Search for the Higgs boson produced in association with $Z\rightarrow l^+l^-$ using the matrix element method at CDF II

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>CDF Collaboration et al. “Search for the Higgs boson produced in association with $Z\rightarrow l^+l^-$ using the matrix element method at CDF II.” Physical Review D 80.7 (2009): 071101. © 2009 The American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1103/PhysRevD.80.071101">http://dx.doi.org/10.1103/PhysRevD.80.071101</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Apr 24 16:51:12 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/52710">http://hdl.handle.net/1721.1/52710</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for the Higgs boson production in association with $Z \rightarrow \ell^+\ell^-$ using the matrix element method at CDF II
A. Napier, 57 V. Necula, 17 J. Nett, 60 C. Neu, 46,x M. S. Neubauer, 25 S. Neubauer, 27 J. Nielsen, 29,h L. Nodulman, 2
K. Osterberg, 24 S. Pagan Griso, 44b,44a E. Palencia, 18 V. Papadimitriou, 18 A. Papaikonomou, 27 A. A. Paramonov, 14
B. Parks, 40 S. Pashapour, 34 J. Patrick, 18 G. Pauletta, 55b,55a M. Paulini, 13 C. Paus, 33 T. Peiffer, 27 D. E. Pellett, 8 A. Penzo, 55a
T. J. Phillips, 17 G. Piacentino, 47a E. Pianori, 46 L. Pinera, 43 G. Punzi, 47b,47a J. Pursley, 60 J. Rademacker, 43,d A. Rahaman, 48 V. Ramakrishnan, 60 N. Ranjan, 49 I. Redondo, 32 P. Renton, 33 M. Renz, 27 M. Rescigno, 52a
S. Richter, 27 F. Rimondi, 6b,6a L. Ristori, 47a A. Robson, 22 T. Rodrigo, 12 T. Rodriguez, 46 E. Rogers, 25 S. Rolli, 57 R. Roser, 18
M. Rossi, 55a R. Rossin, 11 P. Roy, 34 A. Ruiz, 12 J. Russ, 13 V. Rusu, 18 B. Rutherford, 18 H. Saarikko, 24 A. Safonov, 54
W. K. Sakumoto, 50 O. Salto, 4 L. Santi, 55b,55a S. Sarkar, 58 45b,52a L. Sartori, 47a K. Sato, 18 A. Savoy-Navarro, 45 P. Schlabach, 18
A. Schmidt, 27 E. E. Schmidt, 18 M. A. Schmidt, 14 M. P. Schmidt, 61,a M. Schmitt, 39 T. Schwarz, 8 L. Scodellaro, 12
A. Scribano, 47c,47a F. Scuri, 47a A. Sedov, 49 S. Seidel, 38 Y. Seiya, 42 A. Semenov, 16 L. Sexton-Kennedy, 18 F. Sforza, 47b,47a
Y. Shon, 60 I. Shreyber, 37 P. Sinervo, 34 A. Sisakyan, 16 A. J. Slaughter, 18 J. Slaunwhite, 40 K. Sliwa, 57 J. R. Smith, 8
F. D. Snider, 18 R. Snihur, 34 A. Soha, 8 S. Somalwar, 53 V. Sorin, 36 T. Spreitzer, 34 P. Squillacioti, 47c,47a M. Stanitzki, 61
R. St. Denis, 22 B. Stelzer-Chilton, 34 D. Stentz, 39 J. Strologas, 38 G. L. Strycker, 35 J. S. Suh, 28 A. Sukhanov, 19
K. Terashi, 51 J. Thom, 18,i A. S. Thompson, 22 G. A. Thompson, 25 E. Thompson, 46 R. Tipton, 61 P. Titto-Guzmán, 32
S. Tkaczyk, 18 D. Toback, 54 S. Tokar, 15 K. Tollefson, 18 T. Tomura, 56 D. Tonelli, 18 S. Torres, 20 D. Torreta, 18 P. Totaro, 55b,55a
S. Tourneur, 45,d,47a S.-Y. Tsai, 1 Y. Tu, 46 N. Turini, 47c,47a F. Ukegawa, 56 S. Vallecora, 21 N. van Remortel, 24,c
A. Varganov, 35 E. Vataga, 47d,47a F. Vázquez, 19,o G. Velev, 18 C. Vellidis, 3 M. Vidal, 32 R. Vidal, 18 I. Vila, 12 R. Vilar, 12
T. Vine, 31 M. Vogel, 38 I. Volobouev, 29,y G. Volpi, 47b,47a P. Wagner, 47b,47a R. G. Wagner, 2 R. L. Wagner, 18 W. Wagner, 27,y
W. C. Wester III, 18 B. Whitehouse, 57 D. Whiteson, 46,g A. B. Wicklund, 2 E. Wicklund, 18 S. Wilbur, 14 G. Williams, 34
H. H. Williams, 46 P. Wilson, 18 B. L. Winier, 30 P. Wittich, 18,i S. Wolbers, 18 C. Wolfe, 14 T. Wright, 35 X. Wu, 21
F. Würthwein, 10 S. Xie, 33 A. Yagil, 10 K. Yamamoto, 42 J. Yamaoka, 17 U. K. Yang, 14,r Y. C. Yang, 28 W. M. Yao, 29 G. P. Yeh, 18
K. Yi, 18,p J. Yoh, 18 K. Yorita, 58 T. Yoshida, 42,m G. B. Yu, 56 I. Yu, 28 S. S. Yu, 18 J. C. Yun, 18 L. Zanello, 52b,52a A. Zanetti, 55a
X. Zhang, 25 Y. Zheng, 9,e and S. Zucchelli 6b,6a

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Athens, 157 71 Athens, Greece
4Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain
5Baylor University, Waco, Texas 76798, USA
6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
6bIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy
7Brandeis University, Waltham, Massachusetts 02254, USA
8University of California, Davis, Davis, California 95616, USA
9University of California, Los Angeles, Los Angeles, California 90024, USA
10University of California, San Diego, La Jolla, California 92093, USA
11University of California, Santa Barbara, California 93106, USA
12Instituto de Fisica de Cantabria, CSIC–University of Cantabria, 39005 Santander, Spain
13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia
16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
17Duke University, Durham, North Carolina 27708, USA
18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
19University of Florida, Gainesville, Florida 32611, USA
20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
21University of Geneva, CH-1211 Geneva 4, Switzerland
22Glasgow University, Glasgow G12 8QO, United Kingdom
23Harvard University, Cambridge, Massachusetts 02138, USA
SEARCH FOR THE HIGGS BOSON PRODUCED IN ...

PHYSICAL REVIEW D 80, 071101(R) (2009)

24 Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

25 University of Illinois, Urbana, Illinois 61801, USA

26 The Johns Hopkins University, Baltimore, Maryland 21218, USA

27 Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany

28 Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea

29 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

30 University of Liverpool, Liverpool L69 7ZE, United Kingdom

31 University College London, London WC1E 6BT, United Kingdom

32 Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain

33 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

34 Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

35 University of Michigan, Ann Arbor, Michigan 48109, USA

36 Michigan State University, East Lansing, Michigan 48824, USA

37 Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

38 University of New Mexico, Albuquerque, New Mexico 87131, USA

39 Northwestern University, Evanston, Illinois 60208, USA

40 The Ohio State University, Columbus, Ohio 43210, USA

41 Okayama University, Okayama 700-8530, Japan

42 Osaka City University, Osaka 588, Japan

43 University of Oxford, Oxford OX1 3RH, United Kingdom

44a Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

44b University of Padova, I-35131 Padova, Italy

45 LPNHE, Université Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

46 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

47a Istituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

47b University of Pisa, I-56127 Pisa, Italy

47c University of Siena, I-56127 Pisa, Italy

47d Scuola Normale Superiore, I-56127 Pisa, Italy

48a Deceased.

48b Visitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.

48c Visitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

48d Visitor from University of Bristol, Bristol BS8 1TL, United Kingdom.

48e Visitor from Chinese Academy of Sciences, Beijing 100864, China.

48f Visitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

48g Visitor from University of California Irvine, Irvine, CA 92697, USA.

48h Visitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

48i Visitor from Cornell University, Ithaca, NY 14853, USA.

48j Visitor from University of Cyprus, Nicosia CY-1678, Cyprus.

48k Visitor from University College Dublin, Dublin 4, Ireland.

48l Visitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

48m Visitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

48n Visitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

48o Visitor from Universidad Iberoamericana, Mexico D.F., Mexico.

48p Visitor from University of Iowa, Iowa City, IA 52242, USA.

48q Visitor from Queen Mary, University of London, London, E1 4NS, England.

48r Visitor from University of Manchester, Manchester M13 9PL, England.

48s Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

48t Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.

48u Visitor from University of Oviedo, E-33007 Oviedo, Spain.

48v Visitor from Texas Tech University, Lubbock, TX 79090, USA.

48w Visitor from IFIC (CSIC–Universitat de Valencia), 46071 Valencia, Spain.

48x Visitor from University of Virginia, Charlottesville, VA 22904, USA.

48y Visitor from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.

48z On leave from J. Stefan Institute, Ljubljana, Slovenia.
This article reports a search for the process

\[ ZH \rightarrow \ell^+\ell^- b\bar{b} \] (for an electron) or

\[ ZH \rightarrow \ell^+\ell^- b\bar{b} \] (for a muon) [15].

The process \( gg \rightarrow H \rightarrow b\bar{b} \) is dwarfed by multijet background, necessitating the search for Higgs bosons produced in association with a \( W \) or \( Z \) boson that decays leptonically. This article reports a search for the process \( pp \rightarrow ZH \rightarrow \ell^-\ell^+ b\bar{b} \) (\( \ell = e, \mu \)) in data with an integrated luminosity of 2.7 fb\(^{-1}\) collected with the CDF II detector, nearly 3 times that of the previously reported analysis [5,6]. The study of Higgs boson production in association with a \( W/Z \) gauge boson for low Higgs boson masses is further motivated by the fact that the signal to background ratio is more favorable at the Tevatron compared to the Large Hadron Collider.

For the first time in a \( ZH \rightarrow \ell^-\ell^+ b\bar{b} \) search, we utilize a method based on leading-order matrix element calculations [7–9] convoluted with detector resolution functions [10] that form per-event likelihoods. This method, pioneered for use in top quark mass measurements [11,12], has been recently used in Higgs boson searches in other decay channels [13] by forming a discriminating per-event variable. We extend the technique by expressing the event likelihoods as a function of the \( ZH \) signal fraction and maximizing the joint likelihood for the data sample with respect to the signal fraction.

The CDF II detector [14,15] is an azimuthally and forward-backward symmetric apparatus designed to study \( pp \) collisions at the Fermilab Tevatron. It consists of a magnetic spectrometer surrounded by calorimeters and muon chambers. The charged particle tracking system, consisting of a silicon detector and drift chamber, is immersed in a 1.4 T magnetic field parallel to the \( p \) and \( \bar{p} \) beams. Calorimeters segmented in \( \eta \) and \( \phi \) surround the tracking system and measure the energy of particles detected within them. The electromagnetic and hadronic calorimeters are lead-scintillator and iron-scintillator sampling devices, respectively. Drift chambers located outside the central hadron calorimeters detect muons. The data used in this analysis are collected with an online selection that requires events to have a lepton with \( E_T > 18 \) GeV (for an electron) or \( p_T > 18 \) GeV/c (for a muon) [15].

The event selection used in this analysis closely follows that in Ref. [5]. Candidate events are required to have a pair of oppositely charged electrons or muons with invariant mass \( 76 < m_{\ell\ell} < 106 \) GeV/c\(^2\). Candidate events are also required to have one jet with \( E_T > 25 \) GeV and at least one additional jet with \( E_T > 15 \) GeV, both within \( |\eta| < 2.0 \).
All jet energies are corrected for nonuniformities in calorimeter response, effects from multiple $p\bar{p}$ interactions, and the hadronic energy scale of the calorimeter [16]. Candidate events are required to have at least one jet with an associated displaced secondary vertex [17] (“$b$ tags,” reconstructed using tracks with hits in the silicon detector), thus enriching the $b$-quark content of the sample.

The backgrounds for this analysis are dominated by events with real $Z$ bosons with additional contributions from $t\bar{t}$ and events where an object, such as a jet, is misidentified as a lepton. We model the backgrounds with events generated with leading-order event generators, normalized to next-to-leading-order cross sections and simulated with a GEANT-based description of the CDF II detector [10]. $Z +$ light-flavor jet contributions are modeled with the ALPGEN [18] simulation code matched with PYTHIA using the scheme from Ref. [18] for the hadronization and fragmentation. Heavy flavor contributions from $Z + b\bar{b}$ and $Z + c\bar{c}$ are modeled separately with ALPGEN and combined with the light-flavor jet samples. The $WZ$, $ZZ$, and $t\bar{t}$ processes are modeled using PYTHIA [19].

Events where a jet is misidentified as a charged lepton are modeled using jet-enriched data samples [5,20]. We model the kinematics of $ZH \rightarrow \ell^+ \ell^- b\bar{b}$ events using PYTHIA for $m_{H}$ ranging from 100 GeV/$c^2$ to 150 GeV/$c^2$. The signal and background contributions expected in 2.7 fb$^{-1}$ and the number of observed events are given in Table I.

We denote the $ZH$ signal probability by $P_{ZH}(x_1|m_{H})$ where $m_{H}$ is a parameter and $x_1$ represents the collection of the measured 4-vector momenta of the two selected leptons, the two selected jets, and the two components of the missing transverse momentum, in a given event $i$. Similarly we denote the background probability as $P_{b}(x_i)$. The per-event likelihood as a function of the signal fraction $s$ for a given event $i$ is

$$L(s, x_1|m_{H}) = sP_{ZH}(x_1|m_{H}) + (1 - s)P_{b}(x_i).$$

We evaluate $P_{ZH}$ and $P_{b}$ by convoluting the leading-order matrix elements for the process with detector resolution functions and integrating over unmeasured quantities. Thus, $P_{ZH}$ is a probability density in $x_1$ and can be expressed as

$$P_{ZH}(x_1|m_{H}) = \frac{1}{\sigma(m_{H})} \int d\Phi |\mathcal{M}_{ZH}(q, p; m_{H})|^2 \times \prod_j [W(p_j, x_i)] f_{PDF}(q_1)f_{PDF}(q_2),$$

where $\mathcal{M}_{ZH}$ is the leading-order matrix element for the process $q\bar{q} \rightarrow ZH \rightarrow \ell^+ \ell^- b\bar{b}$ evaluated for a pair of incoming partons $q$ and outgoing partons $p$. $W(p_j, x_i)$ are transfer functions [23] linking the outgoing particle momenta $p_j$ to measured quantities $x_i$, and the $f_{PDF}$ are parton density functions of the incoming partons. The factor $1/\sigma(m_{H})$ ensures that the probability density satisfies the normalization condition, $\int d\Phi P_{ZH}(x_1|m_{H}) = 1$. The sample likelihood $L$ is obtained by taking the product over all events $i$ in the sample

$$L(s|m_{H}) = \prod_i L(s, x_1|m_{H}).$$

We enhance our statistical sensitivity by exploiting the expected difference in the rate of signal and background events with two $b$-tagged jets. We replace $P_{ZH}(x_i|m_{H})$ with $P_{ZH}(x_1, n|m_{H}) = P_{ZH}(x_1|m_{H}) \cdot P_{ZH}(n|m_{H})$ and $P_{b}(x_i)$ with $P_{b}(x_i, n) = P_{b}(x_i) \cdot P_{b}(n)$, where $P_{ZH}(n|m_{H}) [P_{b}(n)]$ denotes the probability of tagging signal [background] events with $n$ tags. Table II shows the expected tagging rates for simulated signal and background event samples.

The measured signal fraction $S_{\text{meas}}$ is the value of $s$ which maximizes $L(s|m_{H})$. Using Eq. (1), we can define a per-event discriminant $D_i = \partial \ln L_i / \partial s = (P_{ZH} - P_{b(i)})/L_i$ which increases (decreases) for more signal-like (backgroundlike) events. The maximum-likelihood estimator for the measured signal fraction $S_{\text{meas}}$ corresponds to $\Sigma_i D_i|_{s = S_{\text{meas}}} = 0$. The distribution of $\tan^{-1} D_i$ $(s = S_{\text{meas}})$ for simulated events and data is shown in Fig. 1.

The dominant backgrounds in our data sample are due to $Z +$ jets, $t\bar{t}$, and $ZZ$ processes, in the expected proportions

<table>
<thead>
<tr>
<th>Source</th>
<th>$1$ tag</th>
<th>$\geq 2$ tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \ell^+ \ell^-$ + light partons</td>
<td>129.6 ± 24.0</td>
<td>5.5 ± 0.9</td>
</tr>
<tr>
<td>$Z \rightarrow \ell^+ \ell^- + b\bar{b}$, $c\bar{c}$</td>
<td>107.2 ± 14.0</td>
<td>19.5 ± 3.4</td>
</tr>
<tr>
<td>$ZZ$, $WZ$</td>
<td>11.6 ± 1.3</td>
<td>2.9 ± 0.4</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>13.9 ± 2.0</td>
<td>7.7 ± 1.1</td>
</tr>
<tr>
<td>Misidentified lepton</td>
<td>15.9 ± 6.5</td>
<td>0.4 ± 0.2</td>
</tr>
<tr>
<td>$ZH$</td>
<td>1.3 ± 0.2</td>
<td>0.7 ± 0.1</td>
</tr>
<tr>
<td>Total expected</td>
<td>279.5 ± 28.6</td>
<td>36.3 ± 3.7</td>
</tr>
<tr>
<td>Data</td>
<td>258</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>$P(n = 1)$</th>
<th>$P(n \geq 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \ell^+ \ell^-$ + jets</td>
<td>0.91</td>
<td>0.09</td>
</tr>
<tr>
<td>$WZ$, $ZZ$</td>
<td>0.80</td>
<td>0.20</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>0.74</td>
<td>0.26</td>
</tr>
<tr>
<td>$ZH$ ($m_{H} = 100$ GeV/$c^2$)</td>
<td>0.67</td>
<td>0.33</td>
</tr>
<tr>
<td>$ZH$ ($m_{H} = 125$ GeV/$c^2$)</td>
<td>0.65</td>
<td>0.35</td>
</tr>
<tr>
<td>$ZH$ ($m_{H} = 150$ GeV/$c^2$)</td>
<td>0.63</td>
<td>0.37</td>
</tr>
</tbody>
</table>
denoted by $\lambda_{Zjj}$, $\lambda_{tt}$, and $\lambda_{ZZ}$, respectively. The background probability in Eq. (1) is given by

$$P_b(x_i, n) = \lambda_{Zjj}P_{Zjj}(x_i, n) + \lambda_{tt}P_{tt}(x_i, n) + \lambda_{ZZ}P_{ZZ}(x_i, n),$$

where $P_{Zjj}(x_i, n)$, $P_{tt}(x_i, n)$, and $P_{ZZ}(x_i, n)$ are the respective probability densities (normalized to unit integral) for the $Z + \text{jets}$, $tt$, and $ZZ$ background processes with $n$ tags. Normalization of $P_b$ is ensured by requiring $\lambda_{Zjj} + \lambda_{tt} + \lambda_{ZZ} = 1$.

We construct confidence intervals [24] for the test statistic $R = L(S_{\text{meas}}|S_{\text{true}})/L(S_{\text{meas}}|S_{\text{best}})$ by performing simulated experiments with the expected proportions of background and varying the amounts of signal, such that $S_{\text{true}}$ is the true (input) signal fraction in the simulated experiment. $S_{\text{best}}$ is the input signal fraction that has the highest likelihood for a given measured signal fraction, $S_{\text{meas}}$. $L(S_{\text{meas}}|S_{\text{true}})$ is given by Eq. (3) for the simulated experiment with the chosen value of $S_{\text{true}}$ and $m_H$. Since we are measuring the fractional signal content in the data sample, the number of events in each simulated experiment is held fixed at the value of 290 events observed in the data.

The methodology from Ref. [24] is used to construct confidence intervals in $S_{\text{meas}}$ for each chosen value of $S_{\text{true}}$ and $m_H$. This method removes any bias resulting from imperfections in our modeling by relating $S_{\text{meas}}$ to $S_{\text{true}}$. The confidence intervals in $S_{\text{meas}}$ obtained for $m_H = 115 \text{ GeV}/c^2$ and $0 \leq S_{\text{true}} \leq 0.25$ are shown in Fig. 2. For a given value of $S_{\text{meas}}$ obtained from the data (or from an independent simulated experiment to evaluate the a priori expectation), we extract the range of $S_{\text{true}}$ for which the confidence intervals contain this value of $S_{\text{meas}}$. A feature of this method is that the resulting range of $S_{\text{true}}$ can be quoted as an upper limit on $S_{\text{true}}$ (if the lower bound is zero) or as a two-sided measurement of $S_{\text{true}}$. As Fig. 2 shows, using the expected statistical uncertainties and the bin-to-bin uncorrelated systematic uncertainties on the background.
SEARCH FOR THE HIGGS BOSON PRODUCED IN \ldots

shows, we obtain an upper limit on $S_{\text{true}}$ given the data, which we convert to the equivalent upper limit on the signal cross section. This procedure is repeated for the range of Higgs boson masses $100 \leq m_H \leq 150 \text{ GeV}/c^2$.

We evaluate systematic uncertainties by varying process rates and kinematic distributions in our simulated experiments. We apply a rate uncertainty of 40% for $Z$ boson events and of 20% for diboson and $t\bar{t}$ events. The uncertainty on the rate of heavy flavor production in association with a gauge boson is based on comparisons of data with theoretical predictions from a measurement of the $b$ jet cross section in events with $Z$ bosons [20]. The uncertainty on the diboson and $t\bar{t}$ contribution includes the uncertainties in the cross sections, selection efficiencies, and the top quark mass [5]. A rate uncertainty of 50% is applied for misidentified lepton events due to the uncertainty on the lepton misidentification probability [5]. A rate uncertainty of 6% due to the luminosity uncertainty is applied to all events. The per-jet uncertainty on the $b$-tagging efficiency is 8% for events with $b$ partons, 16% for events with $c$ partons, and 13% for events with no heavy flavor [5]. Our analysis is weakly sensitive to uncertainties in the expected total number of events passing our selection, since it relies only on the shapes of measured distributions. Uncertainties in the shapes of kinematic distributions are propagated by varying the amount of QCD radiation in simulated signal events and the jet energy scale in simulated signal and background events within their respective uncertainties [16].

We evaluate confidence intervals for a range of Higgs masses between 100 GeV/c^2 and 150 GeV/c^2. We evaluate a priori 95% C.L. upper limits on the cross section for the process $p\bar{p} \rightarrow ZH \rightarrow \ell^+\ell^- b\bar{b}$. We express these limits as a ratio with respect to the SM prediction. These expected limits along with those observed in the data are shown in Table III.

In conclusion, we have performed a search for the SM Higgs boson decaying to $b\bar{b}$ produced in association with a $Z$ boson. This is the first analysis performed in this channel with a matrix element method. The data show no excess over expected non-Higgs backgrounds. We set 95% C.L. upper limits on the cross section of this process for a range of Higgs boson masses. The limit at $m_H = 115 \text{ GeV}/c^2$ is 8.2 times greater than the SM prediction. This result improves by a factor of 2 over the previously published result in this channel [5]. We are exploring further improvements in this technique by separating the leading-order and next-to-leading-order contributions to the signal and backgrounds, as well as the use of matrix-element-based probabilities in conjunction with other multivariate discriminants.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolidador-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
$m_H$ (GeV/c^2) & $-1\sigma$ & $\text{Expected}$ & $+1\sigma$ & $\text{Observed}$ \\
\hline
100 & 6.0 & 8.7 & 12.4 & 7.0 \\
105 & 6.0 & 8.7 & 12.9 & 6.5 \\
110 & 7.5 & 11.3 & 16.8 & 7.6 \\
115 & 8.3 & 12.1 & 18.2 & 8.2 \\
120 & 9.3 & 13.5 & 20.0 & 9.0 \\
125 & 13.2 & 18.3 & 27.1 & 13.2 \\
130 & 17.1 & 24.2 & 35.7 & 17.7 \\
135 & 21.8 & 31.0 & 44.8 & 22.9 \\
140 & 31.0 & 44.3 & 65.4 & 32.0 \\
145 & 42.8 & 61.6 & 89.9 & 43.1 \\
150 & 73.7 & 104.0 & 153.0 & 71.3 \\
\hline
\end{tabular}
\caption{Upper limits at 95% C.L. on the $ZH \rightarrow \ell^+\ell^- b\bar{b}$ cross section, shown as a ratio to the SM cross section. The column labeled “Expected” shows the median of the limits obtained from simulated experiments containing no signal, and the columns labeled “$\pm 1\sigma$” show the range containing 68% of the expected limits.}
\end{table}

[15] CDF uses a cylindrical coordinate system with the $z$ axis along the proton beam axis. Pseudorapidity is $\eta = -\ln(\tan\theta/2)$, where $\theta$ is the polar angle, and $\phi$ is the azimuthal angle relative to the proton beam direction, while $p_T = |p|\sin\theta$, $E_T = E\sin\theta$.