Search for Higgs Bosons Predicted in Two-Higgs-Doublet Models via Decays to Tau Lepton Pairs in 1.96 TeV pp[over-bar] Collisions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.201801</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Dec 18 21:18:08 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/53552</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for Higgs Bosons Predicted in Two-Higgs-Doublet Models via Decays to Tau Lepton Pairs in 1.96 TeV $p\bar{p}$ Collisions

0031-9007/09/103(20)/201801(8) © 2009 The American Physical Society
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3University of Athens, 157 71 Athens, Greece

4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

5Baylor University, Waco, Texas 76798, USA

6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy

6bUniversity of Bologna, I-40127 Bologna, Italy

7Brandeis University, Waltham, Massachusetts 02254, USA

8University of California, Davis, Davis, California 95616, USA

9University of California, Los Angeles, Los Angeles, California 90024, USA

10University of California, San Diego, La Jolla, California 92093, USA

11University of California, Santa Barbara, Santa Barbara, California 93106, USA

12Universidad de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

17Duke University, Durham, North Carolina 27708, USA

18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

19University of Florida, Gainesville, Florida 32611, USA

20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

21University of Geneva, CH-1211 Geneva 4, Switzerland

22Glasgow University, Glasgow G12 8QQ, United Kingdom

(CDF Collaboration)
PRL 103, 201801 (2009) PHYSICAL REVIEW LETTERS week ending 13 NOVEMBER 2009

23Harvard University, Cambridge, Massachusetts 02138, USA
24Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland
25University of Illinois, Urbana, Illinois 61801, USA
26The Johns Hopkins University, Baltimore, Maryland 21218, USA
27Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
28Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea
29Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
30University of Liverpool, Liverpool L69 7ZE, United Kingdom
31University College London, London WC1E 6BT, United Kingdom
32Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain
33Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
34Institute of Particle Physics: McGill University, Montréal, Québec, Canada H3A 2T8; Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6; University of Toronto, Toronto, Ontario, Canada M5S 1A7; and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
35University of Michigan, Ann Arbor, Michigan 48109, USA
36Michigan State University, East Lansing, Michigan 48824, USA
37Institute for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia
38University of New Mexico, Albuquerque, New Mexico 87131, USA
39Northwestern University, Evanston, Illinois 60208, USA
40The Ohio State University, Columbus, Ohio 43210, USA
41Okayama University, Okayama 700-8530, Japan
42Osaka City University, Osaka 588, Japan
43University of Oxford, Oxford OX1 3RH, United Kingdom
44aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy
44bUniversity of Padova, I-35131 Padova, Italy
45LPNHE, Université Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France
46University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
47aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy
47bUniversity of Pisa, I-56127 Pisa, Italy
47cUniversity of Siena, I-56127 Pisa, Italy
47dScuola Normale Superiore, I-56127 Pisa, Italy
48University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
49Purdue University, West Lafayette, Indiana 47907, USA
50University of Rochester, Rochester, New York 14627, USA
51The Rockefeller University, New York, New York 10021, USA
52aIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy
52bSapienza Università di Roma, I-00185 Roma, Italy
53Rutgers University, Piscataway, New Jersey 08855, USA
54Texas A&M University, College Station, Texas 77843, USA
55aIstituto Nazionale di Fisica Nucleare Trieste/ Udine, I-34100 Trieste, Italy
55bUniversity of Trieste/ Udine, I-33100 Udine, Italy
56University of Tsukuba, Tsukuba, Ibaraki 305, Japan
57Tufts University, Medford, Massachusetts 02155, USA
58Waseda University, Tokyo 169, Japan
59Wayne State University, Detroit, Michigan 48201, USA
60University of Wisconsin, Madison, Wisconsin 53706, USA
61Yale University, New Haven, Connecticut 06520, USA
62Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea; Chonnam National University, Gwangju, 500-757, Korea
(Received 4 June 2009; published 12 November 2009)
We present the results of a search for Higgs bosons predicted in two-Higgs-doublet models, in the case where the Higgs bosons decay to tau lepton pairs, using 1.8 fb\(^{-1}\) of integrated luminosity of \(p\bar{p}\) collisions recorded by the CDF II experiment at the Fermilab Tevatron. Studying the mass distribution in events where one or both tau leptons decay leptonically, no evidence for a Higgs boson signal is observed. The result is used to infer exclusion limits in the two-dimensional space of \(\tan\beta\) versus \(m_A\) (the ratio of the vacuum expectation values of the two Higgs doublets and the mass of the pseudoscalar boson, respectively).

DOI: 10.1103/PhysRevLett.103.201801
PACS numbers: 14.80.Cp, 12.60.Fr, 12.60.Jv, 13.85.Rm

Understanding the origin of electroweak symmetry breaking is one of the central goals of particle physics. The Higgs mechanism [1] in the standard model (SM) provides a possible explanation, but the calculated mass of the Higgs boson suffers from large radiative corrections. Remedies for this problem such as supersymmetry [2] require at least two Higgs doublets [3] and result in a more complicated Higgs boson sector than that of the SM. The minimal supersymmetric standard model (MSSM) [4] predicts the existence of three neutral Higgs bosons. The MSSM is an example of a Type II two-Higgs-doublet model (Type II 2HDM) in which there is a light scalar \(h\), a heavy scalar \(H\), and a pseudoscalar \(A\). The masses of these states are governed by two parameters in the theory, usually taken to be \(\tan\beta\), the ratio of the vacuum expectation values of the two Higgs doublets, and \(m_A\), the mass of the pseudoscalar.

In \(p\bar{p}\) collisions at 1.96 TeV center of mass energy at the Fermilab Tevatron, Type II 2HDM Higgs bosons would be predominantly produced by gluon-gluon fusion through a \(b\) quark loop [5] or by \(b\bar{b}\) fusion [6]. The couplings and masses of the Higgs bosons are such that if \(\tan\beta\) is greater than about 20 and \(m_A\) is smaller (greater) than about 125 GeV/c\(^2\), one finds that the \(h\) (\(H\)) and \(A\) are degenerate in mass to within a few GeV/c\(^2\), and are produced with a cross section proportional to \(\tan^2\beta\), while the production of \(H\) (\(h\)) is suppressed.

These \(\tan^2\beta\)-enhanced production cross sections can be in the range 0.1–10 pb depending on the Higgs boson masses, and are orders of magnitude greater than the corresponding ones for a SM Higgs boson and also the more familiar associated production modes of a SM Higgs boson with a vector boson. The Higgs bosons decay to fermion pairs with a partial width proportional to the fermion mass squared; thus the decays \(\phi \rightarrow b\bar{b}\) and \(\phi \rightarrow \tau^+\tau^-\) (with \(\phi = h\), \(A\), \(H\)) predominate, with the branching ratio to \(b\bar{b}\) approximately 90% and the branching ratio to \(\tau^+\tau^-\) about 9% for \(m_A > 100\) GeV/c\(^2\).

This Letter presents the results of a search for the production of Higgs bosons in Type II 2HDM such as the MSSM, using data collected with the CDF II detector at the Fermilab Tevatron \(p\bar{p}\) collider corresponding to 1.8 fb\(^{-1}\) of integrated luminosity. Full details of the analysis are available elsewhere [7]; this result supersedes our previously published result [8], and is similar to the search performed by the D0 Collaboration [9]. The analysis is sensitive to a region of MSSM parameter space which is complementary to that explored by the LEP 2 experiments [10].

The analysis presented here uses the tau pair decay modes, since it is possible to efficiently trigger on and reconstruct the leptons in decays of the tau lepton to \(e\nu\overline{\nu}\) or \(\mu\nu\overline{\nu}\). Indeed, despite the 10× larger branching ratio to \(b\bar{b}\), the search in the tau mode is more sensitive because the SM background is much smaller.

CDF II [11] is a general-purpose detector with an overall cylindrical geometry surrounding the \(p\bar{p}\) interaction region. The three-dimensional trajectories of charged particles produced in \(p\bar{p}\) collisions are measured at small radii (<30 cm) using multiple layers of silicon microstrip detectors, and at outer radii (>30 cm) with a multiwire drift chamber. The tracking system is inside a solenoidal magnet with uniform 1.4 T magnetic field oriented along the beam direction. Outside the solenoid are the electromagnetic and hadronic calorimeters, which are segmented in pseudorapidity (\(\eta\)) and azimuth in a projective “tower” geometry [12]. A set of strip and wire chambers located at a depth of six radiation lengths aids in identifying photons and electrons from the electromagnetic shower shape. Muons are identified by a system of drift chambers and scintillators placed outside the calorimeter steel, which acts as an absorber for hadrons. The integrated luminosity of the \(p\bar{p}\) collisions is measured using Čerenkov luminosity counters [13].

We seek events with tau pairs where one or both tau decay leptonically (excluding \(e^+e^-\) and \(\mu^+\mu^-\) which suffer from excessive background from \(Z/\gamma^*\) production). These final states are denoted \(e^+\tau^-\) and \(\mu^+\tau^-\) (where “\(\tau^+\)” here means the reconstructed hadronic part of a tau decay). Events with a high-\(p_T\) (8 GeV/c or more) \(e\) or \(\mu\) candidate plus a high-\(p_T\) charged track (5 GeV/c or more) or a second \(e\) or \(\mu\) (4 GeV/c or more) are identified using high-speed trigger electronics and are recorded for later analysis. The performance of the trigger and lepton identification algorithms is described in detail elsewhere [14,15].

The reconstruction of hadronic decays of tau leptons [16] relies on defining tau signal and isolation region cones.
centered around seed tracks having $p_T > 6$ GeV/c; we demand one or three charged tracks in the tau cone, and include in addition any $π^0$ candidates. The main way to discriminate between hadronic tau lepton decays and hadronic jets from quantum chromodynamic processes is to demand no additional charged tracks or $π^0$ candidates in an isolation annulus outside the tau signal cone but within 30° of the tau seed track. The half-angle of the tau signal cone decreases with increasing visible tau energy due to the Lorentz boost of the tau lepton, further aiding the discrimination of taus from jets. Additional suppression of hadronic jets comes from imposing a mass requirement on the tau candidate decay products. Electrons and muons are removed using information from the calorimeters and muon detectors.

To select the $e + τ$ and $μ + τ$ events we require an isolated e or $μ$ with $p_T > 10$ GeV/c, and a $τ$ with visible hadronic decay products with total $p_T > 15$ GeV/c (20 GeV/c for three-charged-pion decays). For the $e + μ$ channel we require one lepton to have $p_T > 10$ GeV/c and the other to have $p_T > 6$ GeV/c.

The main SM contributions to the selected event sample include $Z/γ^* → τ^+τ^-$, and $W +$ jet events where $W → ℓν$ (with $ℓ = e, μ$, and the hadronic jet is misidentified as a hadronically decaying $τ$. The $W +$ jet events are largely removed by requiring that the missing transverse energy E_T not point along the direction opposite the momentum of the $ℓ + τ$ system. The remaining $W +$ jet background, and all other background stemming from jets misreconstructed as taus ("fakes") is estimated from events recorded with a jet trigger. There are small contributions from $Z → e^+e^-$, $Z → μ^+μ^-$, diboson, and $t\bar{t}$ production.

The acceptances for signal and the nonfake backgrounds are estimated from samples of simulated events produced by the PYTHIA event generator [17] with CTEQ5L [18] parton distribution functions. The Higgs boson widths and masses are those for an MSSM model with tan$β = 50$. Tau decays are simulated by the TAUOLA package [19]. A GEANT-based [20] model simulates the interactions of all final-state particles in the detector.

TABLE I
Mean expected SM backgrounds and observed numbers of selected events in the final sample. The uncertainties include all systematic effects, some of which are correlated.

<table>
<thead>
<tr>
<th>Background</th>
<th>$e + μ$</th>
<th>$e + τ$</th>
<th>$μ + τ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z/γ^* → τ^+τ^-$</td>
<td>605 ± 51</td>
<td>1378 ± 117</td>
<td>1353 ± 116</td>
</tr>
<tr>
<td>$Z/γ^* → e^+e^-$</td>
<td>1.5 ± 1.2</td>
<td>70 ± 10</td>
<td>negl.</td>
</tr>
<tr>
<td>$Z/γ^* → μ^+μ^-$</td>
<td>17.9 ± 4.5</td>
<td>negl.</td>
<td>107 ± 13</td>
</tr>
<tr>
<td>dibosons</td>
<td>11.4 ± 3.7</td>
<td>4.2 ± 2.1</td>
<td>3.3 ± 1.8</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>9.1 ± 3.3</td>
<td>4.0 ± 2.1</td>
<td>3.3 ± 1.9</td>
</tr>
<tr>
<td>$W +$ jet, multijet</td>
<td>57.1 ± 13.5</td>
<td>467 ± 73</td>
<td>285 ± 46</td>
</tr>
<tr>
<td>Total</td>
<td>702 ± 55</td>
<td>1922 ± 141</td>
<td>1752 ± 129</td>
</tr>
</tbody>
</table>

Observed: 726 1979 1666

Table I shows the mean expected contributions of SM sources, and the number of observed events in the three channels. The uncertainties listed include all systematic effects discussed below, including correlations.

To discriminate a Higgs boson signal from the backgrounds, we perform a binned likelihood fit of background and signal to the observed distribution of the "visible mass" m_{vis}, derived from the sum of the observed lepton four-momenta and the missing transverse energy. The observed distribution of this quantity is dominated by the effects of the missing neutrino energy in the tau decays and experimental resolution. Figure 1 shows the observed and fit distributions for the search channels, including the contribution from a Higgs boson signal as described below.

Various uncertainties limit the sensitivity of our search. The one with the largest effect is due to the imprecisely measured tau energy. The distribution of the observed transverse momentum of the $τ$ in $W → τν$ events constrains the ratio of the reconstructed tau energy in the observed events to that in the simulation to less than 1%, but the residual uncertainty allows for shifts in the background m_{vis} spectra mimicking a Higgs boson signal, particularly for the lower masses considered ($m_τ < 140$ GeV/c^2). At larger Higgs boson masses the search sensitivity is limited more by other systematic effects considered, including the lepton trigger and identification uncertainties (2.4% for electrons, 2.7% for muons, and 4.2% for hadronically decaying taus), the uncertainty in the integrated luminosity (6%),

![FIG. 1](image-url) Observed and predicted distributions of m_{vis} for the $e + τ$ and $μ + τ$ channels (a) and $e + μ$ channel (b). The predicted signal distribution (for $φ = h/A/H$) corresponds to that for the $m_τ = 140$ GeV/c^2 signal assuming a value of the cross section excluded at 95% C.L. Note that in each plot the last bin is an overflow bin. Here "Other EW" refers to all SM backgrounds other than $Z/γ^* → ττ$ and background arising from jet → τ misidentification.
Z → τ⁺τ⁻ cross section (2.2%), and Higgs boson production cross section (5.7%) [21].

We represent all the systematic uncertainties by Gaussian-constrained nuisance parameters in the likelihood, and eliminate these parameters by maximizing the likelihood with respect to them. This procedure is numerically nearly identical to eliminating them by Bayesian marginalization with a Gaussian prior density, which takes much longer to compute.

The resulting likelihood is calculated as a function of the Higgs boson signal cross section times branching ratio to tau pairs, and then converted to a posterior density assuming a uniform prior density. We exclude with 95% C.L. any above which 5% of the posterior probability lies.

The likelihood as a function of reveals no evidence for the presence of a Higgs boson signal, and all nuisance parameters remain consistent with their nominal values.

Figure 1 and other kinematic distributions not shown in this Letter all reveal excellent agreement of the observed distributions with the predictions. We therefore proceed to use the null result to infer cross sections excluded at the 95% C.L. as a

<table>
<thead>
<tr>
<th>m_A (GeV/c²)</th>
<th>Median expected limit (pb)</th>
<th>Observed limit (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>28.115</td>
<td>28.978</td>
</tr>
<tr>
<td>100</td>
<td>19.884</td>
<td>23.465</td>
</tr>
<tr>
<td>110</td>
<td>9.382</td>
<td>11.063</td>
</tr>
<tr>
<td>120</td>
<td>5.447</td>
<td>5.288</td>
</tr>
<tr>
<td>130</td>
<td>3.374</td>
<td>2.770</td>
</tr>
<tr>
<td>140</td>
<td>2.340</td>
<td>1.812</td>
</tr>
<tr>
<td>150</td>
<td>1.751</td>
<td>1.392</td>
</tr>
<tr>
<td>160</td>
<td>1.400</td>
<td>1.198</td>
</tr>
<tr>
<td>170</td>
<td>1.124</td>
<td>1.051</td>
</tr>
<tr>
<td>180</td>
<td>0.933</td>
<td>0.880</td>
</tr>
<tr>
<td>190</td>
<td>0.782</td>
<td>0.808</td>
</tr>
<tr>
<td>200</td>
<td>0.707</td>
<td>0.709</td>
</tr>
<tr>
<td>230</td>
<td>0.470</td>
<td>0.505</td>
</tr>
<tr>
<td>250</td>
<td>0.379</td>
<td>0.451</td>
</tr>
</tbody>
</table>

FIG. 2. Observed 95% C.L. upper limits on the cross section for φ = h/A/H production as a function of m_A. The grey bands show the median expected limit under the null hypothesis, and indicate the ±1- and ±2-standard-deviation ranges.

FIG. 3. Regions in the MSSM plane of tanβ versus m_A excluded at 95% C.L. assuming heavy (~1 TeV/c²) sfermions. The top panel shows excluded regions for Higgsino mass parameter μ > 0, and the bottom panel shows excluded regions for μ < 0. Each panel shows the slightly different excluded regions for two scalar top mixing scenarios. The solid and dashed curves show the previously published bounds [8].

about the sign of the Higgsino mass parameter μ and two extremes for the nature of scalar top mixing [22], denoted m_μ_max and “no mixing.” The excluded regions are the most stringent published to date in the high tanβ region, and are remarkably insensitive to changes in theoretical assumptions due to cancellation of effects in the Higgs boson production and decay [23].

In summary, we have used a sample of data from the Tevatron collider recorded by the CDF II detector corresponding to 1.8 fb⁻¹ of integrated luminosity to search for Higgs bosons predicted in two-Higgs-doublet models, via the Higgs boson decays to tau lepton pairs. No evidence for a Higgs boson signal is observed, and we use the null result to infer cross sections excluded at the 95% C.L. as a

TABLE II. Observed 95% C.L. upper limits, and median expected limits under the null hypothesis on the Higgs boson production cross section times branching ratio σB versus m_A.

<table>
<thead>
<tr>
<th>m_A (GeV/c²)</th>
<th>Median expected limit (pb)</th>
<th>Observed limit (pb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>28.115</td>
<td>28.978</td>
</tr>
<tr>
<td>100</td>
<td>19.884</td>
<td>23.465</td>
</tr>
<tr>
<td>110</td>
<td>9.382</td>
<td>11.063</td>
</tr>
<tr>
<td>120</td>
<td>5.447</td>
<td>5.288</td>
</tr>
<tr>
<td>130</td>
<td>3.374</td>
<td>2.770</td>
</tr>
<tr>
<td>140</td>
<td>2.340</td>
<td>1.812</td>
</tr>
<tr>
<td>150</td>
<td>1.751</td>
<td>1.392</td>
</tr>
<tr>
<td>160</td>
<td>1.400</td>
<td>1.198</td>
</tr>
<tr>
<td>170</td>
<td>1.124</td>
<td>1.051</td>
</tr>
<tr>
<td>180</td>
<td>0.933</td>
<td>0.880</td>
</tr>
<tr>
<td>190</td>
<td>0.782</td>
<td>0.808</td>
</tr>
<tr>
<td>200</td>
<td>0.707</td>
<td>0.709</td>
</tr>
<tr>
<td>230</td>
<td>0.470</td>
<td>0.505</td>
</tr>
<tr>
<td>250</td>
<td>0.379</td>
<td>0.451</td>
</tr>
</tbody>
</table>

PRL 103, 201801 (2009) PHYSICAL REVIEW LETTERS week ending 13 NOVEMBER 2009
function of the Higgs mass, and 95% C.L. excluded regions of the MSSM parameter space $\tan \beta$ versus m_A.

We thank A. Belyaev, M. Carena, J. Gunion, T. Han, S. Heinemeyer, W. Kilgore, S. Mrenna, M. Spira, C. Wagner, G. Weiglein, and S. Willenbrock for illuminating discussions on the theory of MSSM Higgs production and decays. We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Research Foundation; the A. P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

aDeceased.
bVisitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.
cVisitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.
dVisitor from University of Bristol, Bristol BS8 1TL, United Kingdom.
eVisitor from Chinese Academy of Sciences, Beijing 100864, China.
fVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
gVisitor from University of California Irvine, Irvine, CA 92697, USA.
hVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.
iVisitor from Cornell University, Ithaca, NY 14853, USA.
jVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
kVisitor from University College Dublin, Dublin 4, Ireland.
lVisitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.
mVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
nVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
oVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.
pVisitor from University of Iowa, Iowa City, IA 52242, USA.

qVisitor from Queen Mary, University of London, London, E1 4NS, England.
rVisitor from University of Manchester, Manchester M13 9PL, England.
sVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
tVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.
uVisitor from University of Oviedo, E-33007 Oviedo, Spain.
vVisitor from Texas Tech University, Lubbock, TX 79609, USA.
wVisitor from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.
xVisitor from University of Virginia, Charlottesville, VA 22904, USA.
yVisitor from Bergische Universität Wuppertal, 42097 Wuppertal, Germany.
zOn leave from J. Stefan Institute, Ljubljana, Slovenia.

[12] We use a coordinate system defined about the proton beam direction, which is taken as the z axis; the x axis lies in the horizontal plane and the y axis points upward. Then $\hat{\theta}$ is the usual polar angle. We define the pseudorapidity η of a particle’s three-momentum as $\eta = -\ln(\tan(\theta/2))$. The transverse energy and momentum are defined as $E_T = E \sin \theta$ and $p_T = p \sin \theta$ where E is the energy measured by the calorimeter and p is the momentum measured in the tracking system. The missing transverse energy is defined as $E_{T,m} = -\sum_i E_T \hat{n}_i$ where \hat{n}_i is a unit vector perpendicular to the beam axis and pointing from the beam axis to the ith calorimeter tower.