A realistic molecular model of cement hydrates

Citation

As Published
http://dx.doi.org/10.1073/pnas.0902180106

Publisher
United States National Academy of Sciences

Version
Final published version

Accessed
Mon Oct 22 18:40:16 EDT 2018

Citable Link
http://hdl.handle.net/1721.1/55304

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A realistic molecular model of cement hydrates

Roland J.-M. Pellenq,a,b, Akihiro Kushima,c Rouzbeh Shahsavari,b, Krystyn J. Van Vliet,d Markus J. Buehlerb, Sidney Yip,c,d, and Franz-Josef Ulm,b,†

CENTRE INTERDISCIPLINAIRE DES NANOSCIENCES DE MARSEILLE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE AND MARSEILLE UNIVERSITÉ, CAMPUS DE LUMINY, MARSEILLE, 13288 CEDEX 09, FRANCE; DEPARTMENTS OF CIVIL AND ENVIRONMENTAL ENGINEERING, NUCLEAR SCIENCE AND ENGINEERING, AND MATERIALS SCIENCE AND ENGINEERING, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA 02139

Edited by Zdeněk P. Bažant, Northwestern University, Evanston, IL, and approved July 21, 2009 (received for review February 27, 2009)

Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this “liquid stone” gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm³) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO₂, and H₂O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)₀.₆₅(SiO₂)(H₂O)₀.₂₇, also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of real C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking.

Model Construction. One of the key issues in designing a realistic C-S-H molecular model is the calcium-to-silicon ratio (C/S). Indeed, confirming earlier measurements by Groves et al. (6) and Richardson and Groves (7), energy dispersive X-ray analyses of C-S-H in hardened Portland cement pastes aged 1 day to 3.5 years reveal a composition variation spanning C/S from approximately 1.2 to 2.3 with a mean value of 1.7; this variation also depends on the water-to-cement (W/C) mass ratio at which cement is hydrated (5). Given the shortfalls of the natural analogs, tobermorite and jennite, to meet this compositional constraint, Richardson proposed a two-fold classification to clarify C-S-H chemistry (5). This classification references so-called tobermorite/jennite (T/J) models on one hand and tobermorite-calcium hydroxide (T/CH) models on the other hand. The T/CH class considers models that are solid solutions of tobermorite layers sandwiching calcium hydroxide, hence providing a means to achieve a higher C/S ratio than the one of tobermorite. The T/J class considers C-S-H as an assembly of tobermorite regions followed by jennite domains. While the T/CH class was found to be relevant for hydrated KOH-activated metakaolin Portland cement, more common water activated Portland cement pastes can be only partly described by the T/J or the T/CH approaches. A realistic model for C-S-H that predicts a realistic C/S ratio thus remains a central piece of any model construction. Furthermore, quantitative information on the fractions of Si present in silicate tetrahedra with different connectivities is provided by ²⁹Si nuclear magnetic resonance (NMR) (8, 9). Such studies have established that the dimer is the most predominant of all silicate species, with the linear pentamer as the second most abundant. Tetrahedral coordination measured by NMR is expressed in terms of the Qₐ factor, denoting the fractional chemical shift of a silicon atom bound to n bridging oxygens. Thus Qₐ is the fraction of a single tetrahedron (a silicate monomer), Q₁ the fraction of tetrahedra at the end of a chain (a silicate dimer would have two Q₁), Q₂ the fraction of tetrahedra in the middle of a chain (a silicate pentamer would have three Q₂).

To construct a molecular model of C-S-H that has a C/S ratio consistent with small-angle neutron scattering measurements, we begin with a monoclinic periodic computational cell of dry

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

†To whom correspondence should be addressed. E-mail: ulm@mit.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/0902180106/DCSupplemental.
against all other calcio-silicate crystalline solids (12). The fact agrees well, showing peaks at the same inter-atomic distances pair distribution functions as measured in EXAFS (Fig. 2 copy). This suggests that our C-S-H model can be seen as a glassy phase at short length scales is confirmed by a comparison of the partial pair distribution functions $g(r)$ of our C-S-H model with that of a true non-porous calcium-silicate glass at room temperature with the same C/S ratio and a density of 2.34 g/cm3 (Fig. 2 C and D). The structure of the second peaks in the $g(r)$ for Si-O and Ca-O pairs in tobermorite show characteristic structural features that are absent for both the calcium-silicate glass and our C-S-H model. For the sake of consistency, the Ca-glass and crystalline tobermorite simulations were carried out with the same empirical potential model (see Methods), with the Ca-glass potential obtained by following the method given in (13). We may interpret this comparison to indicate that C-S-H should be considered as a glass on the short range of distances associated with the distorted intralayer structure, while retaining some layered crystal features at longer range of distances associated with the interlayer spacing. The comparison between simulation and experimental infrared spectra (Fig. 2E), allows further characterization of our model. Note that calculated infrared intensities were obtained from the relaxed model C-S-H structure by performing a numerical integration over the sampled phonon modes (14). All of the experimental bands are present in the calculated spectrum.
but the ones in the range 1,200–1,500 cm\(^{-1}\); the absence of these bands is not surprising, as these correspond to experimental carbonation effects (Q3 silicate stretching and vibrational mode of CO\(_3^{2-}\) ions) that can be avoided in a computational model. The first low frequency band in the range 200–350 cm\(^{-1}\) corresponds to the vibration of Ca polyhedra including those of other hydration products, namely Ca(OH)\(_2\) grains, that nucleate in the mesopores of the real cementitious material, in addition to C-S-H. Since our model only represents the C-S-H, this Ca polyhedra band is present in the model, but not of as high intensity as in experiment, more closely corresponding to that measured for tobermorite (15). The band in the domain 440–450 cm\(^{-1}\) can be attributed to deformations of SiO\(_4^{4-}\) tetrahedra. The band in the range 660–670 cm\(^{-1}\) is due to Si-O-Si bending while that at 810 and 970 cm\(^{-1}\) is attributed to Si-O stretching in silica tetrahedra (Q1 and Q2 environments, respectively). Finally, infrared analysis provides some information on the nature of the water molecules: the band at approximately 1,600 cm\(^{-1}\) is characteristic of water H-O-H bending, while that at 3,300 cm\(^{-1}\) is attributed to O-H stretching. Interestingly, these band positions are lower than that of bulk liquid (bulk liquid water is also present in the mesopores of C-S-H) and are characteristic of a strong confining environment, as is also suggested from neutron quasi-elastic experiments (16).

Additionally, we consider mechanical properties of the model C-S-H, computed by stretching the cell dimensions to calculate elastic constants (Tables 1 and 2) as well as the rupture strength. For a quantitative comparison, we use nanoindentation mea-
measures that probe the stiffness and hardness of nanoscale clusters of randomly oriented C-S-H particles at the micrometer scale (Fig. 1), which have been characterized by isotropic stiffness and strength particle properties and particle packing density (17, 18). Then, using micromechanics-based scaling relations pertaining to granular (19) and porous materials (20), of the indentation elastic modulus, \(M = m, \Pi_M(\eta, \nu) \), and indentation hardness, \(H = h, \Pi_H(\eta, \alpha) \) (15, 16), we correct for the effect of interparticle porosity, via particle packing density, \(\eta \), and determine the C-S-H particle indentation modulus, \(m_s = E_s(1 - \nu^2) \), and the particle hardness, \(h_s \), where \(E_s \) is the Young’s elastic modulus, \(\nu \) is the Poisson’s ratio, \(\alpha \) is the friction coefficient. The experimental values are in excellent agreement with the ones obtained from our computational C-S-H model, using for the elasticity constants the Reuss-Voigt-Hill average \((m_s = 65 \text{ GPa, Table 1}) \) calculated from the full elasticity tensor (Table 2) to compare with the elasticity properties of randomly oriented C-S-H particles; and for hardness the maximum negative isotropic pressure \((h_s = 3 \text{ GPa, Table 1}) \) that precedes rupture of the simulation cell perpendicular to the layer plane. These values are somewhat higher than those for 14 Å tobermorite and jennite, for which \(m_s = 56 \text{ GPa} \) obtained from classical (21) and ab initio plane-wave GGA-DFT calculations (22). This comparison underscores the importance of considering a realistic C-S-H structure for the prediction of elasticity and strength properties of cement-based materials. Moreover, combining the elastic properties determined from our C-S-H model with some micromechanics models (19, 20), with no adjustable parameters, we can also probe the texture and extent of anisotropic structures within cement paste at micrometer length scales of randomly oriented C-S-H particles. Fig. 2F compares the prediction of two micromechanics models along with nano-indentation results; one is a porous bicontinuous matrix approach captured by the so-called Mori-Tanaka scheme (20), and the other a granular approach captured by the self-consistent scheme (19). From this comparison, we observe first that the granular approach better describes the experimental data over the entire domain of C-S-H particle packing fractions. Second, both approaches give acceptable predictions at larger packing fractions. That is, at the micrometer-scale, Mori-Tanaka and self consistent micromechanics approaches, parameterized only with nanoscale derived elasticity constants, indicate that cement paste can be conceptualized as a cohesive granular material rather than a porous bicontinuous matrix.

Strength Controlling Shear Localization. Probing atomic-level mechanisms to gain insights into structural deformation and failure at larger length scales is currently a central issue in the development of nanomechanics of hard crystalline materials (23, 24). The formulation of a molecular model of C-S-H presents an opportunity to initiate similar investigations of cementitious materials, thereby opening up a class of microstructures with unique chemistry-rich and spatially heterogeneous characteristics. A fundamental question common to all systems is the nucleation and evolution of a “unit process” in the constitutive response to tensile and shear loading, and the effects of specimen size, temperature, and strain-rate dependence. We have simulated the stress-strain behavior of our C-S-H model in affine shear deformation (strain controlled) after first relaxing the computational cell using MD at 300 K, under constant NVT ensemble conditions. A series of shear strains in increments of 0.005 is imposed; after each increment the atomic configuration is relaxed and the shear stress determined from the virial expression. Fig. 3 shows the shear stress-strain curves of the C-S-H model, as well as a “dry” version of this model in which all water molecules have been removed. The responses in both cases are a sequence of elastic loading under incremental strain, interspersed with discrete stress drops reminiscent of strain localization events. This type of intermittent or saw-tooth behavior has been observed in deformation simulation of metallic glasses (25), glassy polymers (26) as well as nanoindentation-induced dislocation nucleation (27). Further investigations of the mechanisms governing stress relaxation in this model are ongoing; here, we will discuss only the first two stress drops in each response curve. These occur at stresses between 2.5 to 3 GPa in the dry sample and approximately 1 GPa in the hydrated sample; these values are lower than the ideal shear strength, or about 10% of the shear elastic modulus, due to the defected microstructure of this C-S-H phase. Moreover, it is not surprising that the presence of water lowers the strength. On the other hand, inspection of Fig. 3A indicates a significant difference between the two response curves. If we take the elastic loading portion of the response after the first drop and extrapolate back to zero stress, we find a significant “residual” strain of approximately 0.1 in the dry sample, an indication of irreversible deformation associated with the first drop. In contrast, in the hydrated sample unloading after the first drop indicates essentially no residual strain, which suggests the deformation to be largely elastic. To observe the atomic displacements that correspond to these stress drops, we display in Fig. 3B the largest individual displacements associated with the four stress drops in Fig. 3A. It is clear that in the dry sample local strains are distributed across the cell, with a slight degree of strain concentration within the layers rather than in the interlayer region, especially at stage (d). It is also quite clear that in the hydrated sample the strains are localized entirely in the interlayer region and are mostly associated with displacements of water molecules. Combining these observations with the characteristics of the stress-strain response in Fig. 3A we can conclude that the shear response of the C-S-H model is strain localization in the interlayer region; this localization occurs in the form of sliding, ostensibly facilitated by the lubricating action of the water molecules. In the absence of water, strain localization appears to manifest as individual events of irreversible deformation. The present results demonstrate the potential to gain insights into the effects of water on the deformation behavior of the C-S-H particle. This problem bears some analogy to the phenomenon of “hydrolytic weakening” in other crystalline and glassy silicates, where it is believed that hydration causes more than a five-fold reduction in the com-

Table 1. Elastic properties

<table>
<thead>
<tr>
<th>Elastic properties</th>
<th>Voigt modulus in GPa</th>
<th>Reuss modulus in GPa</th>
<th>Voigt shear modulus in GPa</th>
<th>Reuss shear modulus in GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young modulus along the x-z plane in GPa</td>
<td>66–68</td>
<td>24</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>Young modulus along the y direction in GPa</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane Stress modulus in GPa</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength in GPa</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plane stress modulus is indentation modulus.

Table 2. Elastic tensor (Voigt notation)

<table>
<thead>
<tr>
<th>Cij/GPa</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>93.5</td>
<td>45.4</td>
<td>26.1</td>
<td>0.58</td>
<td>−0.05</td>
<td>3.46</td>
</tr>
<tr>
<td>2</td>
<td>94.9</td>
<td>30.01</td>
<td>−4.60</td>
<td>1.79</td>
<td>−3.00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>68.5</td>
<td>−4.32</td>
<td>−2.72</td>
<td>−0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>19.2</td>
<td>0.33</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>16.1</td>
<td>−0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>31.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pellenq et al.
pressive strength of α-quartz (28). Simulations of water-silica interactions have identified three distinct competing mechanisms in the water attack on the siloxane bridging bond, Si–O–Si (29). Since we do not allow dissociation in our interatomic potential description, further considerations of this mechanism will be facilitated by first-principles MD studies of this C-S-H model.

In summary, our study provides an atomistic-level structural model for C-S-H, developed from a bottom-up perspective and validated against several experimental analyses of structure and properties. This model could enable many opportunities for future developments focused on understanding fundamental deformation mechanisms, diffusive properties, electrical properties and many other characteristic material parameters. C-S-H is the primary hydration product and binding phase of concrete, the synthetic material currently produced in volumes larger than any other material on Earth. The insight gained by deformation simulations based on our C-S-H model (Fig. 3) illustrates the prospect of treating cementitious composites on equal footing with less structurally complex materials. The knowledge of unit deformation mechanisms (in analogy to dislocations, shear bands, etc.) in concrete could enable the development of mechanism-based models and multiscale simulation methods to study inelastic deformation, flow, and fracture to complement and improve current empirical strength models of this complex yet ubiquitous material. The existence of an atomistic level model of the C-S-H nanostructure is crucial to enable advances in our understanding of how specific structural arrangements at the nanoscale relate to resulting material properties. In a broader context, the approach illustrated here to carry out an experimentally validated structural prediction of a complex hetero-nanocomposite could be applied to many other systems such as colloids, hydrated polymer or protein gels, as well as polymer nanocomposites.

Methods

From Energy Minimization to Elastic Properties Using Empirical Interatomic Potentials. All calculations were carried out with the GULP code (28–30). These calculations were performed using a set of empirical but transferable interatomic potentials calibrated on quartz and CaO compounds. Anions (here oxygens in tobermorite layers and in water molecules) were modeled as polarizable species using the core-shell model. These transferable empirical inter-atomic potentials based on the use of the formal electric charge for each interacting species, have successfully reproduced the structure and properties of many oxides (33) including silicates (34–36) and phyllosilicates (37, 38) (see reference (39) for liquid water). The set of potentials used include two-body and three-body analytical functions that allow calculating the energy between pairs and triplets of atoms. They depend on the choice of some parameters that can be advantageously calibrated using ab initio calculations in some simple cases. Note that the calculation of electrostatic interactions between pairs of ions is carried out using the Ewald summation scheme. The advantage of such an approach compared to ab initio quantum mechanical methods is that one can compute for large systems with low symmetry, not only structural but also thermodynamic and elastic properties (from the elastic tensor using both Voigt and Reuss equations for bulk, shear, Young’s, plane stress (or indentation) modulus and Poisson’s ratio). Periodic boundary conditions were used for all directions of space. Reference (40) gives all details and equations on such calculations in the case of lizardite, a layered magnesium silicate of central importance in tectonophysics. Energy minimization for finding an equilibrium structure consists in tracking stationary points that correspond to a minimum energy gradient with positive energy curvature (i.e., finding a set of atomic positions that minimizes system energy and give a Hessian operator with positive eigenvalues only). A phonon spectrum calculation at the center of the Brillouin zone is then used as a final validation from which one obtains the list of lattice vibration frequencies that should be all positive except the first three that should be zero (unit cell translational invariance). Such minimization procedure gives a zero temperature solution. In this work, all degrees of freedom were considered including atomic positions, unit cell dimensions and angles. All potential mathematical form and parameters are given in the SI. The same approach but at fixed volume was used to perform deformation and shear calculations: all atomic degrees of freedom were allowed to relax for a given cell volume modifying one cell parameter at a time. The derivative of the system energy versus the increment of modified cell parameter (the interlayer distance) is used to calculate the cohesive pressure that can be compared with experimental nanoindentation data (17, 18). Numerical shear experiments were carried out with the same strategy by modifying at each step a cell angle parameter, then followed by molecular dynamics simulation in the Canonical Ensemble (i.e., at constant volume, see below).

The Grand Canonical Monte Carlo Technique for Water Adsorption. In this work, we first produced an anhydrous version of the C-S-H substrate and subsequently calculated the maximum amount of water that can be accommodated in its pore voids. For this purpose, we used the Grand Canonical Monte Carlo (GCMC) simulation technique that is well-suited to study adsorption/desorption processes. GCMC simulations involve the determination of the properties of a system at constant volume V (the pore with the adsorbed phase) in equilibrium with a...
fictitious infinite reservoir of particles imposing its chemical potential μ and its temperature T (41, 42). For different values of μ, the absolute adsorption isotherm can be determined as an ensemble average of the adsorbed atom numbers in the system versus the pressure of the gas reservoir P (the latter can be obtained from the chemical potential according to the equation of state for the bulk gas).

The adsorption and desorption processes can be respectively simulated by increasing or decreasing the chemical potential of the reservoir; the final configuration of the system versus the pressure of the gas reservoir P (the latter can be obtained from the chemical potential according to the equation of state for the bulk gas).

The adsorption and desorption processes can be respectively simulated by increasing or decreasing the chemical potential of the reservoir; the final configuration of the system versus the pressure of the gas reservoir P (the latter can be obtained from the chemical potential according to the equation of state for the bulk gas).

NVT and NPT Molecular Dynamics. Room temperature relaxation and deformation were carried out using molecular dynamics simulation in the NPT and NVT statistical ensembles integrating motion equations with the leapfrog Verlet algorithm with Nosé-Hoover thermostat and pressure bath (with the default GULP parameters for each of these constraints). When relaxing in NPT conditions (with zero external pressure) the resulting system from energy minimization, the simulation considers finite temperature entropic effects.

X-Ray Diffraction. X-ray diffraction patterns were calculated with the CRYSTAL-DIFFRACT code, part of the CRYSTAL-MAKER package www.crystalmaker.com/crystaldiffrac at a wavelength of 1.54 Å and an apparatus aperture broadening of 0.4 Å⁻¹.

Reproducibility of Results. Details for the calculation including the interatomic potential functions and related parameters, as well as details on the numerical strategy and simulation techniques used, and the final atomistic model (and relevant coordinates) are provided in the SI to this manuscript. A file containing all of the atomic coordinates is available upon request to Rij M. Pellenq (pellenq@mit.edu) or FJ Ulm (ulm@mit.edu).

ACKNOWLEDGMENTS. We thank Cimpor Corporation, Portugal, for support of the "Liquid Stone" project, enabled through the MIT-Portugal program. We thank Dr. P. Garster and Prof A. Baronnet (CiNAM, CNRS-Marseille Université, France) for making available to us the calcio-silicate glass atomistic model and the transmission electron microscopic image of C-S-H.