Measurement of $D(0)$-$D(0)$ Mixing from a Time-Dependent Amplitude Analysis of $D(0) \rightarrow K^+(\pi^-\pi^0)$ Decays

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Aubert, B. et al. "Measurement of $D(0)$-$D(0)$ Mixing from a Time-Dependent Amplitude Analysis of $D(0) \rightarrow K^+(\pi^-\pi^0)$ Decays." Physical Review Letters 103.21 (2009): 211801. © 2009 The American Physical Society
As Published	http://dx.doi.org/10.1103/PhysRevLett.103.211801
Publisher	American Physical Society
Version	Final published version
Accessed	Sun Apr 24 17:02:54 EDT 2016
Citable Link	http://hdl.handle.net/1721.1/52620
Terms of Use	Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Measurement of $D^0\bar{D}^0$ Mixing from a Time-Dependent Amplitude Analysis of $D^0 \to K^+ \pi^- \pi^0$ Decays

(BABAR Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of Bristol, Bristol BS8 1TL, United Kingdom
9University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
10Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
11Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
12University of California at Irvine, Irvine, California 92697, USA
13University of California at Los Angeles, Los Angeles, California 90024, USA
14University of California at Riverside, Riverside, California 92521, USA
15University of California at San Diego, La Jolla, California 92093, USA
16University of California at Santa Barbara, Santa Barbara, California 93106, USA
17University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
18California Institute of Technology, Pasadena, California 91125, USA
19University of Cincinnati, Cincinnati, Ohio 45221, USA
20University of Colorado, Boulder, Colorado 80309, USA
21Colorado State University, Fort Collins, Colorado 80523, USA
22Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
23Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
24Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
25University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
26INFN Sezione di Ferrara, I-44100 Ferrara, Italy
27Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
28INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
29INFN Sezione di Genova, I-16146 Genova, Italy
30INFN Sezione di Genova, I-16146 Genova, Italy
We present evidence of $D^0\bar{D}^0$ mixing using a time-dependent amplitude analysis of the decay $D^0 \to K^+\pi^-\pi^0$ in a data sample of 384 fb$^{-1}$ collected with the BABAR detector at the PEP-II e^+e^- collider at the Stanford Linear Accelerator Center. Assuming CP conservation, we measure the mixing parameters $x_{CP}^\pi = [2.61^{+0.57}_{-0.59}(\text{stat}) \pm 0.39(\text{syst})]\%$, $y_{CP}^\pi = [-0.06^{+0.55}_{-0.64}(\text{stat}) \pm 0.34(\text{syst})]\%$. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of CP violation in mixing.

PACS numbers: 13.25.Ft, 11.30.Er, 12.15.Mm, 14.40.Lb

The DCS and the CF amplitudes are described with isobar models [6].

The time-dependent decay rate depends on both the DCS amplitude $A_f(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$ and the CF amplitude $A_C(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$, where $s_{12} = m_{K^+\pi^-\pi^0}$, $s_{13} = m_{K^+\pi^-\pi^0}$, and $\bar{f} = K^+\pi^-\pi^0$. In the limit $|x|, |y| \ll 1$ and defining $\delta_f(s_{12}, s_{13}) = \arg[A_f(s_{12}, s_{13})A_f(s_{12}, s_{13})]$, we have

$$
\frac{dN_f(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} = e^{-\Gamma_f t} \left\{ |A_f|^2 + |A_f||A_f|\bar{y}\cos\delta_f - \bar{x}\sin\delta_f \right\} + \frac{x^2 + y^2}{4} |A_f|^2 \Gamma_f^2 \left(\Gamma_f^2 \right).
$$

The first term in Eq. (1) is the DCS contribution to the WS rate; the second term arises from the interference between DCS and mixing CF amplitudes; the third term is a pure mixing contribution. We determine the CF amplitude A_f in a time-independent Dalitz plot analysis of the RS decay sample and use it in the analysis of the WS sample. The DCS amplitude A_f is extracted along with the mixing parameters using a fit to the WS data that separates the A_f and A_f sample and use it in the analysis of the WS sample. The DCS amplitude A_f is expressed along with the mixing parameters using a fit to the WS data that separates the A_f and A_f. The two amplitudes give rise to a linear dependence on the mixing parameters. We analyze events in which the flavor of the D^0 [5] is measured at production. We identify RS and WS decays by reconstructing the $D^{*+} \to D^0\pi^+$, $D^0 \to K\pi\pi^0$ decay chain. The flavor of the D^0 candidate is known by the charge of the low-momentum pion (π^+). The DCS and the CF amplitudes are described with isobar models [6].

The first term in Eq. (1) is the DCS contribution to the WS rate; the second term arises from the interference between DCS and mixing CF amplitudes; the third term is a pure mixing contribution. We determine the CF amplitude A_f in a time-independent Dalitz plot analysis of the RS decay sample and use it in the analysis of the WS sample. The DCS amplitude A_f is extracted along with the mixing parameters using a fit to the WS data that separates the A_f and A_f. The two amplitudes give rise to a linear dependence on the mixing parameters. We analyze events in which the flavor of the D^0 [5] is measured at production. We identify RS and WS decays by reconstructing the $D^{*+} \to D^0\pi^+$, $D^0 \to K\pi\pi^0$ decay chain. The flavor of the D^0 candidate is known by the charge of the low-momentum pion (π^+). The DCS and the CF amplitudes are described with isobar models [6].

The time-dependent decay rate depends on both the DCS amplitude $A_f(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$ and the CF amplitude $A_C(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$, where $s_{12} = m_{K^+\pi^-\pi^0}$, $s_{13} = m_{K^+\pi^-\pi^0}$, and $\bar{f} = K^+\pi^-\pi^0$. In the limit $|x|, |y| \ll 1$ and defining $\delta_f(s_{12}, s_{13}) = \arg[A_f(s_{12}, s_{13})A_f(s_{12}, s_{13})]$, we have

$$
\frac{dN_f(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} = e^{-\Gamma_f t} \left\{ |A_f|^2 + |A_f||A_f|\bar{y}\cos\delta_f - \bar{x}\sin\delta_f \right\} + \frac{x^2 + y^2}{4} |A_f|^2 \Gamma_f^2 \left(\Gamma_f^2 \right).
$$

The first term in Eq. (1) is the DCS contribution to the WS rate; the second term arises from the interference between DCS and mixing CF amplitudes; the third term is a pure mixing contribution. We determine the CF amplitude A_f in a time-independent Dalitz plot analysis of the RS decay sample and use it in the analysis of the WS sample. The DCS amplitude A_f is extracted along with the mixing parameters using a fit to the WS data that separates the A_f and A_f. The two amplitudes give rise to a linear dependence on the mixing parameters. We analyze events in which the flavor of the D^0 [5] is measured at production. We identify RS and WS decays by reconstructing the $D^{*+} \to D^0\pi^+$, $D^0 \to K\pi\pi^0$ decay chain. The flavor of the D^0 candidate is known by the charge of the low-momentum pion (π^+). The DCS and the CF amplitudes are described with isobar models [6].

The time-dependent decay rate depends on both the DCS amplitude $A_f(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$ and the CF amplitude $A_C(s_{12}, s_{13}) = \langle \bar{f} | \mathcal{H} | D^0 \rangle$, where $s_{12} = m_{K^+\pi^-\pi^0}$, $s_{13} = m_{K^+\pi^-\pi^0}$, and $\bar{f} = K^+\pi^-\pi^0$. In the limit $|x|, |y| \ll 1$ and defining $\delta_f(s_{12}, s_{13}) = \arg[A_f(s_{12}, s_{13})A_f(s_{12}, s_{13})]$, we have

$$
\frac{dN_f(s_{12}, s_{13}, t)}{ds_{12}ds_{13}dt} = e^{-\Gamma_f t} \left\{ |A_f|^2 + |A_f||A_f|\bar{y}\cos\delta_f - \bar{x}\sin\delta_f \right\} + \frac{x^2 + y^2}{4} |A_f|^2 \Gamma_f^2 \left(\Gamma_f^2 \right).
$$

The first term in Eq. (1) is the DCS contribution to the WS rate; the second term arises from the interference between DCS and mixing CF amplitudes; the third term is a pure mixing contribution. We determine the CF amplitude A_f in a time-independent Dalitz plot analysis of the RS decay sample and use it in the analysis of the WS sample. The DCS amplitude A_f is extracted along with the mixing parameters using a fit to the WS data that separates the A_f and A_f. The two amplitudes give rise to a linear dependence on the mixing parameters. We analyze events in which the flavor of the D^0 [5] is measured at production. We identify RS and WS decays by reconstructing the $D^{*+} \to D^0\pi^+$, $D^0 \to K\pi\pi^0$ decay chain. The flavor of the D^0 candidate is known by the charge of the low-momentum pion (π^+). The DCS and the CF amplitudes are described with isobar models [6].
FIG. 1 (color online). Dalitz plots for the (a) RS and (b) WS D^0 samples. The reconstructed (c) D^0 mass and (d) Δm distributions for the WS sample requiring, respectively, (c) $0.1449 < \Delta m < 0.1549$ GeV/c^2 and (d) $1.8495 < m_{K\pi\pi} < 1.8795$ GeV/c^2. The fit results are shown by the superimposed curves. The light histogram represents the mistag background, while the dark histogram shows the combinatorial background.

The interference terms in Eqs. (1) and (2) produce a variation in average decay time as a function of position in the WS Dalitz plot that is sensitive to the complex amplitudes of the resonant isobars as well as the mixing parameters. The change in the average decay time and the interference between the $D^0 \rightarrow K^{+}\pi^{-}$ and $D^0 \rightarrow \rho^{-}K^{+}$ amplitudes are the origin of our sensitivity to mixing. For both A_{f}^{CF} and A_{f}^{DCS}, one complex amplitude must be fixed arbitrarily; the strong interaction phase difference $\delta_{K\pi\pi\rho}$ between the DCS $D^0 \rightarrow \rho^{-}K^{+}$ and the CF $D^0 \rightarrow K^{+}\rho^{-}$ cannot be determined in this analysis. As a result, we are sensitive to x and y in the form

$$x'_{K\pi\pi\rho} = x \cos \delta_{K\pi\pi\rho} + y \sin \delta_{K\pi\pi\rho},$$

$$y'_{K\pi\pi\rho} = y \cos \delta_{K\pi\pi\rho} - x \sin \delta_{K\pi\pi\rho}. \quad (3)$$

A nonzero value of $x'_{K\pi\pi\rho}$ or $y'_{K\pi\pi\rho}$ would signify mixing. In general, δ differs among decay modes.

The amplitudes entering the WS analysis are described as a sum of isobar components A_{j} that are parametrized with Breit-Wigner functions, $A_{j}^{CF/DCS} = \sum_{n=1}^{\text{nf}} a_{j} e^{i\delta_{j}} A_{j}(m_{K^{+}\pi^{-}}, m_{K^{+}\pi^{-}n}^{2})$, where a_{j} and δ_{j} are the strong interaction amplitudes and phases of the jth resonant amplitude [6]. For the $K\pi$ S-wave component, we use a parametrization derived from $K-\pi$ scattering data [7], which has a $K_{0}^{*}(1430)$ resonance plus an effective nonresonant component. The mass and width of the resonances are taken from the world average [8].

We analyze a data sample of 384 fb$^{-1}$ collected with the BABAR detector [9] at the PEP-II $e^{+}e^{-}$ collider at the Stanford Linear Accelerator Center near a center-of-mass energy of 10.58 GeV. Charged tracks are reconstructed with a silicon-strip detector (SVT) and a drift chamber (DCH), both in a 1.5 T magnetic field. Particle identification is based on measurements of ionization energy loss (dE/dx) in the SVT and DCH together with measurements from a Cherenkov ring-imaging device. Photon energies are measured with a CsI(Tl) calorimeter. All selection criteria, the fit procedure, and the systematic error analysis are finalized before we search for evidence of mixing in the data.

Selection criteria, identical for the RS and WS samples, are based partly on Ref. [4]. The π^{0} candidates must have a transverse momentum $p_{T}^{\text{LAB}} > 0.12$ GeV/c, where LAB indicates the laboratory frame, and reject electrons using dE/dx measurements. We use kinematic selection criteria to eliminate electrons from pair conversions. The energies of photon candidates used to form π^{0} are required to be greater than 0.1 GeV; the invariant mass of photon pairs
must be in the range $0.09 < m_{\pi^0} < 0.16$ GeV/c^2. We require the π^0 momentum $p^L_{\pi^0}$ to be greater than 0.35 GeV/c. The reconstructed invariant mass for the D^0 candidates must have $1.74 < m_{K\pi\pi^0} < 1.98$ GeV/c^2. The π^0 and D^0 masses are then set equal to their nominal values [8], and the D^* is refitted [10] with the constraint that its production point lies within the beam spot region. The D^{*+} invariant mass and D^0 measured decay time $t_{K\pi\pi^0}$ are derived from this fit. We require $0.139 < \Delta m < 0.155$ GeV/c^2, where $\Delta m = m_{K\pi\pi^0} - m_{K\pi\pi^0}$. To reject D^* candidates from B decays, we require the D^0 center-of-mass momentum to be greater than 2.4 GeV/c. For events containing multiple D^* candidates with shared tracks, the candidate that yields the most probable fit for the decay chain is used. The three-dimensional flight path determines $t_{K\pi\pi^0}$ and its uncertainty σ_t. For signal events, the typical value of σ_t is 0.23 ps; we accept D^* candidates with $\sigma_t < 0.50$ ps. The K^+ and π^- tracks dominate the decay-vertex resolution.

We extract the signal and background yields from a binned extended likelihood fit to the $m_{K\pi\pi^0}$ and Δm distributions [Figs. 1(c) and 1(d)]. For subsequent analysis, we retain D^* candidates in the signal region, $0.1449 < \Delta m < 0.1459$ GeV/c^2 and $1.8495 < m_{K\pi\pi^0} < 1.8795$ GeV/c^2. Our final RS (WS) sample is composed of 658 986 (3009) events with a purity of 99% (50%). The efficiency of the signal region selection is 54.6%.

The RS sample is used to determine the CF isobar model parameters α_{j}^{CF} and δ_{j}^{CF}, as well as the decay time resolution function, which is parametrized as a sum of three Gaussian functions with a common mean, with widths given by the per event σ_t times a different scale factor for each Gaussian. We account for the reconstruction efficiency in the determination of the α_{j}^{CF} and δ_{j}^{CF}. The reconstructed RS signal decay time distribution [Fig. 2(a)] is described by a probability density function (PDF) consisting of an exponential function convolved with the resolution. The resolution function parameters and D^0 lifetime are determined in an unbinned maximum likelihood fit. The mean value of the resolution function is found to be 4.2 ± 0.7 fs, and it is consistent with the magnitude expected from instrumental effects. The associated systematic uncertainty is determined by setting the value to zero. We determine the D^0 mean lifetime to be $[409.9 \pm 0.8$ (stat only)] fs, in agreement with the world average $[410.1 \pm 1.5$ (stat + syst)] fs [8].

The D^0 candidates in the WS signal region can be divided into three categories: signal events, combinatorial

![FIG. 2 (color online). (a) Proper time distribution for RS events with the fit result superimposed. The distribution of background events is shown by the shaded histogram. (b) Proper time distribution for WS events. (c), (d) $m_{K\pi\pi^0}$ and $m_{K\pi\pi^0}$ projections with superimposed fit results (line). The light histogram represents the mistag background, while the dark histogram shows the combinatoric background.](211801-6)
background, and incorrectly tagged RS events (mistag), each one described by its own PDF whose parameters are determined in an unbinned maximum likelihood fit. During the fit procedure, the number of events in each category is fixed to the value obtained from the fit to the $m_{K^{\pi\pi\pi}}$ and Δm distributions.

The PDF describing the WS decay rate as a function of the Dalitz plot variables is convolved with the $I_{K^{\pi\pi\pi}}$ resolution function. The DCS amplitudes and phases for each resonance, along with the mixing parameters, are determined in the fit. The CF Dalitz plot amplitudes arising from mixing are taken from the fit to the RS sample previously described. The mistag events contain correctly reconstructed RS D^0 decays; as the π^+_J has no influence in the decay chain fit, the D^0 lifetime of those events is also correct. Therefore, the mistag events are parametrized using an empirical PDF obtained from the RS data for both the lifetime and the Dalitz plot variables. The PDF describing the combinatorial background is constructed by averaging the $(s_{12}, s_{13}, t_{K^{\pi\pi\pi}})$ distributions obtained from the WS $m_{K^{\pi\pi\pi}}$ sidebands; this accounts for correlations between those three variables that might be present in the data. We describe the σ, distribution for signal and background using an empirical PDF from the RS data.

The results of the time-dependent fit of the WS data, the a^DCS_j, δ^DCS_j and fit fractions f_j [6], are given in Table I. The fit fraction of the nonresonant contribution to the $K^{\ast+}(1430)$ and $K^{\ast0}(1430)$ fit fractions. Projections of the fit results are shown in Figs. 2(b)–2(d). The change in log-likelihood ($-2 \Delta \ln L$) between the fit with mixing and with no mixing ($x_{K^{\pi\pi\pi}}^j/r_0 = y_{K^{\pi\pi\pi}}^j/r_0 = 0$) is 13.5 units, including systematic uncertainties. For 2 degrees of freedom, the confidence level for the no-mixing hypothesis is 0.1%. Equivalently, this constitutes evidence for $D^{0}\overline{D}^{0}$ at the 3.2 standard deviation level.

To derive the values of $x_{K^{\pi\pi\pi}}$ and $y_{K^{\pi\pi\pi}}$, we first determine $r_0^2 = \left[5.25^{+0.25}_{-0.31}(\text{stat}) \pm 0.12(\text{syst})\right] \times 10^{-3}$ using

$$r_0^2 = N_{\text{WS}} \left[N_{\text{RS}} \left(1 + \bar{y} A^2 - \bar{x} B^2 + \frac{\bar{x}^2 + \bar{y}^2}{2} \right) \right]$$

with $A^2(B^2) = \int \text{Re}(\text{Im})[A^J_{DCS} A^{JF}_{DCS}] dx_1 dx_2$. N_{WS} (N_{RS}) is the number of WS (RS) signal events in the sample. We then generate $10^6 (x_{K^{\pi\pi\pi}}^j/r_0, y_{K^{\pi\pi\pi}}^j/r_0)$ points in accordance with the fit covariance matrix, assuming Gaussian errors (width given by the total uncertainty including systematics). For each point, we compute r_0 using Eq. (4) and determine values for $x_{K^{\pi\pi\pi}}$ and $y_{K^{\pi\pi\pi}}$. Using a Bayesian approach, by integrating the likelihood function with respect to $x_{K^{\pi\pi\pi}}$ and $y_{K^{\pi\pi\pi}}$, assuming a flat prior distribution, we obtain $x_{K^{\pi\pi\pi}} = [2.61^{+0.57}_{-0.68}(\text{stat}) \pm 0.39(\text{syst})]$% and $y_{K^{\pi\pi\pi}} = [-0.06^{+0.55}_{-0.64}(\text{stat}) \pm 0.34(\text{syst})]$% with a correlation of -0.75.

Extensive validation of this fitting procedure is performed using Monte Carlo (MC) experiments based on the PDF shapes and DCS amplitudes extracted from data. The validation studies are performed over the range $[-0.6, 0.6]$ for both $x_{K^{\pi\pi\pi}}/r_0$ and $y_{K^{\pi\pi\pi}}/r_0$. These studies demonstrate that the fit correctly determines the mixing parameters to within a small offset of 0.2–0.3σ, where σ is the statistical uncertainty. These small biases are a consequence of the relatively small size of our data sample and become negligible if MC samples with higher statistics are used. We correct the final result for this offset.

Sources of systematic uncertainty for $x_{K^{\pi\pi\pi}}^j/r_0 (y_{K^{\pi\pi\pi}}^j/r_0)$, related to the choice of the isobar model and the experimental assumptions, are considered. For each effect we refit the data with an alternative assumption and extract the overall correlated uncertainty for the fitted parameters. We estimate the Dalitz model uncertainties [0.38σ (0.35σ)], where σ is the statistical uncertainty, by varying the mass and the width of each resonance within their error and by using alternative parametrizations for the isobar components A_i in the fit: the largest error arises from uncertainties in the K^{\ast} and ρ parameters and from uncertainties in the parametrization of the $K^{\pi\pi}$ wave. Systematic uncertainties related to the number of signal and background events [0.15σ (0.22σ)] are evaluated by varying them according to their statistical uncertainties. Similarly, the definition of the signal region, the σ, requirement, and the selection of the best D^0 candidate are varied. The effect on the mixing parameters is 0.50σ (0.37σ). Variations in efficiency across the Dalitz plot contribute systematic uncertainties of 0.09σ (0.10σ). The $I_{K^{\pi\pi\pi}}$ resolution function parameters are varied within their errors. The offset is also set to zero. The systematic effect is 0.11σ (0.09σ). The total systematic error on $x_{K^{\pi\pi\pi}}^j/r_0 (y_{K^{\pi\pi\pi}}^j/r_0)$ is 0.66σ (0.57σ).

The same procedure is applied separately to the WS D^{0}-tagged (+) and \overline{D}^{0}-tagged (−) events to search for
CP violation in mixing or interference. We find \(x_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (2.53^{+0.54}_{-0.63} \pm 0.39)\%, \) \(y_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (-0.05^{+0.63}_{-0.67} \pm 0.50)\%, \) \(x_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (3.55^{+0.73}_{-0.83} \pm 0.65)\%, \) and \(y_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (-0.54^{+0.16}_{-0.41} \pm 0.41)\%, \) respectively, and thus observe no evidence for CP violation. The correlation between \(x_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} \) and \(y_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} \) is \(-0.69 (-0.66)\).

Our data are inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations including systematic uncertainties and thus present evidence of mixing. For the rotated mixing parameters, we find \(x_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (2.61^{+0.55}_{-0.68} \pm 0.39)\% \) and \(y_{K^{\pi\pi^0}}^{K^{\pi\pi^0}} = (-0.06^{+0.55}_{-0.64} \pm 0.34)\% \) with a correlation of \(-0.75\). These values are consistent with our previous result [4] and with some SM estimates. No evidence for CP violation is found.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

*Deceased.
†Now at Temple University, Philadelphia, PA 19122, USA.
‡Now at Tel Aviv University, Tel Aviv, 69978, Israel.

\[\text{References} \]

[5] The use of charge-conjugate modes is implied unless otherwise noted.