Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/led.2009.2020615</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Mar 03 19:36:55 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/55368</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition

Jakub Kedzierski, Pei-Lan Hsu, Alfonso Reina, Jing Kong, Paul Healey, Peter Wyatt, and Craig Keast

Abstract—Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO$_2$ substrate. The properties and integration of these graphene-on-insulator transistors are presented and compared to the characteristics of devices made from graphitized SiC and exfoliated graphene flakes.

Index Terms—Carbon CVD, carbon transistors, chemical-vapor deposition (CVD), epitaxial graphene, graphene, graphene transistors.

I. INTRODUCTION

GRAPHENE, a thin sheet of graphitic carbon, is a promising candidate as a material for future electronics [1]. The major advantages of graphene are its high intrinsic mobility and its 2-D structure. The 2-D structure makes extremely thin sheets of graphene, less than 1 nm, highly conductive, and it makes it possible to fabricate extended active areas of arbitrary length and width. Graphene is also unique in that it is a semimetal with a zero band gap and in that the electrons have a zero effective mass (m_e). While the zero m_e is advantageous for graphene transistors, the lack of a band gap is problematic, because it prevents the devices from turning off below a fairly high threshold conduction of approximately e^2/h per square. Recently, significant progress has been made in developing various methods of producing a band gap in graphene [2], [3].

Another problem with graphene is that a well-controlled method of preparing a graphene substrate suitable for device fabrication has not yet been demonstrated. The two established methods for preparing thin graphene films, SiC sublimation [4], [5] and highly oriented pyrolytic graphite (HOPG) exfoliation [1], [6], have significant limitations. SiC sublimation leads to polycrystalline graphene layers even when the SiC is single crystal, and the HOPG exfoliation produces small graphene flakes of various shape and thickness.

II. FABRICATION

The method for the preparation of GOI material is described in more detail elsewhere [7]. In brief, graphene is grown epitaxially on a polycrystalline Ni film at 1000 °C for 5 min with 99 : 1 H$_2$: CH$_4$ (760 torr). A protective PMMA layer is then spun on top of the graphene. Next, the graphene–PMMA film stack is selectively lifted-off from the substrate by etching the Ni in HCl. The graphene–PMMA film is then placed, with graphene facing down, on a suitable insulator, which, for this letter, was a 150-mm silicon wafer with 500 nm of SiO$_2$. Next, the PMMA is dissolved selectively to the graphene in acetone, and the wafer is annealed. The anneals, an initial one at 400 °C for 20 min in 50% H$_2$ 50% N$_2$ and a second one at 1000 °C for 10 s in N$_2$, are performed to remove PMMA residue and to promote graphene adhesion. In principle, this method can be used to produce GOI substrates of any size, but in this experiment, 12 mm × 10 mm squares of graphene were transferred onto a 150-mm wafer.

Fig. 1 shows the optical and atomic force microscope (AFM) micrographs of the GOI material after transfer and before transistor fabrication. The graphene film is continuous across...
III. ELECTRICAL RESULTS

Transistors were tested at room temperature and normal laboratory atmosphere. Fig. 3 shows the I_d-V_g behavior of the graphene transistor shown in Fig. 2. The V-shaped I_d characteristic is typical of semimetal graphene devices, with electrons conducting for positive gate voltages and holes conducting for negative gate voltages. At $V_d = 0.1$ V, the I_{on}/I_{off} is more than ten. This is an excellent result for top-gated graphene devices with no band gap. The low field mobility for this device is $800 \text{ cm}^2/\text{V} \cdot \text{s}$ for electrons and $1600 \text{ cm}^2/\text{V} \cdot \text{s}$ for holes, somewhat smaller than the best results achieved on graphitized SiC and exfoliated HOPG [1], [5]. This is particularly encouraging, since the evaporated HfO$_2$ dielectric is not optimized and is expected to significantly reduce the carrier mobility.

The conduction behavior of a series of transistors with identical dimensions and process conditions is shown in Fig. 4. It is important to note that slightly more than half of the devices measured had cracks in the gate dielectric, causing the gate to short with the graphene layer. These devices are not shown in the ensemble. Since the cracks happened predominantly in the thicker graphene regions, the ensemble of the devices shown in Fig. 4 is skewed toward the thinner end of the graphene-thickness distribution. For this set of devices, the minimum conduction varies from 120 to 530 μS per square, the hole...
Fig. 5. I_d-V_d characteristics of a typical graphene device, for the hole-conduction branch ($V_g < 0.75$ V). This device has a smaller I_{on}/I_{off} than the one shown in Fig. 3.

Fig. 6. Current characteristics of two graphene devices with different gate lengths. The shorter device has higher current and transconductance. The mobility varies from 1600 to 2200 cm2/V·s, and the electron mobility varies from 800 to 1400 cm2/V·s.

Fig. 5 shows the I_d-V_d of a typical device; this one has I_{on}/I_{off} that is lower than the best device shown in Fig. 3. The gate is biased below 0.75 V, displaying pFET holelike conduction. Even at these gate biases, the electron-like conduction does turn on at the larger $|V_d|$ voltages, for V_g of 0.75–0.25 V, since the drain for holes is the source for electrons.

All the devices shown so far have the same gate length and channel width: 10 and 5 μm, respectively. Fig. 6 shows the conduction characteristics of two devices with different gate lengths: 10 and 2.5 μm. As expected, the shorter channel device shows higher current and transconductance. The trends, however, are not linear in gate length. It is likely that the contact resistance between the graphene and the metal is at least in part responsible for this discrepancy.

IV. CONCLUSION

The graphene transistors fabricated from GOI described in this letter show characteristics similar to graphene devices made by more established methods such as SiC graphitization and HOPG exfoliation. When compared to devices built on graphitized SiC, GOI devices exhibit higher I_{on}/I_{off} ratios and mobilities that are typical of the higher mobility C-face graphene [5].

The advantage of the GOI preparation is that, unlike in HOPG exfoliation, arbitrarily large graphene regions are possible and, unlike SiC graphitization, a lattice match to the (111) Ni seed layer can be achieved. This match may open a path in producing single-crystal GOI of high thickness uniformity. An additional advantage of GOI is that processing graphene on a standard silicon wafer reduces fabrication complexity. In this initial experiment, the GOI was polycrystalline and showed large thickness variation. Future improvements to both the substrate-preparation methods and to the device-fabrication process are required to advance graphene-transistor technology.

ACKNOWLEDGMENT

The authors would like to thank the members of the Microelectronics Laboratory at the MIT Lincoln Laboratory for their assistance in fabrication of these unique devices.

REFERENCES