Traveling salesperson problems for a double integrator

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/TAC.2008.2007856</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/53585</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Technical Notes and Correspondence

Traveling Salesperson Problems for a Double Integrator

Ketan Savla, Student Member, IEEE, Francesco Bullo, Senior Member, IEEE, and Emilio Frazzoli, Senior Member, IEEE

Abstract—This technical note studies the following version of the Traveling Salesperson Problem (TSP) for a double integrator with bounded velocity and bounded control inputs: given a set of points in \mathbb{R}^2, find the fastest tour over the point set. We first give asymptotic bounds on the time taken to complete such a tour in the worst case. Then, we study a stochastic version of the TSP for a double integrator in \mathbb{R}^2 and \mathbb{R}^3, where we propose novel algorithms that asymptotically perform within a constant factor of the optimal strategy with probability one. Lastly, we study a dynamic TSP in \mathbb{R}^2 and \mathbb{R}^3, where we propose novel stabilizing algorithms whose performances are within a constant factor from the optimum.

Index Terms—Dynamic traveling repairperson problem (DTRP), traveling salesperson problem (TSP).

I. INTRODUCTION

The Traveling Salesperson Problem (TSP) with its variations is one of the most widely known combinatorial optimization problems. While extensively studied in the literature, these problems continue to attract great interest from a wide range of fields, including Operations Research, Mathematics and Computer Science. The Euclidean TSP (ETSP) [1]–[3] is formulated as follows: given a finite point set P in \mathbb{R}^d for $d \in \mathbb{N}$, find the minimum-length closed path through all the points in P. It is quite natural to formulate this problem in the context of other dynamical vehicles, e.g., UAVs. For motion planning purposes, the nominal behavior of UAVs with hover capabilities (e.g., helicopters) is usually captured by a simple double integrator model with bounded velocity and acceleration, e.g., see [4]. The focus of this technical note is the analysis of the TSP for a vehicle with such double integrator dynamics or simply a double integrator; we shall refer to it as DITSP. Specifically, DITSP will involve finding the fastest tour for a double integrator through a set of n points in a compact domain.

Exact algorithms, heuristics and polynomial-time constant factor approximation algorithms are available for the Euclidean TSP, see [5], [6]. However, unlike other variations of the TSP, there are no known reductions of the DITSP to a problem on a finite-dimensional graph, thus making it difficult to use the well-established tools in combinatorial optimization.

The motivation to study the DITSP arises in robotics and uninhabited aerial vehicles (UAVs) applications. UAV applications also motivate us to study the Dynamic Traveling Repairperson Problem (DTRP), in which the aerial vehicle is required to visit a dynamically generated set of targets. This problem was introduced by Bertsimas and van Ryzin in [7] and then decentralized policies achieving the same performances were proposed in [8]. Variants of these problems have attracted much attention recently [8], [9]. There also exists an extensive literature on motion planning for robots under various motion constraints, e.g., see [10], [11]. However, the study of the TSP and the DTRP in conjunction with double integrator vehicle dynamics has eluded attention from the research community.

The contributions of this technical note are threefold. First, we introduce a natural STOP-GO-STOP strategy for the DITSP to show that the minimum time to traverse the tour is asymptotically upper bounded by a constant times $n^{1-1/2d}$, i.e., it belongs to $O(n^{1-1/2d})$. We also show that, in the worst case, this minimum time is asymptotically lower bounded by a constant times $n^{1-1/d}$, i.e., it belongs to $\Omega(n^{1-1/d})$. Second, we study the stochastic DITSP, i.e., the problem of finding the fastest tour through a set of target points that are uniformly randomly generated. We show that the minimum time to traverse the tour for the stochastic DITSP belongs to $\Omega(n^{2/3})$ in \mathbb{R}^2 and $O(n^{1/5})$ in \mathbb{R}^3. We adapt the Recursive Bead-Tiling Algorithm from our earlier work [12] for the stochastic DITSP in \mathbb{R}^2 and we propose a novel algorithm, the Recursive Cylinder-Covering Algorithm, for the stochastic DITSP in \mathbb{R}^3. We prove that, with probability one, the tours generated by these algorithms are traversed in time $O(n^{2/3})$ in \mathbb{R}^2 and $O(n^{1/5})$ in \mathbb{R}^3, i.e., these algorithms asymptotically provide a constant-factor approximation to the optimal DITSP solution with probability one. Third, for the DTRP problem we propose novel policies based on the fixed-resolution versions of the corresponding algorithms for the stochastic DITSP. We show that the performance guarantees for the stochastic DITSP translate into stability guarantees for the average performance of the double integrator DTRP problem. For a uniform target-generation process with intensity λ, the DTRP algorithm performance is within a constant factor of the optimal policy in the heavy load case, i.e., for $\lambda \to +\infty$. As a final minor contribution, we also show that the results obtained for stochastic DITSP carry over to the stochastic TSP for the Dubins vehicle, i.e., for a nonholonomic vehicle moving along paths with bounded curvature, without reversing direction. In the interest of space, this document contains only sketches of the proofs; all formal proofs are available in [13].

This work completes the generalization of the known combinatorial results on the ETSP and DTRP (applicable to systems with single integrator dynamics) to double integrators and Dubins vehicle models. At this point, we clarify the contribution and the relation of this technical note with respect to our companion paper [12], where we considered TSPs for a Dubins vehicle in \mathbb{R}^2. In this technical note, we adapt the tools and algorithms for the stochastic TSP for the Dubins vehicle from [12] for the double integrator case in \mathbb{R}^2 and \mathbb{R}^3. However, an interesting fact that arises out this technical note, independently of [12], is:

1For $f, g : \mathbb{N} \to \mathbb{R}$, we say that $f \in O(g)$ (resp., $f \in \Omega(g)$) if there exist $N_0 \in \mathbb{N}$ and $k \in \mathbb{R}_+$ such that $|f(N)| \leq k|g(N)|$ for all $N \geq N_0$ (resp., $|f(N)| \geq k|g(N)|$ for all $N \geq N_0$) if $f \in O(g)$ and $f \in \Omega(g)$, then we use the notation $f \in O(g)$.
that the path length for the stochastic TSP for a double integrator follows similar theoretical lower bounds as for the Dubins vehicle. Moreover, the results and the algorithms for the worst-case DITSP are novel. It is interesting to compare our results with the setting where the vehicle is modeled by a single integrator; this setting corresponds to the so-called Euclidean case in combinatorial optimization. In the table at the top of the page, the single integrator results in the first column are taken from [3], [7]; the double integrator results in the second column are novel; and the Dubins vehicle results in the third column are taken from [12] for $d = 2$ and are novel for $d = 3$. Remarkably, the differences between the TSP bounds play a crucial role in the DTRP problem; e.g., stable policies exist only when the minimum TSP time grows strictly sub-linearly with n.

II. Setup and Worst-Case DITSP

For $d \in \mathbb{N}$, consider a vehicle with double integrator dynamics

$$
\ddot{p}(t) = u(t), \quad \|u(t)\| \leq r_{\text{ctr}}, \quad \|\dot{p}(t)\| \leq r_{\text{vel}}
$$

where $p, u \in \mathbb{R}^d$ are the position and control input of the vehicle, respectively, $r_{\text{vel}}, r_{\text{ctr}} \in \mathbb{R}_+$ are the bounds on the attainable speed and control inputs respectively. Let $\mathcal{Q} \subset \mathbb{R}^d$ be a unit hypercube. Let $P = \{q_1, \ldots, q_n\}$ be a set of n points in \mathcal{Q} and let \mathcal{P}_n be the collection of all point sets $P \subset \mathcal{Q}$ with cardinality n. Let ETSP(P) denote the cost of the Euclidean TSP over P and let DITSP(P) denote the cost of the TSP for double integrator over P, i.e., the time taken to traverse the fastest closed path for a double integrator through all the points in P.

In the spirit of its companion paper [12], the key objective of this technical note is the design of an algorithm that provides a provably good approximation to the optimal solution of the DITSP. To establish what a “good approximation” might be, let us recall what is known about the ETSP and the DTSP. For a compact set \mathcal{Q}, it is known that the cost of the ETSP grows as $n^{1/2}$ for the worst-case point sets [3] as well as in the stochastic case [2] (as both lower and upper bounds). Similarly, it was shown in [12] that the cost of the DTSP grows with n for the worst-case point sets and with $n^{2/3}$ in the stochastic case. These upper bounds are constructive in the sense that there exist algorithms that generate closed paths through the points which give the corresponding performances.

Motivated by these results, this technical note studies the asymptotic dependence of the cost of the DITSP on n and uses those results to design stabilizing policies for the DTRP for the double integrator. In other words, we assume r_{vel} and r_{ctr} to be constant and study the dependence of DITSP : $\mathcal{P}_n \rightarrow \mathbb{R}_+$ on n.

Lemma 2.1: (Worst-case Lower Bound on the TSP for Double Integrator) For $r_{\text{vel}} > 0, r_{\text{ctr}} > 0$ and $d \in \mathbb{N}$, there exists a sequence of point sets $n \rightarrow P_n$ in $\mathcal{Q} \subset \mathbb{R}^d$ such that DITSP(P_n) belongs to $\Omega(n^{-1/2})$.

Proof Sketch: As shown in [3], there exists a sequence of point sets $n \rightarrow P_n$ whose minimum inter-point distance belongs to $\Omega(n^{-1/d})$. Therefore, DITSP(P_n) belongs to $n \times \Omega(n^{-1/d})$, i.e., $\Omega(n^{1-(1/d)})$.

We now propose a simple strategy for the DITSP and analyze its performance. The STOP-GO-STOPO strategy can be described as follows: The vehicle visits the points in the same order as in the optimal ETSP tour over the same set of points. Between any pair of points, the vehicle starts at the initial point at rest and follows the shortest-time path to reach the final point with zero velocity. Analyzing this STOP-GO-STOPO strategy, one can show the following upper bound.

Theorem 2.2: (Upper Bound on the TSP for Double Integrator) For any point set $P \in \mathcal{P}_n$ in $\mathbb{Q} \subset \mathbb{R}^d$, $r_{\text{ctr}} > 0, r_{\text{vel}} > 0$ and $d \in \mathbb{N}$, DITSP(P) belongs to $O(n^{1-(1/2d)})$.

III. Stochastic DITSP

The results in the previous section showed that based on a simple strategy, the STOP-GO-STOPO strategy, we are already guaranteed to have sub-linear cost for the DITSP when the point sets are considered on an individual basis. However, it is reasonable to argue that there might be better algorithms when one is concerned with average performance. In particular, one can expect that when n target points are stochastically generated in \mathcal{Q} according to a uniform probability distribution function, the cost of DITSP should be lower than the one given by the STOP-GO-STOPO strategy. We shall refer to the problem of studying the average performance of DITSP over this class of point sets as stochastic DITSP. In this section, we present novel algorithms for stochastic DITSP in \mathbb{R}^2 and \mathbb{R}^3 and then establish bounds on their performances.

We make the following assumptions: in \mathbb{R}^d, \mathcal{Q} is a rectangle of width W and height H with $W \geq H$; in \mathbb{R}^3, \mathcal{Q} is a rectangular box of width W, height H and depth D with $W \geq H \geq D$. Different choices for the shape of \mathcal{Q} affect our conclusions only by a constant (consider, for example, the smallest rectangle or the smallest rectangular box enclosing \mathcal{Q}). Specifically, different choices for the shape of \mathcal{Q} would only affect the constants associated with the various bounds in Theorems 3.1, 3.3 and 3.8 and do not affect the asymptotic dependence on n. The axes of the reference frame are parallel to the sides of \mathcal{Q}. The points $P = \{q_1, \ldots, q_n\}$ are randomly generated according to a uniform distribution with support \mathcal{Q}.
A. Lower Bounds

First, we provide lower bounds on the expected length of the stochastic DITSP for $d = 2,3$.

Theorem 3.1: (Lower Bounds on Stochastic DITSP): For all $r_{\text{vol}} > 0, r_{\text{ct}} > 0$, the expected minimum time in a stochastic DITSP to visit a set of n uniformly-randomly-generated points satisfies the following inequalities:

\[
\liminf_{n \to \infty} \frac{E[\text{DITSP}(P \subset Q \subset \mathbb{R}^d)]}{n^{2/3}} \geq \frac{3}{4} \left(\frac{6W_H}{r_{\text{vol}} r_{\text{ct}}} \right)^{1/3}
\]

and

\[
\liminf_{n \to \infty} \frac{E[\text{DITSP}(P \subset Q \subset \mathbb{R}^d)]}{n^{4/5}} \geq \frac{5}{6} \left(\frac{20W_H D}{\pi r_{\text{vol}}^2 r_{\text{ct}}} \right)^{1/5}
\]

Proof Sketch: In \mathbb{R}^2, the area of the set reachable in time t from a random initial state belongs to $O(t^3)$. Therefore, the expected value of the time between two successive points in the tour belongs to $\Omega(n^{-1/3})$. Hence, the minimum time to traverse the total tour belongs to $n^{-1} \times \Omega(n^{-1/3})$, i.e., $\Omega(n^{2/3})$. The proof for \mathbb{R}^3 follows on similar lines.

B. Relation With the Dubins Vehicle

In [12], we studied stochastic versions of TSP for a Dubins vehicle. Though conventionally a Dubins vehicle is restricted to be a planar vehicle, one can easily generalize the model even for the three (and higher) dimensional case. Accordingly, a Dubins vehicle can be defined as a vehicle that is constrained to move with a constant speed along paths of bounded curvature, without reversing direction. Correspondingly, a feasible curve for a Dubins vehicle or a Dubins path is defined as a curve that is twice differentiable almost everywhere, and such that the magnitude of its curvature is bounded above by $1/\rho$, where $\rho > 0$ is the minimum turn radius. Based on this, one can immediately come up with the following analogy between feasible curves for a Dubins vehicle and a double integrator.

Lemma 3.2: (Trajectories of Dubins Vehicles and Double Integrators): For any $\rho > 0$, a feasible curve for a Dubins vehicle with minimum turn radius ρ is a feasible curve for a double integrator (modeled in (1)) moving with an appropriate constant speed $s \leq r_{\text{vol}}$. Conversely, a feasible curve for a double integrator moving with a constant speed $s \leq r_{\text{vol}}$ is a feasible curve for Dubins vehicle with any minimum turn radius ρ that is greater than or equal to s^2/r_{ct}.

In [12], we proposed a novel algorithm, the **Recursive Bead-Tiling Algorithm** (RecBTA) for the stochastic version of the Dubins TSP (DTSP) in \mathbb{R}^2; we showed that this algorithm asymptotically performs within a constant factor of the optimal with probability one. In this technical note, taking inspiration from those ideas, we propose an algorithm to compute feasible curves for a double integrator moving with a constant speed $s \leq r_{\text{vol}}$ and then optimize over s. Note that moving at a constant speed is not necessarily the best strategy. Nonetheless, this strategy leads to efficient algorithms. We adopt the RecBTA for the stochastic DTSP in \mathbb{R}^2 and based on the same ideas, we propose the **Recursive Cylinder-Covering Algorithm** (RecCCA) for stochastic DTSP in \mathbb{R}^3. We prove that these algorithms asymptotically perform within a constant factor of the optimal with probability one.

C. The Basic Geometric Construction

Here we define useful geometric objects and study their properties. Given the constant speed s for the double integrator let $\rho = s^2/r_{\text{ct}}$; from Lemma 3.2 this constant corresponds to the minimum turning radius of the analogous Dubins vehicle. Consider two points p_- and p_+ on the plane, with $\ell = ||p_+ - p_-|| \leq 4\rho$, and construct the bead $B_\rho(\ell)$ as detailed in Fig. 1.

Associated with the bead is also the rectangle $efgh$. Rotating this rectangle about the line passing through p_- and p_+ gives rise to a cylinder $C_\rho(\ell)$. $C_\rho(\ell)$ enjoys the following asymptotic properties as $\ell/\rho \to 0^+$ (properties of the bead, $B_\rho(\ell)$ are listed in [12]):

(P1) The length of $C_\rho(\ell)$ is $\ell/2$ and its radius of cross-section is $w(\ell)/4$, where $w(\ell)$ is the maximum thickness of the bead $B_\rho(\ell)$ and it is equal to

\[
w(\ell) = 4\rho \left(1 - \sqrt{1 - \left(\frac{\ell^2}{16\rho^2} \right)^2} \right) = \frac{\ell^2}{8\rho} + \rho \cdot o \left(\frac{\ell^3}{\rho^3} \right)
\]

(P2) The volume of $C_\rho(\ell)$ is equal to

\[
\text{Volume}[C_\rho(\ell)] = \pi \left(\frac{w(\ell)}{4} \right)^2 \frac{\ell}{2} = \frac{\pi \ell^3}{2018\rho^2} + \rho^3 \cdot o \left(\frac{\ell^6}{\rho^6} \right)
\]

(P3) For any $p \subset C_\rho(\ell)$, there is at least one feasible curve γ_p through the points $\{p_-, p, p_+\}$, entirely contained within the region obtained by rotating $B_\rho(\ell)$ about the line passing through p_- and p_+. The length of any such path is at most

\[
\text{Length}(\gamma_p) \leq 4\rho \arcsin \left(\frac{\ell}{4\rho} \right) = \ell + \rho \cdot o \left(\frac{\ell^3}{\rho^3} \right)
\]

The geometric shapes introduced above can be used to cover \mathbb{R}^2 and \mathbb{R}^3 in an organized way. The plane can be periodically tiled by identical copies of $B_\rho(\ell)$, for any $\ell \in [0, 4\rho]$. The cylinder, however does not enjoy any such special property. For our purpose, we consider a particular covering of \mathbb{R}^3 by cylinders described as follows.

A row of cylinders is formed by joining cylinders end to end along their length. A layer of cylinders is formed by placing rows of cylinders parallel and on top of each other as shown in Fig. 2. For covering \mathbb{R}^3, these layers are arranged next to each other and with offsets as shown in Fig. 3(a), where the cross section of this arrangement is shown. We refer to this construction as the covering of \mathbb{R}^3.

D. The Algorithm

We adopt the **Recursive Bead-Tiling Algorithm** (RecBTA) from [12] for the stochastic DTSP in \mathbb{R}^2. Let T_{RecBTA} be the time taken by a double integrator to traverse a stochastic DTSP tour according to the RecBTA. The RecBTA performance is analyzed as follows.

Theorem 3.3: (Upper Bound on the Total Time in \mathbb{R}^2): Let $P \in P_n$ be uniformly randomly generated in the rectangle of width W and

2A tiling of the plane is a collection of sets whose intersection has measure zero and whose union covers the plane.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:13 from IEEE Xplore. Restrictions apply.
The relative position of the bigger cylinder relative to smaller ones of the prior phase during the phase transition.

The length of such that stochastic DITSP in (assuming that covering Fig. 3. (a): Cross section of the arrangement of the layers of cylinders used for constructing with the following properties:

i) it visits all non-empty cylinders once;
ii) it visits all rows of cylinders in a layer in sequence top-to-down in a layer, alternating between left-to-right and right-to-left passes, and visiting all non-empty cylinders in a row;
iii) it visits all layers in sequence from one end of the region to the other;
iv) when visiting a non-empty meta-cylinder, it services at least one target in it.

A meta-cylinder at the end of the fifth sub-phase, and hence at the end of the first phase will consist of 16 nearby cylinders. After this phase, the transitioning to the next phase will involve enlarging the cylinder to 32 times its current size by increasing the radius of its cross section by a factor of 4 and doubling its length as outlined in Fig. 3(b). It is easy to see that this bigger cylinder will contain the union of 32 nearby smaller cylinders. In other words, we are forming the object $C_\rho(2l)$ using a conglomeration of 32 $C_\rho(l)$ objects. This whole process is repeated at most $\log_2 n + 2$ times. After the last phase, the leftover targets will be visited using, for example, a greedy strategy. We have the following result for the leftover targets after the last phase which is similar to the result for RECBTA [12].

Lemma 3.5 (Targets Remaining After Recursive Phases): With probability one, the number of unvisited targets after the last recursive phase of the RECURSIVE CYLINDER-COVERING ALGORITHM over P is less than $24 \log_2 n$ asymptotically.

We skip the calculations of the path lengths for the various sub phases and give the following result for the path length of the first phase. Details of the intermediate calculations can be found in [13].

Lemma 3.6 (Path Length for the First Phase): Consider a covering of the space with cylinders $C_\rho(l)$. For any $\rho > 0$ and for any set of target points, the length L_1 of a path visiting once and only once each cylinder with a non-empty intersection with a rectangular box Q of width W, height H and depth D satisfies

$$L_1 \leq \frac{3328 \rho^2 WHD}{l^4} \left(1 + \frac{7\pi \rho^3}{3W}\right) + \rho \cdot o\left(\frac{\rho^3}{l^3}\right)$$

Since we increase the length of cylinders by a factor of two while doing the phase transition from one phase to the another, the length of path for the subsequent i^{th} phase is given by

$$L_i \leq \frac{3328 \rho^2 WHD}{16^i l^4} \left(1 + \frac{7\pi \rho^3}{3W}\right) + \rho \cdot o\left(\frac{\rho^3}{l^3}\right)$$

We now state the following result which characterizes the total path length for the RecCCA, which we denote as $L_{RecCCA, \rho} (P)$.

Lemma 3.7 (Path Length for the RECURSIVE CYLINDER-COVERING ALGORITHM): Let $P \in \mathcal{P}_n$ be uniformly randomly generated in the rectangle of width W, height H and depth D. For any $\rho > 0$, with high probability

$$\limsup_{n \to \infty} \frac{L_{RecCCA, \rho} (P)}{n^{4/5}} \leq 3328 \left(\frac{\pi}{16}\right)^{1/5} \rho^3 \cdot o\left(\frac{\rho^3}{W^{1/5}}\right)$$

Proof Sketch: There are at most $\log_2 n + 2$ phases at the end of which there are $O(\log_2 n)$ points by Lemma 3.5. By summing the expression for the path length for the i^{th} phase, L_i, over $\log_2 n + 2$ phases and using any greedy strategy to visit the remaining $O(\log_2 n)$, we get the desired result.
In order to obtain an upper bound on the DITSP(P) in R^3, we derive the expression for time taken, T_{ReccoCA}, by the ReccoCA to execute the path of length $L_{\text{ReccoCA}, \rho}(P)$.

Theorem 3.8: (Upper Bound on the Total Time in R^3) Let $P \in P_n$ be uniformly randomly generated in the rectangular box of width W, height H and depth D. For any double integrator (1) moving with a constant speed $s \leq \frac{r_{cyl}}{2}$, with probability one

$$\lim_{n \to +\infty} T_{\text{ReccoCA}} \in \mathbb{R}^3 \leq 61 \left(\frac{WHD}{s^2 r_{cyl}} \right)^{1/5} \left(1 + \frac{7\pi s^2}{3W r_{cyl}} \right).$$

Proof Sketch: We substitute $\rho = \frac{s^2}{r_{cyl}}$ in the bound for $L_{\text{ReccoCA}, \rho}(P)$ given by Lemma 3.7 and evaluate the time required to traverse the total path of length $L_{\text{ReccoCA}, \rho}(P)$ at speed s.

Remark 3.9: The speed that minimizes the upper bound in Theorem 3.8 is $n_{\Phi} = \lim_{t \to -\infty} E[n(t)|j] = \Phi(p, D) < +\infty$

i.e., if the double integrator is able to service targets at a rate that is, on average, at least as large as the target generation rate λ. Let T_j be the time elapsed from the time the j-th target is generated to the time it is serviced and let $T_{\text{fb}} := \lim_{j \to -\infty} E[T_j]$ be the steady-state time for the DTRP under the policy Φ. (If the system is stable, then it is known [14] that $n_{\Phi} = \lambda T_{\text{fb}}$.)

In what follows, we design a control policy Φ whose system time T_{fb} is a constant-factor approximation of the optimal achievable performance. Consistently with the theme of the paper, we consider the case of heavy load, i.e., the problem as the time intensity $\lambda \to +\infty$. We first provide lower bounds for the system time, and then present novel approximation algorithms providing upper bound on the performance.

Theorem 4.1 (Lower Bound on the DTRP System Time): For a double integrator (1), the system time $T_{\text{DTRP}, 2}$ and $T_{\text{DTRP}, 3}$ for the DTRP in two and three dimensions satisfy

$$\begin{align*}
\liminf_{\lambda \to +\infty} \frac{T_{\text{DTRP}, 2}}{\lambda^2} &\geq \frac{81}{32} \frac{W}{r_{cyl}^2} \cdot \\
\liminf_{\lambda \to +\infty} \frac{T_{\text{DTRP}, 3}}{\lambda^3} &\geq \frac{7813 WHD}{972 r_{cyl}^2}.
\end{align*}$$

Proof Sketch: For a stable policy, the average time, $T^*(n')$, needed to service a target must be no greater than the average time interval in which a new target is generated, i.e., $E[T^*(n')] \leq 1/\lambda$, where n' is the average number of outstanding targets. This gives a bound on n'. Using Little’s formula [14], one obtains the result.

In [12], we proposed a simple strategy, the BEAD TILING ALGORITHM (BTA) for the DTRP for Dubins vehicle in R^2. We adapt the BTA for the DTRP problem for a double integrator in R^2 and based on those ideas, we propose the CYLINDER COVERING ALGORITHM (CCA) for R^3. As before, we make the double integrator to move at some constant speed $s \leq r_{cyl}$ and let $\rho = \frac{s^2}{r_{cyl}}$. The BTA strategy consists of the following steps:

i) Tile the plane with beads of length $\ell := \min\{C_{\text{CCA}}/\lambda, 4p\}$, where $C_{\text{BTA}} = 0.524 \left(1 + \left(7\pi/3W\right)^{1/3}\right)^{-1}$.

ii) Traverse all non-empty beads once, visiting one target per bead.

Repeat this step.

The CCA strategy is akin to the BTA, where the region is covered with cylinders constructed from beads of length $\ell := \min\{C_{\text{CCA}}/\lambda, 4p\}$, where $C_{\text{CCA}} = 0.476 \left(1 + \left(7\pi/3W\right)^{1/3}\right)^{-1}$. The policy is then to traverse all non-empty cylinders once, visiting one target per cylinder. The following result characterizes the system time for the closed loop system induced by these algorithms and is based on the bounds derived to arrive at Lemmas 3.3 and 3.8.

Theorem 4.2 (Upper Bound on the DTRP System Time): For a double integrator (1) moving with a constant speed $s \leq r_{cyl}$ and $\lambda > 0$, the BTA and the CCA are stable policies for the DTRP and the resulting system times T_{BTA} and T_{CCA} satisfy

$$\begin{align*}
\limsup_{\lambda \to +\infty} \frac{T_{\text{DTRP}, 2}}{\lambda^2} &\leq \limsup_{\lambda \to +\infty} \frac{T_{\text{BTA}}}{\lambda^2} \\
&\leq 70.5 \frac{W}{s^2 r_{cyl}} \left(1 + \frac{7\pi s^2}{3W r_{cyl}} \right)^3, \\
\limsup_{\lambda \to +\infty} \frac{T_{\text{DTRP}, 3}}{\lambda^3} &\leq \limsup_{\lambda \to +\infty} \frac{T_{\text{CCA}}}{\lambda^3} \\
&\leq 9748 \frac{WHD}{s^2 r_{cyl}} \left(1 + \frac{7\pi s^2}{3W r_{cyl}} \right)^5.
\end{align*}$$
Proof Sketch: For the given policies, we derive bounds on the target generation rate and servicing rate for a bead/cylinder. The bead/cylinder is then modeled as a standard $M/D/1$ queue and we use the known result [14] for the system time for such a queue.

Remark 4.3: The speeds that minimize the upper bounds in Theorem 4.2 turn out to be the same as those for the corresponding DITSPs as reported in Remarks 3.4 and 3.9. Also, note that the achievable performances of the BTA and the CCA provide a constant-factor approximation to the lower bounds established in Theorem 4.1. The large constant associated with the 3-D case is an outcome of the corresponding constant associated with the upper bound on the path length for the first phase of the RecBTA as given by Lemma 3.6.

V. Extension to the TSPs for the Dubins Vehicle

In our earlier work [12], we studied the Dubins Traveling Salesperson Problem (DTPSP) for the planar case. In that paper, we proposed an algorithm that gave a constant factor approximation to the optimal stochastic DTPSP with probability one. This naturally led to a stable policy for the DTRP problem for the Dubins vehicle in \mathbb{R}^2 that also performed within a constant factor of the optimal. The RecCCA developed in this technical note can naturally be extended to apply to the stochastic DTPSP in \mathbb{R}^2. It follows directly from Lemma 3.2 that in order to use the RecCCA for a Dubins vehicle with minimum turning radius ρ, one has to simply compute feasible curves for the double integrator moving with an appropriate constant speed. Hence the results stated in Theorem 3.8 and Theorem 4.2 also hold true for the Dubins vehicle.

This equivalence between trajectories makes the RecCCA the first known strategy with a strictly sub-linear asymptotic minimum time for surveillance problems for vehicles with nonlinear dynamics: the lower bounds are the same because the damping only slows down the vehicle; the upper bounds also remain the same as long as the damping coefficient is relatively small as compared to r_{2x}.

Future directions of research include study of centralized and decentralized versions of the DTRP and more general task assignment and surveillance problems for vehicles with nonlinear dynamics.

VI. Conclusion

In this technical note we have proposed novel algorithms for various TSP problems for vehicles with double integrator dynamics. We showed that the DITSP(P) belongs to $O(n^{(1-1/2d)})$ and in the worst case also belongs to $\Omega(n^{1-(1/d)})$. We further proposed novel approximation algorithms and showed that the stochastic DITSP(P) belongs to $O(n^{2/3})$ in \mathbb{R}^2 and to $O(n^{1/3})$ in \mathbb{R}^d, both with probability one. The policy proposed in this technical note for the DTRP for a double integrator helps in proving that the system time belongs to $\Theta(\lambda^2)$ in \mathbb{R}^2 and to $\Theta(\lambda^4)$ in \mathbb{R}^d. Comparing our results with those for the single integrator [7], we argue that our analysis rigorously establishes the following intuitive fact: higher order dynamics make the system much more sensitive to increases in the target generation rate.

It is interesting to note that the results presented in the paper hold true even in the presence of small damping in the double integrator dynamics: the lower bounds are the same because the damping only slows down the vehicle; the upper bounds also remain the same as long as the damping coefficient is relatively small as compared to r_{ax}.

Future directions of research include study of centralized and decentralized versions of the DTRP and more general task assignment and surveillance problems for vehicles with nonlinear dynamics.

REFERENCES

