either abl-1 could inhibit abi-1 or the two genes could act in separate molecular pathways. We favor the former hypothesis, both because ABL-1 and ABI-1 interact directly in vitro and because in mammalian cell culture and cultured neurons the homologs of these proteins interact and function in processes that regulate the cytoskeleton [55,56].

Our findings establish that an Abl protein and an Abi protein interact functionally in vivo. In some in vitro studies Abi activated Abl [49,51–54], in others Abi activated Abi [56,57], and in still others Abi appeared to block Abl function [48–50,55]. We found that abl-1 and abi-1 have opposing functions in vivo. Given the large number of proteins with which Abl and Abi interact and the multiple cellular contexts in which they function, in vivo analyses will be critical to distinguish which interactions are relevant for a particular cell biological process.

ABL-1/ABI-1 Likely Act in Parallel to the CED-10 Rac and CED-1 Pathways

The inhibition of engulfment by ABL-1 occurred in the absence of functional CED-2 CrkII, indicating that the effect of ABL-1 on engulfment and DTC migration is not mediated by CED-2 CrkII inhibition. In mammals, Abl phosphorylates tyrosine 221 of CrkII between its SH3 domains, resulting in inhibition of CrkII function and suppression of cell migration [25,68]. This tyrosine is not conserved in C. elegans. We conclude that C. elegans ABL-1 blocks the CED-10 Rac pathway by a novel mechanism.

Our analysis of genetic interactions between abl-1 and the engulfment genes suggests the existence of a new pathway involved in both cell-corpse engulfment and DTC migration. Loss of ABL-1 function suppressed the engulfment and cell-death defects of all CED-1 pathway genes tested. abl-1 mutation did not suppress the engulfment defects of ced-5 or ced-12 nulls but did suppress their DTC migration defects. Since abl-1 mutation modulated DTC migration in the absence of ced-5 or ced-12 function (i.e., when the CED-10 Rac pathway was inactive), ABL-1 can signal through another pathway. We propose that ABL-1 acts in a third pathway not only for DTC migration but also for engulfment. If so, this pathway cannot promote engulfment in the absence of CED-10 Rac activation. Although it is formally possible that the function of ABL-1 in engulfment is mediated through the CED-10 Rac pathway while its effect on DTC migration is mediated through a different pathway, we prefer a simpler model in which ABL-1 acts through a single pathway to oppose the engulfment genes. This pathway might act in parallel to CED-10 or it might act on CED-10 Rac (see below).

We found that ABI-1 is required for the function of ABL-1 in engulfment and DTC migration. ABL-1 promoted engulfment and migration independently of the known engulfment pathways downstream of or in parallel to ABL-1. We propose that ABL-1 inhibits ABI-1 and that these two proteins define a new molecular pathway required for cell-corpse engulfment and DTC migration. Interestingly, loss of abl-1 did not suppress the engulfment defects of CED-10 Rac pathway null mutants, whereas loss of abi-1 did enhance those engulfment defects. At least three models can explain these findings. ABL-1 might not be a sufficiently potent inhibitor of ABI-1 to...
affect engulfment in the absence of CED-10 Rac pathway activity. Second, the CED-10 Rac pathway might be absolutely required for engulfment, so that derepressing the ABL-1/ABI-1 pathway does not suppress the CED-10 Rac pathway engulfment defect. Third, loss of abl-1 function might increase engulfment activity in the absence of the CED-10 Rac pathway insufficiently to detect in the engulfment assay.

Loss of abl-1 function suppressed the DTC migration defect of a null ced-10 mutant. However, these animals were the progeny of heterozygotes and probably contained some of a null ced-10 mutant. Therefore, we do not know whether ABL-1 or ABI-1 act independently of CED-10 or DYN-1 for engulfment or engulfment-mediated programmed cell death (or DTC migration in the case of CED-10) and hence whether ABL-1 and ABI-1 act through either of these genes or in a parallel molecular pathway. We think it unlikely that ABL-1 and ABI-1 act through DYN-1, since the CED-1 pathway has no known role in DTC migration, and ABL-1 and ABI-1 modulate DTC migration defects.

There are at least three models for how the ABL-1 and ABI-1 proteins act in engulfment and DTC migration. First, ABL-1 might directly inhibit ABI-1 from promoting engulfment of apoptotic cells and inappropriate DTC migration through a molecular pathway that acts in parallel to the known engulfment gene pathways (Figure 8). Second, ABI-1 might act on CED-10 Rac in parallel to the CED-5/CED-12 heterodimer (Figure 8). These models are not mutually exclusive. In a third model, the CED-10 Rac pathway and ABL-1 both act on ABI-1 in parallel to each other, with CED-10 Rac activating ABI-1 and ABL-1 inhibiting it. Studies of mammalian Abi proteins are consistent with the first two models. For example, ABI-1 might act similarly in our first model. ABI-1 proteins also form a complex with Eps8 and Sos-1. Formation of the ABI-1/Eps8/Sos-1 complex activates the RacGEF activity of Sos-1 in response to tyrosine kinase signaling [50,61]. ABI-1 might act this way in our second model. In mammals, Rac and Abi proteins both act on the Scar/WAVE complex through interactions with Abi proteins [53,69]. However, in these cases Abi activates Abi. By contrast, we found that ABL-1 inhibits ABI-1. For this reason we do not favor a model in which ABL-1 and CED-10 Rac act on ABI-1 in parallel.

Why Negatively Regulate Engulfment?

Despite the large number of genes known to be involved in engulfment, only a few negatively regulate the process. Loss of SWAN-1, a CED-10-binding protein, suppresses the engulfment and DTC migration defects caused by ced-10 loss of function, and SWAN-1 thus might be a negative regulator of these processes [70]. In mammalian macrophages and macrophage cell lines, the small GTPase Rho and one of its effectors, Rho-kinase, negatively regulate engulfment of apoptotic cells [71,72]. Rho, like Rac, regulates the cytoskeleton, and in many contexts the two proteins act in opposition to each other [20]. All Rac proteins are down-regulated by Rac-specific GTPases (RacGAPs) [73]. No RacGAPs have been identified that function in engulfment, though presumably one or more will be found.

Pathways that inhibit engulfment might prevent the inappropriate engulfment of healthy cells that are not programmed to die. There are examples of inappropriate engulfment of mammalian cells. In entosis, cells engulf and eventually kill neighboring cells that have lost their attachments to the extracellular matrix [74]. Also, the glycosylated surface protein SIRPα is found on engulfing cells and interacts with the integrin-associated protein CD47 on other viable cells. When that interaction is disrupted, inappropriate engulfment occurs [75]. Notably, the intracellular cascades that transduce these signaling events have not been discovered. Possibly abl-1 transduces these types of signals.

Perhaps there are conditions that cause cells to be particularly sensitive to engulfment, and without such negative regulatory pathways cells would be inappropriately killed. Since engulfment promotes the cell-killing process, several of the situations in which engulfment occurs could be severely affected by such excess cell death: developmental, wound healing and infection control.

Targeting signaling pathways that negatively regulate engulfment might have therapeutic benefits. For example, inducing professional engulfing cells, such as macrophages, to engulf diseased cells, such as cancerous cells or those infected with viruses or bacteria, could aid in combating these disease processes. Also, in humans impaired engulfment of apoptotic

Figure 8. ABL-1 and ABI-1 Likely Function in Parallel to the CED-10 Rac and CED-1 Engulfment Pathways

We suggest that ABL-1 inhibits ABI-1, which acts to promote the engulfment of apoptotic cells. ABI-1 might signal either independently of the CED-10 Rac pathway (Arrow 1) or through CED-10 Rac, in parallel to the CED-10 GEF CED-5/CED-12 (Arrow 2). This model also applies to the roles of ABL-1 and ABI-1 in the regulation of DTC migration, but we do not show DTC migration in the figure, because the CED-1 pathway does not act in this process. Since ABL-1 and ABI-1 act in DTC migration, ABL-1/ABI-1 cannot act solely through the CED-1 pathway since the proteins of the CED-1 pathway have no role in DTC migration.

doi:10.1371/journal.pbio.1000099.g008
Cells were associated with systemic lupus erythematosus (SLE) [76] and in mice, ineffective engulfment of apoptotic cells can cause an SLE-like syndrome [77]. Enhancing the engulfment of apoptotic cells might aid in treating or preventing certain autoimmune disorders. Extremely effective and specific small molecule inhibitors of Abl, such as Imatinib [78] (Gleevec) and Nilotinib [79], exist so this idea could be tested.

Materials and Methods

Strains and genetics. *C. elegans* strains were maintained at 20 °C as described [80]. The N2 Bristol strain was used as the wild-type strain. Animals were grown on NGM plates and fed OP50 bacteria [42]. The described [80]. The N2 Bristol strain was used as the wild-type strain.

Quantification of DTC defects. Adult animals 18 h after the mid-fourth larval stage (L4) were anaesthetized and viewed as described above. P-values for pairwise comparisons were calculated using the Wilcoxon rank-sum test. Expression analysis of the abtl-1 promoter. A PCR product containing the abtl-1 promoter (622 bp of DNA encoding the sequence between the 5’ and the adjacent gene start) was synthesized by PCR from an abtl-1 cDNA template (yk1482) kindly provided by S. Mitani, Tokyo Women’s Medical University, Japan) can be found at www.wormbase.org. The following balancer chromosomes were used: LGI; LGII; LGIII; LGIV; LGV, n1964 [38]; LGX, abl-1(n1981), n1965, n1963, n1964 [82] below); ok171), n1963 [all this study; see above]; n1963, n1964, n1965 [38]. Mutant alleles for which no citation is given were described previously [81]. Information about the abtl-1 allele gm332 and mutation gm327 kindly provided by S. Miki, The University of Tokyo. Nematodes were transferred onto fresh NGM plates containing 1 mM isopropyl-D-thiogalactopyranoside (IPTG).

Single embryos were then placed on an agar pad, sealed with petroleum jelly, and viewed at 22 °C using a Zeiss Axioscop 2 compound microscope equipped with Nomarski DIC, a Hamamatsu ORCA-ER digital camera, and Openlab image acquisition software (Improvision). Pictures were taken every 3 min for 200 min, starting 180 min after the first cell division. The time of appearance of each corpse was recorded. Four to five serial z sections at 0.5 μm section were recorded. Recording began at 180 min after first cleavage, because the first apoptotic cell corpses appear at approximately 200 min after the first cell division [66]. Images were analyzed with ImageJ [85] (rsb.info.nih.gov/ij) using the plugins Manual Tracking (rsbweb.nih.gov/ij/plugins/track/track.html) and Ome Loci (http://www.loci.wisc.edu/ome). P-values for comparisons between strains were calculated using the Wilcoxon rank-sum test.

abtl-1 rescue. *P*_{rol-gfp-1} and *P*_{rol-gfp-1(k340R)} were constructed as follows. The entire coding sequence (bp 1–3,675) of *abtl-1* was synthesized by PCR from an abtl-1 cDNA template (yk1482) kindly provided by S. Mitani, Tokyo Women’s Medical University, Japan) can be found at www.wormbase.org. The following balancer chromosomes were used: LGI; LGII; LGIII; LGIV; LGV, n1964 [38]; LGX, abl-1(n1981), n1965, n1963, n1964 [82] below); ok171), n1963 [all this study; see above]; n1963, n1964, n1965 [38]. Mutant alleles for which no citation is given were described previously [81]. Information about the abtl-1 allele gm332 and mutation gm327 kindly provided by S. Miki, The University of Tokyo.

Quantification of cell-death defects. In the anterior pharynx, animals in the third larval stage (L3) were anaesthetized and viewed with DIC microscopy as described above. Briefly, the locations of the nuclei of the 16 cells that undergo programmed cell death in the anterior pharynx are known [36]. In wild-type larvae, by the L3 stage, all of those nuclei have disappeared; any remaining nuclei in the animals tested were scored as extra cells. P-values for pairwise comparisons in the pharynges were calculated using Student’s t-test. Quantification of cell-death defects in the ventral nerve cord, a dissecting microscope equipped with an ultraviolet light source (Kramer Scientific) was used. To analyze the ventral nerve cord, the L3 stage, adults of those nuclei have disappeared; any remaining nuclei in the animals tested were scored as extra cells. P-values for pairwise comparisons in the pharynges were calculated using Student’s t-test. Quantification of cell-death defects in the ventral nerve cord, a dissecting microscope equipped with an ultraviolet light source (Kramer Scientific) was used. To analyze the ventral nerve cord, the L3 stage, adults of those nuclei have disappeared; any remaining nuclei in the animals tested were scored as extra cells. P-values for pairwise comparisons in the pharynges were calculated using Student’s t-test.
template yk1482h02 and an abi-1 cDNA template (yk1204a12). The abi-1 products spanned bp 334–1,833 (ABL-1[112–611] and 1,818–1,297. This construct was made using the QuickChange Site-Directed Mutagenesis kit (Stratagene) with the CR8/GW/TOPO plasmid containing the full length abi-1 gene as a template and the following PCR primers: forward 5′-CCGACA- GATCTTCCACACGGCACAACGGGTCTGCATGACATTGATGCTGC-3′; reverse 5′-GCGACTGACTAGTGCTGA- CAGGACCGTGGTTGAGGTTGAGGATCATGTCCG-3′. DNA sequences of PCR products were determined for accuracy and orientation. abi-1 products were then cloned into pDEST14 using the Gateway method (Invitrogen) for expression in vitro. For expression in vivo, abi-1 and abi-1A were cloned into pDEST15 to make N-terminal glutathione S-transferase fusions using the Gateway method for expression in Escherichia coli. ABI-1 fragments were transcribed, translated, and labeled with 35S in vitro using the TNT 17 Quick Coupled Transcription/Translation System (Promega) according to the manufacturer. GST and GST-ABI were expressed in BL21(DE3)-RIPL cells (BL21(DE3) Codon Plus [Stratagene]). Bacterial lysates were prepared by lysis in a French Press in the presence of protease inhibitors (Roche Applied Science). Protein binding to glutathione beads was done as follows. Glutathione beads (GE Healthcare) were washed three times in NETN (0.5% NP-40, 20 mM Tris-Cl [pH 8], 100 mM NaCl, 1 mM EDTA) and then a 1:1 mixture of beads/NETN slurry was added to soluble GST, GST-ABI, or GST-ABI-A. The resulting mixture was incubated at 4°C with gentle rocking for 1 h. Protein-bound beads were then washed twice with PBB (25 mM HEPES [pH 7.6], 150 mM NaCl, 0.5 mM MgCl2, 0.1 mM EDTA, 0.3% Tween-20). Binding of GST-proteins to in vitro translated proteins was done as follows. 15 μl protein-bound beads containing equivalent amounts of GST, GST-ABI, or GST-ABI-A were added to 25 μl of a 100 μM in vitro transcription/translation reaction containing either ABL-1(112–611), ABL-1(1066–1212), or Luciferase. Mixtures were diluted to 250 μl in PBB2 (25 mM HEPES [pH 7.6], 150 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 0.1% Tween-20, 0.25% BSA) and incubated at 4°C with gentle rocking for 2 h. Beads were washed three times in PBB3 (25 mM HEPES [pH 7.6], 300 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 0.1% Tween-20, 0.25% BSA) with 15 min rocking at 4°C between each wash and then washed once in PBB4 (25 mM HEPES [pH 7.6], 250 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 0.1% Tween-20) followed by 15 min rocking at 4°C. Beads were pelleted, supernatant was removed, and beads were resuspended in 2X loading dye, boiled and separated on SDS-PAGE. Gels were stained with Coomassie Blue, dried, and exposed overnight on photographic film. For quantitation of radioactivity, gels were exposed overnight on a phosphorimager screen and analyzed using a Typhoon 9400 Variable Mode Imager (Amersham Biosciences). Bands were quantified using ImageQuant 5.2 software (GE Healthcare).

Supporting Information

Figure S1. GFP::GEX-3 Localization Is Unchanged in Embryos Lacking ABL-1
unc-24(e138) ges-3(zu196) and unc-24(e138) ges-3(zu196); abl-1(k171) embryos containing a rescuing gfp::ges-3 transgene were observed using a confocal microscope. (A, C, E, and G) are DIC micrographs and (B, D, F, and H) are epifluorescence micrographs. Dashed lines encircle corresponding regions in the fluorescence images. Found at doi:10.1371/journal.pbio.1000099.sg001 (4.23 MB PDF).

Text S1. Supplementary Text of Protocols and Results

Supportive information includes the following sections: (1) Complementation testing, mapping, and DNA sequence determination of abi-1 alleles; (2) Determination of abi-1 gene structure; (5) GFP::GES-3 embryonic localization. Found at doi:10.1371/journal.pbio.1000099.s001 (5 KB DOC).

Acknowledgments

We thank V. Carey for statistical analysis; Y. Kohara for abl-1 and abi-1 cDNAs; A. Fire and M. Boxem for vectors; M. Soto for strains; and N. An, B. Castor, E. Murphy, and R. Droste for technical assistance. We also thank K. Schmidt and M. Soto for sharing unpublished results regarding abi-1 and D. Denning and N. Ringstad for suggestions concerning the manuscript.

Author contributions. MEH, PJV, LB, GG, and HRH conceived and designed the experiments. MEH, PJV, LB, and JG performed the experiments. MEH, PJV, LB, GG, and HRH analyzed the data. MEH, PJV, GG, and HRH wrote the paper.

Funding. MEH was supported by Award Number K08CA104890 from the National Cancer Institute. HRH is the David H. Koch Professor of Biology and an Investigator of the Howard Hughes Medical Institute. GG was supported by National Institutes of Health Grant NS32057. PJV was supported by a National Science Foundation predoctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests. The authors have declared that no competing interests exist.

References

Yang Y, Lu J, Rovnak J, Quackenbush SL, Lundquist EA (2006) SWAN-1, a Caenorhabditis elegans gene encoding a novel kinase inhibitor, regulates astrocyte migration and axon guidance, cell migration and apoptotic cell phagocytosis. Develop-

