Search for Axions with the CDMS Experiment

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.141802</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/55359</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Search for Axions with the CDMS Experiment

(CDMS Collaboration)

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
3Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
4Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
5Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6Department of Physics, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
7Department of Physics, Saint Olaf College, Northfield, Minnesota 55057, USA
8Department of Physics, Santa Clara University, Santa Clara, California 95053, USA
9Department of Physics, Stanford University, Stanford, California 94305, USA
10Department of Physics, Syracuse University, Syracuse, New York 13244, USA
11Department of Physics, Texas A&M University, College Station, Texas 93106, USA
12Department of Physics, University of California, Berkeley, California 94720, USA
13Department of Physics, University of California, Santa Barbara, California 93106, USA
14Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, Colorado 80217, USA
15Department of Physics, University of Florida, Gainesville, Florida 32611, USA
16School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
17Physics Institute, University of Zürich, Zürich, Switzerland

(Received 5 March 2009; published 1 October 2009)

We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling $g_{a\gamma\gamma}$ of 2.4×10^{-9} GeV$^{-1}$ at the 95% confidence level for an axion mass less than 0.1 keV/c2. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g_{aee} of 1.4×10^{-12} at the 90% confidence level for an axion mass of 2.5 keV/c2.

DOI: 10.1103/PhysRevLett.103.141802

PACS numbers: 14.80.Mz, 29.40.-n, 95.30.Cq, 95.35.+d

The axion has been postulated to solve the strong CP problem in quantum chromodynamics. The breaking of Peccei-Quinn U(1) symmetry leaves a pseudo Goldstone boson field [1], interpreted as the axion. Although the original Peccei-Quinn axion model has been ruled out [2,3], “invisible” axion models allow a wide range of axion masses and axion-matter couplings [4]. Astrophysical observations are currently the best strategy to search for these invisible axions [5]. The interior of stars is expected to be a powerful source of axions due to the high abundance of photons and strong electromagnetic fields, which may convert photons into axions. The non-thermal axion production mechanism in the early universe provides a cold dark matter candidate.

Here we report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment. The CDMS Collaboration operates a total of 19 Ge (\sim250 g each) and 11 Si (\sim100 g each) crystal detectors at \sim40 mK in the Soudan Underground Laboratory. The detectors are designed to read out both ionization and phonon signals from recoil events [6]. The ratio of ionization to phonon energy, the ionization yield, enables discrimination of nuclear from electron recoils. The details of the detector structure and operation can be found in Ref. [7]. We report only on germanium detector data from two run periods between October 2006 and July 2007. The analysis follows that detailed in [8], except that we removed timing cuts, which had only been used to discriminate against electron-
recoil events, and included additional detectors whose discrimination against electron-recoil events had been inadequate for the measurement reported in [8], increasing the net exposure to 443.2 kg day before cuts.

The flux of solar axions on Earth can be estimated assuming the standard solar model [9] and a coupling to the O (keV) blackbody photons in the core region of the Sun. For axion masses $\ll 1$ keV/\(c^2\), photon-axion conversion creates a flux of O (keV) axions on Earth. The solar axion flux on Earth is given by [10,11]

$$\frac{d\Phi_a}{dE_a} = \frac{6.02 \times 10^{14}}{\text{cm}^2\,\text{s}\,\text{keV}} \left(\frac{g_{\alpha\gamma}\times10^8}{\text{GeV}^{-1}}\right)^2 E_a^{2.481} e^{-E_a/1.205},$$

where E_a is the energy of the axion in keV and $g_{\alpha\gamma}$ is the axion-photon coupling constant.

The axion-photon coupling to the nuclear Coulomb field in the detectors converts axions back into photons of the same energy (Primakov effect). Coherent Bragg diffraction produces a strong correlation between incident beam direction and conversion probability, providing a unique signature of solar axions. The expected event rate can be computed as a function of energy and the orientation of the crystal relative to the location of the Sun [12]. It is given as a function of observed photon energy E for a given axion momentum transfer \vec{q} and scattering angle θ [13] by

$$\mathcal{R}(E) = 2c \int \frac{d^3q}{q^2} \frac{d\Phi_a}{dE_a} \left[\frac{g_{\alpha\gamma}^2}{16\pi} |F(\vec{q})|^2 \sin^2(2\theta) \right] W,$$

where W is a detector energy resolution function. The Fourier transform of the electric field in a crystal is given as $F(\vec{q}) = k^2 \int d^3x \Phi(\vec{x}) e^{i\vec{q} \cdot \vec{x}}$, which depends on $\Phi(\vec{x}) = \sum_{\vec{G}} n_G e^{i\vec{G} \cdot \vec{x}}$, where k is the photon momentum, \vec{x} is the position of a germanium atom in the lattice, r is the screening length of the atomic electric field, $Z = 32$ for germanium, and \vec{G} is a reciprocal lattice vector. The structure coefficients n_G (defined in [13]) account for the face-centered-cubic structure of Ge. The Bragg condition ($\vec{q} = \vec{G})$ can be expressed in terms of the axion energy as $E_a = \hbar c |\vec{G}|^2 / (2\vec{a} \cdot \vec{G})$, where \vec{a} is a unit vector directed towards the Sun.

The expected event rate is calculated based on an accurate measurement of the orientation of each detector with respect to the position of the Sun. We took the specific geometry of the experiment, the live time during data taking, and the seasonal modulation of the solar axion flux due to the changing distance between the Sun and the Earth into account. The geodesic location of the Soudan Underground Laboratory is latitude 47.815° N, longitude 92.237° W, and altitude 210 m below sea level. The geodesic north of the CDMS experimental cavern was measured in 1999 by the Fermilab Alignment Group [14]. A line connecting two survey points along the central axis of the cavern was found to be 0.165° E from true north. By extension, the main horizontal axis of the CDMS cryostat was found to be 0.860 ± 0.018° E from true north.

Within the cryostat the 30 CDMS detectors are mounted in five towers of six detectors each. The vertical axis of each tower is aligned with the [001] axis of the detectors. The (110) plane that defines the major flat on each substrate is rotated with respect to its neighbors above and below, such that the detectors form a helix within each tower. The uncertainty in the absolute azimuth orientation of the crystal planes is dominated by an estimated 3° uncertainty in the exact angular position of the tower axes with respect to the central axis of the cryostat. The uncertainty of the zenith angle measurement was estimated to be less than 1°. In Fig. 1 we present the predicted event rate in a germanium detector for an assumed coupling of $g_{\alpha\gamma} = 10^{-8}$ GeV\(^{-1}\).

In order to sample pure axion interaction candidate events, the software required a single scatter in which one detector had an ionization signal $>3\sigma$ above the noise, and no other detector had phonon or ionization signals $>4\sigma$ above mean noise. To make sure the selected events are not due to residual cosmic ray interactions, they are required not to be coincident in time with activity in the veto shield surrounding the apparatus. Candidate events are selected within the $\pm 2\sigma$ region of the electron-recoil distribution in ionization yield. Data sets taken within 3 d after neutron calibrations are not considered in order to avoid high gamma rates due to activation. The detection efficiency is dominated by the hardware trigger and ionization-threshold software cut at low energy, and by rejection of events with an ionization signal in a detector annular guard electrode, covering 15% of the detector volume. The final energy-dependent exposure after all selection criteria have been applied is the product of the measured efficiency (shown in Fig. 2) and the total expo-
sure (443.2 kg day). The average event rate of electron recoil singles below 100 keV in all detectors is stable in time at 16%.

For the germanium detectors considered in this analysis, the summed background rate after correcting for detection efficiency is \(\sim 1.5 \text{ cpd kg}^{-1} \text{keV}^{-1} \) (where cpd is counts per day) (Fig. 3). The prominent 10.36 keV line is caused by x rays and Auger electrons from the electron-capture decay of \(^{71}\text{Ge}\), produced by neutron capture on \(^{70}\text{Ge}\) during \(^{252}\text{Cf}\) calibration of the detectors. The excess in event rate around 6.5 keV (inset) is likely caused by remnant \(^{55}\text{Fe}\) decays from cosmogenic activation. The deexcitation of \(^{55}\text{Mn}\) following the electron-capture decay of \(^{55}\text{Fe}\) yields a total of 6.54 keV of electron-recoil events. We interpolate the energy resolution of the 10.36 keV line (typical \(\sigma / E < 0.04 \)) to the noise level to obtain the energy-dependent resolution of each detector. The analysis window, defined from 2–8.5 keV, is determined by the expected axion flux, background rate, and detection efficiency.

We performed extensive profile likelihood analysis to determine the best fit value of \(g_{\text{a} \gamma \gamma} \). We express the event rate per unit measured energy \((E) \), per unit time \((t) \), and per detector \((d) \) of a solar axion signal with background as

\[
R(E, t, d) = \varepsilon(E, d)(\lambda R(E, t, d) + B(E, d)),
\]

where \(\varepsilon(E, d) \) is the detection efficiency, \(R(E, t, d) \) is the expected event rate for a coupling constant \(g_{\text{a} \gamma \gamma} = 10^{-8} \text{ GeV}^{-1} \), and \(\lambda = (g_{\text{a} \gamma \gamma} \times 10^8 \text{ GeV})^4 \) is the scale factor for the actual value of \(g_{\text{a} \gamma \gamma} \). \(B(E, d) \) is the background described by

\[
B(E, d) = C(d) + D(d)E + H(d)/E
\]

\[
+ \frac{\eta_{6.54}}{\sqrt{2 \pi \sigma_{6.54}^2}} e^{-\left(\frac{E-6.54}{2\sigma_{6.54}}\right)^2},
\]

where \(C(d), D(d), \) and \(H(d) \) are free parameters. The Gaussian term describes a contribution from \(^{55}\text{Fe}\) decays at an energy of 6.54 keV and unknown total rate \(\eta_{6.54} \). The fitting is done by maximizing the unbinned log likelihood function with respect to \(\lambda \) and the background parameters, for individual events:

\[
\log(L) = -R_T + \sum_{i,j} \log[R(E_i, t_i, d_j)],
\]

where \(R_T \) is the total sum of the event rate \((R) \) over energy, time, and detectors. The scaling factor from the maximization \(\lambda = (1 \pm 1.5) \times 10^{-3} \) is compatible with zero. No indication of solar axion conversion to photons is observed. Given a null observation, we set an upper limit on the coupling constant \(g_{\text{a} \gamma \gamma} \), where the scaling factor \(\lambda \) is obtained by integrating the profile likelihood in the physically allowed region \((\lambda > 0) \). The upper limit on the axion-photon coupling, \(g_{\text{a} \gamma \gamma} < 2.4 \times 10^{-9} \text{ GeV}^{-1} \) at a 95% C.L. is the only laboratory bound based on the accurate measurement of all crystal orientations of the detectors. None of the previous solar axion search experiments (SOLAX, COSME, DAMA) measured their crystal orientations [15–17], and thus their limits are penalized by picking the least sensitive direction for their solar axion bound. The result of this analysis is compared to other experimental constraints in Fig. 4. Improvement towards the next order of sensitivity requires improvements in both detector exposure and gamma background level. A 100-kg SuperCDMS experiment, with substantially reduced gamma background level (~0.1 cpd kg\(^{-1}\) keV\(^{-1}\)) would improve the sensitivity to \(g_{\text{a} \gamma \gamma} < 10^{-9} \text{ GeV}^{-1} \).

In addition to restricting solar axions, the CDMS measurement can be used to limit galactic axions. The DAMA Collaboration interpreted the observed annual modulation signature as a possible detection of axions distributed in the local galactic halo [18,19]. If present, these axions would materialize in our detectors via an axioelectric coupling \((g_{\text{ae}e}) \). However, the nonrelativistic speed of galactic axions causes the conversion rate to be independent of the particle’s velocity; thus, the annual modulation of the counting rate is highly suppressed [20], and makes it difficult to fit the DAMA modulation signal into this model. Therefore, the galactic axion model is still an interesting scenario to be explored. Assuming a local ga-

![Graph](image)
lactic dark matter mass density of 0.3 GeV/c^2/cm^3, the
expected event rate [20] is given by
\[R[\text{cpd kg}^{-1}] = 1.2 \times 10^{19} A^{-2} g_{\text{ax}}^2 m_e \sigma_{pe}, \]

where \(m_a \) is the axion mass in keV/c^2, \(A = 73 \) for germanium, and \(\sigma_{pe} \) is the photoelectric cross section in cm^2
per atom. We analyzed the energy spectrum using the same
electron-recoil data samples used in the solar axion search,
as shown in Fig. 3. We performed extensive profile like-
lihood analysis to search for an excess of event rate above
background. The same formalism described in Eqs. (3)–(5)
was used, with the term for the expected conversion rate of
solar axions \(R(E, t, d) \) replaced by a Gaussian distribution
function representing a spectral line at a given energy or
axion mass. We find no statistically significant excess of
event rate above background. Lacking a direct constraint
on a possible \(^{55}\text{Fe}\) contribution to the spectrum, we set a
conservative upper limit, shown in Fig. 5, on the total
counting rate in this energy range without any attempt to
subtract a possible background contribution. This result
excludes significant new galactic axion parameter space
in the mass range between 1.4 and 9 keV/c^2.

In summary, the solar axion search sets an upper limit on
the Primakov coupling \(g_{\text{ax}} \) of \(2.4 \times 10^{-9} \) GeV^-1 at the
95% confidence level for an axion mass less than
\(0.1 \) keV/c^2. This limit is the first one based on accurate
measurements of crystal orientations. The systematic error
on the limit is estimated to be 7.9%, which arises from the
remaining uncertainty in the alignment of the detector
towers’ major axes to the central cryogenic axis. The local
galactic axion search analysis sets a world-leading experi-
mental upper limit on the axioelectric coupling \(g_{\text{aee}} \) of
\(1.4 \times 10^{-12} \) at the 90% confidence level for an axion
mass of 2.5 keV/c^2.

This experiment would not have been possible without
the contributions of numerous engineers and technicians;
we would like to especially thank Larry Novak, Richard
Schmitt, and Astrid Tomada. We thank the CAST and
Tokyo helioscope collaborations for providing us with their
axion limits. The direction measurement of the true north
in the Soudan Underground Laboratory relied on the help
from the Fermilab Alignment Group. Special thanks to
Virgil Bocan. This work is supported in part by the
National Science Foundation (Grants No. AST-9978911,
No. PHY-0542066, No. PHY-0503729, No. PHY-0503629,
No. PHY-0503641, No. PHY-0504224, and No. PHY-
0705052), by the Department of Energy (Contracts
No. DE-AC03-76SF00098, No. DE-FG02-91ER40688,
No. DE-FG02-92ER40701, No. DE-FG03-90ER40569,
and No. DE-FG03-91ER40618), by the Swiss National
Foundation (SNF Grant No. 20-118119), and by NSERC
Canada (Grant SAPIN 341314-07).