The macroscopic delamination of thin films from elastic substrates

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.0902160106</td>
</tr>
<tr>
<td>Publisher</td>
<td>United States National Academy of Sciences</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Nov 07 00:50:44 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/52598</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
The macroscopic delamination of thin films from elastic substrates

Dominic Vellaa,b, José Bicoa, Arezki Boudaoudb, Benoît Romanc, and Pedro M. Reisc,1

aPhysique et M\'ecanique des Milieux H\'et\'erog\'enes, Ecole Sup\'erieure de Physique et de Chimie Industrielles, Universit\'es Paris 6 and 7, Centre National de la Recherche Scientifique Unit\'e Mixte de Recherche 7636, ParisTech, 10 Rue Vauquelin, 75231 Paris Cedex 05, France; bLaboratoire de Physique Statistique, Ecole Normale Sup\'erieure, Universit\'e Pierre et Marie Curie, Paris 06, Universit\'e Paris Diderot, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75005 Paris, France; and cDepartment of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Harry L. Swinney, University of Texas, Austin, TX, and approved May 6, 2009 (received for review February 26, 2009)

The wrinkling and delamination of stiff thin films adhered to a polymer substrate have important applications in “flexible electronics.” The resulting periodic structures, when used for circuitry, have remarkable mechanical properties because stretching or twisting of the substrate is mostly accommodated through bending of the film, which minimizes fatigue or fracture. To date, applications in this context have used substrate patterning to create an anisotropic substrate-film adhesion energy, thereby producing a controlled array of delamination “blisters.” However, even in the absence of such patterning, blisters appear spontaneously, with a characteristic size. Here, we perform well-controlled experiments at macroscopic scales to study what sets the dimensions of these blisters in terms of the material properties and explain our results by using a combination of scaling and analytical methods. Besides pointing to a method for determining the interfacial toughness, our analysis suggests a number of design guidelines for the thin films used in flexible electronic applications. Crucially, we show that, to avoid the possibility that delamination may cause fatigue damage, the thin film thickness must be greater than a critical value, which we determine.

Results

We observe that delamination occurs first with the appearance of a single blister. On further compression, a series of approximately identical blisters appear sequentially. The size of these blisters is typically much larger than the wavelength of the wrinkling instability that precedes it. A representative photograph of such an array of delamination blisters generated in our apparatus is shown in Fig. 1A. More details of the experimental procedure are given in Materials and Methods.

Our investigation is twofold because we focus on understanding both the characteristic dimensions of the first blister at the onset of delamination and the evolution of multiple blisters between delamination events. Consequently, we performed two different types of experiments. First, we measured the width of the first blister at onset \(\lambda \), as a function of the material properties of the system. Second, we measured (using an inclined laser sheet) the evolution of the height profile of the blisters as the compression is increased beyond onset. A schematic diagram of this arrangement is presented in Fig. 1B. Representative (plan view) photographs before and after the onset of delamination for a 90-\(\mu \)m-thick strip are shown in Fig. 1C. From these images, we extract the height profile of the strip, a typical example of which is shown in Fig. 1D. This profile is well approximated by a cosine form,

\[
y = d(x) = \frac{\delta}{2} \left[1 + \cos \frac{2\pi x}{\lambda} \right].
\]

where \(\delta \) and \(\lambda \) are the height and width of the blister, respectively. The form in Eq. 1 is expected for the buckling of an Euler column for small deformations (16, 17). This allows for \(\delta \) and \(\lambda \) to be readily determined by fitting of the experimental profiles.

Author contributions: B.R. and P.M.R. designed research; D.V., J.B., A.B., and P.M.R. performed research; D.V. and P.M.R. analyzed data; and D.V. and P.M.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

See Commentary on page 10875.

1To whom correspondence should be addressed. E-mail: preis@mit.edu.
Our analysis is presented in terms of the end-to-end displacement $\Delta L = L_o - L_i$, where L_o is the total uncompressed length of the flat strip and L_i is the distance from the left to the right edge of the strip once compression is applied (see Fig. 1C). In our experiment, the total end-to-end displacement of the substrate is controlled, not ΔL itself. However, we treat ΔL as an imposed control parameter, which is measurable directly in experiments. To illustrate the evolution of blister dimensions as ΔL increases, Fig. 1E shows the dependence of the height of the blister δ on ΔL. Under compression of the substrate, the sheet initially remains approximately flat up to a point where both δ and ΔL change sharply. This discontinuous jump corresponds to the delamination of the strip from the substrate: a blister forms. On increasing the compression ΔL further, the height of the blister also increases. When the compression ΔL is subsequently decreased, δ decreases smoothly following the previous path. However, the blister persists beyond the compression at which it first appeared, disappearing only once $\Delta L \approx 0$. In what follows we do not discuss this hysteretic behavior but believe that it would be of interest to study this further in future work. Henceforth, we will focus on the onset and evolution of blisters under compression only.

An alternative way to represent the evolution of the blister profile is to construct a space-compression diagram in which the strip height profiles $d(x)$ of the center line of the strip are stacked as a function of ΔL. Two representative examples of such diagrams are given in Fig. 2A and B for sheets of thickness $h = 90$ μm and $h = 30$ μm, respectively. In these diagrams, the color represents the height at each point x along the center line of the strip for a given value of ΔL. In Fig. 2A the value of ΔL at

* A balance-of-forces argument applied at the edge of the sheet perpendicular to the compression direction shows that ΔL is directly related to the globally imposed end-to-end displacement.
appearance and evolution of multiple blisters (with compression is least restricted. We neglect any compression of is localized directly underneath the blisters since this is where B stiffnes blister is developed a scaling law for the size of the thin film and & the substrate thickness t. If the compression is increased sufficiently, a series of approximately identical blisters are generated sequentially. A space-compression plot with successive delamination events is shown in Fig. 2B with the appearance of four further blisters indicated by the vertical dashed lines b_2, b_3, b_4, and b_5, respectively.

Blistering at Onset. We now follow an energetical approach to develop a scaling law for the size λ_c of the blisters at onset as a function of the material properties. The elastic energy of the system is $U = U_0 + U_\ell$, where U_0 is the contribution due to bending of the thin film and U_ℓ is the elastic energy of the substrate, which is localized directly underneath the blisters since this is where compression is least restricted. We neglect any compression of the relatively stiff thin film. For a strip of width w and bending stiffness B, the bending energy caused by the presence of a single blister is $U_0 = 1/2Bw \int_{-\lambda/2}^{\lambda/2} d''(x)^2 dx = \pi^4 B w \delta^2/\lambda_c^4$, where $d''(x)$ is the second derivative with respect to x of the blister profile given in Eq. 1. The elastic energy stored in the substrate U_ℓ depends on the strain ϵ accommodated beneath each blister, the substrate elastic modulus E_s and the substrate thickness t. We estimate U_ℓ in two relevant limiting regimes: (a) large blisters ($\lambda \gg w, t$) and (b) small blisters ($\lambda \ll w, t$). Intermediate regimes may be considered with similar arguments but complicate the subsequent analysis unnecessarily. In each of these limits the volume over which substrate deformation occurs (schematic presented in Figures $3A$ and B, respectively) scales as the area λ_c^2, multiplied either by (a) the thickness of the substrate t or (b) the width of the strip, w. The substrate energy density in each case is $E_c \epsilon^2/2$ so that the energy is $U_\ell = \alpha E_c \epsilon^2 \lambda_c^2$ with $\alpha \sim t$ for large blisters and $\alpha \sim w$ for small blisters. The total elastic energy for n identical blisters is therefore given by

$$U = n \left(\pi^4 B w^3 + \alpha E_c \epsilon^2 \lambda_c^2 \right),$$

where the unknown parameters are the number of blisters n, their width λ, height δ, and the strain ϵ accommodated by each of them. Using the blister profile given in Eq. 1, we obtain the geometrical relationship

$$\frac{\Delta L}{n} = \frac{\pi^2 \delta^2}{4 \lambda},$$

which may be used to eliminate δ from Eq. 2 in favor of ΔL. Also, the strain accommodated by each blister is $\epsilon = \Delta L / n \lambda$. Because ΔL is treated as a control parameter, the two unknowns are then the blister width λ and the number of blisters n. If we require that the energy release rate $-\partial U / \partial \lambda = n \Delta \gamma w$, where $\Delta \gamma$ is the interfacial toughness (16, 18), we find

$$\lambda = 2 (\pi \ell_c)^{2/3} \left(\frac{L_c}{n} \right)^{1/3},$$

where $\ell_c \equiv (B/\Delta \gamma)^{1/2}$ is a characteristic length that balances bending and adhesion. This length is directly analogous to the elasto-capillary length in the aggregation of wet hairs (19, 20) where surface tension replaces interfacial toughness. We note that Eq. 4 for a single blister ($n = 1$) was also given by Kendall (21) for a dislocation between an adhering flexible sheet and a rigid substrate. Given a fixed number of blisters, Eq. 4 governs the evolution of the blister size. However, for the apparition of the blistering pattern in the first place, the value of n is also unknown. Minimizing the elastic energy with respect to variations in n, we find that there is a critical value of $\Delta L/n$ at onset

$$\frac{\Delta L_c}{n} \sim \left(\frac{B \Delta \gamma w^3}{\alpha^2 E_s^2} \right)^{1/5}.$$

Since ΔL is increasing in our (displacement-controlled) experiments, blistering first manifests itself with $n = 1$. Furthermore, this finite value of ΔL at onset explains the jump in ΔL observed at delamination (see Figs. 1E and 2A). The threshold blister size, λ_c, is now found by substituting the critical value of $\Delta L/n$ into Eq. 4. For large blisters ($\lambda_c \gg w, t$) we find

$$\lambda_c \sim \left(\frac{B w^3}{E_s \Delta \gamma} \right)^{1/5},$$

whereas for small blisters ($\lambda_c \ll w, t$) we find

$$\lambda_c \sim \left(\frac{B^2}{E_s \Delta \gamma} \right)^{1/5}. $$

Experimental tests of the predictions Eqs. 6 and 7 are shown in Fig. 3A and $B,$ respectively. The raw data (for λ_c vs. w) are provided in Fig. 3A and B Insets. The experimental results are in excellent agreement with the above scalings (dashed lines in Fig. 3). In particular, we note that large blisters, $\lambda_c \gg w, t$, follow the $\lambda_c \sim w^{1/5}$ scaling expected, whereas for small blisters, $\lambda_c \ll w, t$, λ_c is approximately independent of w. Furthermore, we observe that the rescalings suggested by our analysis yield a good collapse of our data onto a master curve over a wide range of material parameters. Note that our analysis is only valid if the thin film

1 We assume here that n is chosen to minimize the elastic energy, although the final result may also be obtained by assuming that it is the strain accommodated by each blister, ϵ, that is chosen to minimize the elastic energy.
Evolution of Blisters. We have already observed that the blisters appear sequentially. In between each of these delamination events we see, e.g., Fig. 2, that the blister size λ and height δ evolve as the end-to-end compression, ΔL, increases. We expect that, with n fixed, λ should be governed by Eq. 4, or, after using Eq. 3,

$$\delta = \frac{2\sqrt{2}}{\pi^{1/3}} \left(\frac{\Delta L}{n} \right)^{2/3}. \quad [8]$$

We emphasize that Eqs. 4 and 8 depend only on the end-to-end displacement per blister, $\Delta L/n$. Thus, these relationships are equally valid for a single blister, $n = 1$, and for identical multiple blisters, $n > 1$. Fig. 4 shows experimental measurements of the mean blister height, $\langle \delta \rangle$, as a function of $\Delta L/n$ for a range of different material properties and with different numbers of blisters. Plotting the results in this way allows a direct comparison of the evolution of single and multiple blisters with the theoretical prediction in Eq. 8. The agreement between Eq. 8 and the experimental results is striking because there are no adjustable parameters in our model. We also note that the geometrical relationship of Eq. 3 is well satisfied for an arbitrary number of blisters (Fig. 4 Inset). However, the experimental values of δ are slightly above our predictions. We speculate that this slight discrepancy may be ascribed to the softness of the substrate: the film induces a dip in the surface of the substrate in the region of the contact between film and substrate.

Discussion and Conclusions

Having validated our theoretical formalism with macroscopic experiments, we conclude by considering its application to the microscopic situations relevant for a wide range of technological applications.

Measuring the Interfacial Toughness. We note that the interfacial toughness $\Delta \gamma$ can be simply expressed in terms of the height and width of the blister by eliminating ΔL between Eqs. 8 and 4:

$$\Delta \gamma = 2\pi^2 \frac{B h^3}{\lambda^2}. \quad [9]$$

Hence, $\Delta \gamma$ can be easily estimated if the value of the bending stiffness B is known along with the blister profile, in particular, the values of λ and δ. In the delamination of thin metal films—$h = O(100 \text{ nm})$—from polymeric substrates under compression B is known and the blister dimensions—$\lambda = O(1 \text{ mm})$ and height $\delta = O(1 \text{ cm})$—are typically measured by atomic force microscopy. However, the value of the interfacial toughness $\Delta \gamma$ is much more difficult to determine (18, 26, 27). In Table 1 we provide a survey of the relevant parameters from several studies of straight-sided blisters in the literature (22–24). By substituting these values into Eq. 9 we are able to estimate the interfacial toughness for each of those cases (Table 1, last column). Our estimated values are in agreement with the experimental data.
reasonable agreement with values determined in similar systems via alternative methods (27, 28). We note, in particular, that in the experiments of Foucher (24) only the film thickness was varied and we therefore expect that the estimates of $\Delta \gamma$ should be mutually consistent, as is indeed the case.

Implications for Stretchable Electronics. We conclude by highlighting some of the implications of our work for stretchable electronics, the technological application that motivated our study. First, we note that the film-substrate system produces blisters with an intrinsic size. This is important for experiments using predefined adhesion patterns (3) because the presence of an intrinsic length scale may lead to the appearance of defects in imposed patterns with different length scales. Indeed, Sun et al. (3) found empirically that the highly adhesive patch of their substrate patterning should be narrower than some critical width to avoid the formation of unwanted delamination blisters (see ref. 3, figure S1). Our formalism can be used to predict this critical size in terms of the intrinsic size. This is important for experiments using predefined delamination patterns. For example, using typical values for silicon we find $h_c \approx 0.5 \text{ nm}$, which corresponds to one or two atomic thicknesses [Recent experiments have shown that the deformation of ultrathin graphene films down to thicknesses of as few as 8 atomic layers are well described by continuum elasticity theory (34)].

Recently, there has been significant progress in developing techniques for uniform film deposition (33) and transfer onto arbitrary substrates (35). From a mechanical point of view, these advances along with a small critical thickness h_c suggest that ultrathin and high-strength films, such as graphene sheets, may be the ideal material for applications of bendable circuitry at small scales using delamination structures. Moreover, there is potential for further improvement on the robustness of devices by combining the criterion for material properties that we have proposed with more advanced multilayer designs (4).

Materials and Methods

General. Biaxially oriented polypropylene sheets (Innovia Films) with thicknesses $h = 15, 30, 50$, and $90 \mu m$ were used. The rectangular strips had widths in the range $1 \text{ mm} \leq w \leq 25 \text{ mm}$. Experiments with strips of different length showed that the onset blister size was not significantly altered provided that the length is greater than λ_c. For all experiments reported here $\ell > 2\ell_c$. Polymer substrates were made from Vinylpolyoxiloxane (Zhermack). Two different polymer melts were used: pink (8 Shore A) and green (22 Shore A). In general, the Young's moduli of these materials were $E_s \approx 220 \text{ kPa}$ and $E_c \approx 800 \text{ kPa}$, respectively though variations were accounted for by direct measurements (see: Measurement of material properties).

For deep substrates we compress uniaxially starting from the undeformed state. For thin substrates, this would produce buckling of the substrate and so we instead first stretch the substrate (uniaxially), adhere the strip to the substrate, and then release the strain gradually. Within the theory of linear elasticity, this is equivalent to a compression relative to the stressed state.

Blister Profile Measurements. The blister width at the onset of delamination λ_c was measured from digital photographs (taken from above) by using ImageJ. To measure the evolution of λ and δ as the compression ΔL is varied in thick films we used a computerized black. (Measurement of λ_c, using this method was consistent with those obtained using the first method confirming that painting has little effect on the material properties of the film.) A laser sheet at an oblique angle was then used to highlight the deflection of the blister and digital photographs were taken from above. Image analysis software, based on the MATLAB image processing toolbox, was written in-house and used to extract the blister profile, $d(x)$. The maximum of this profile gives the blister height h. Denoting the two values of x, where $d(x) = 1/2$, as x_1 and x_2, we define the blister size by $\lambda = |x_2 - x_1|$ (i.e., double the width at half-maximum), which is consistent with the natural definition of λ because of the sinusoidal blister profile in Eq. 1. However, this is a more robust and reproducible method of measuring λ than measuring the point of contact of the film with the substrate from laser profiles.

Measurement of Material Properties. The elastocapillary length, ℓ_c, was measured by clamping one end of the film with an imposed vertical displacement and measuring the extent of de-adhered part of the film. This experiment is the dry adhesion equivalent of the capillary-induced sticking of two hairs (20). In processing our experimental data we use the value of ℓ_c as ℓ_c, not $\Delta \gamma$. However, for completeness we note that typically the corresponding interfacial toughness is $\Delta \gamma \approx 0.31 \text{ J m}^{-2}$.

The bending rigidity of films was obtained by clamping horizontally one end of several strips and measuring the deflection under their own weight as a function of their length. We deduce bending rigidity by comparing these results with numerical integration of an elastic beam in a gravitational field with the same mass density (measured directly with a precision scale).
The stretching stiffness, E_1, of thin substrates was measured by using a
dynamometer to measure the force-displacement curve for stretching
strains <10%. Over this range of strains, the force-displacement curve is
linear, allowing the stretching stiffness E_1 to be determined from the
gradient.

mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA
104:15607–15612.
tic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA
98:4835–4840.
formation of ordered structures in thin films of metals supported on an elastomeric polymer.
Nature 393:146–149.

ACKNOWLEDGMENTS. We thank Lydéric Bocquet and Denis Bartolo for use-
ful discussions. D.V. is supported by the Royal Commission for the Exhibition of
Proc Natl Acad Sci USA 100:12141–12146.
Nature 432:690.
22. Cleymand F, Coupeau C, Grillié J (2001) Experimental investigation of the insta-
ability of buckling patterns: From straight-sided to wormlike structures. Scr Mater
44:2623–2627.
stressed straight-sided wrinkles: experimental AFM observations of bubbles formation
buckling of coatings: AFM observations and finite element calculations. Acta Mater
53:841–847.
Films 120:109–121.
30. Mansfield EH (1989) The Bending and Stretching of Plates (Cambridge Univ Press,
Cambridge, UK).