Collision-geometry fluctuations and triangular flow in heavy-ion collisions

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevC.81.054905</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 30 14:30:31 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/57450</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Collision-geometry fluctuations and triangular flow in heavy-ion collisions

B. Alver and G. Roland

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

(Received 28 February 2010; published 21 May 2010)

I. INTRODUCTION

Studies of two-particle azimuthal correlations have become a key tool in characterizing the evolution of the strongly interacting medium formed in ultrarelativistic nucleus-nucleus collisions. Traditionally, the observed two-particle azimuthal correlation structures are thought to arise from two distinct contributions. The dominant one is the “elliptic flow” term, related to anisotropic hydrodynamic expansion of the medium from an anisotropic initial state [1–9]. In addition, one observes so-called “nonflow” contributions from, e.g., resonances and jets, which may be modified by their interactions with the medium [10–12].

The strength of anisotropic flow is usually quantified with a Fourier decomposition of the azimuthal distribution of observed particles relative to the reaction plane [13]. The experimental observable related to elliptic flow is the second Fourier coefficient, \(v_2 \). The elliptic flow signal has been studied extensively in Au + Au collisions at the Relativistic Heavy Ion Collider (RHIC) as a function of pseudorapidity, centrality, transverse momentum, particle species and center-of-mass energy [3–7]. The centrality and transverse momentum dependence of \(v_2 \) has been found to be well described by hydrodynamic calculations, which for a given equation of state, can be used to relate a given initial energy density distribution to final momentum distribution of produced particles [14]. In these calculations, the \(v_2 \) signal is found to be proportional to the eccentricity, \(\epsilon_2 \), of the initial collision region defined by the overlap of the colliding nuclei [15]. Detailed comparisons of the observed elliptic flow effects with hydrodynamic calculations have led to the conclusion that a new state of strongly interacting matter with very low shear viscosity, compared to its entropy density, has been created in these collisions [14,16–18].

Measurements of nonflow correlations in heavy-ion collisions, in comparison to corresponding studies in \(p + p \) collisions, provide information on particle production mechanisms [19] and parton-medium interactions [10–12]. Different methods have been developed to account for the contribution of elliptic flow to two-particle correlations in these studies of the underlying nonflow correlations [10,19–22]. The most commonly used approach is the zero yield at minimum method (ZYAM), where one assumes that the associated particle yield correlated with the trigger particle is zero at the minimum as a function of \(\Delta \phi \) after elliptic flow contribution is taken out [21]. The ZYAM approach has yielded rich correlation structures at \(\Delta \phi \approx 0^\circ \) and \(\Delta \phi \approx 120^\circ \) for different \(p_T \) ranges [23–26]. These structures, which are not observed in \(p + p \) collisions at the same collision energy, have been referred to as the “ridge” and “broad away-side” or “shoulder.” The same correlation structures have been found to be present in Pb + Au collisions at \(\sqrt{s_{NN}} = 17.4 \) GeV at the SPS [27]. Measurements at RHIC have shown that these structures extend out to large pseudorapidity separations of \(\Delta \eta \approx 2 \), similar to elliptic flow correlations [25]. The ridge and broad away-side structures have been extensively studied experimentally [12,23–26,28] and various theoretical models have been proposed to understand their origin [29–36]. A recent review of the theoretical and experimental results can be found in Ref. [37].

In this article, we propose that the observed ridge and broad away-side features in two-particle correlations may be due to an average triangular anisotropy in the initial collision geometry which is caused by event-by-event fluctuations and which leads to a triangular anisotropy in azimuthal particle production through the collective expansion of the medium. It was shown that, in the NEXSPHERIO hydrodynamic model, ridge and broad away-side structures in two particle correlations arise if nonsmooth initial conditions are introduced [36]. Sorensen has suggested that fluctuations of the initial collision geometry may lead to higher-order Fourier components in the azimuthal correlation function through collective effects [38]. An analysis of higher-order components in the Fourier decomposition of azimuthal particle distributions, including...
the odd terms, was proposed by Mishra et al. to probe superhorizon fluctuations in the thermalization stage [39]. In this work, we show that the second and third Fourier components of two-particle correlations may be best studied by treating the components of corresponding initial geometry fluctuations on equal footing. To reduce contributions of nonflow correlations, which are most prominent in short pseudorapidity separations, we focus on azimuthal correlations at long ranges in pseudorapidity. We show that the ridge and broad away-side structures can be well described by the first three coefficients of a Fourier expansion of the azimuthal correlation function

$$\frac{dN^{\text{pairs}}}{d\Delta \phi} = \frac{N^{\text{pairs}}}{2\pi} \left[1 + \sum_n 2V_{n,\Delta} \cos(n\Delta \phi) \right],$$

where the first component, $V_{1,\Delta}$, is understood to be due to momentum conservation and directed flow and the second component $V_{2,\Delta}$ is dominated by the contribution from elliptic flow. Studies in a multiphase transport model (AMPT) [40] suggest that not only the elliptic flow term, $V_{2,\Delta}$, but also a large part of the correlations measured by the $V_{3,\Delta}$ term, arises from the hydrodynamic expansion of the medium.

II. FOURIER DECOMPOSITION OF AZIMUTHAL CORRELATIONS

In the existing correlation data, different correlation measures such as $R(\Delta \eta, \Delta \phi)$ [19], $N(\Delta \eta, \Delta \phi)$ [41], and $1/N_{\text{true}}dN/d\Delta \phi(\Delta \eta, \Delta \phi)$ [25] have been used to study different sources of particle correlations. The azimuthal projection of all of these correlation functions have the form

$$C(\Delta \phi) = A \frac{dN^{\text{pairs}}}{d\Delta \phi} + B,$$

where the scale factor A and offset B depend on the definition of the correlation function as well as the pseudorapidity range

$\Delta \eta$ indicates on the figures. Errors bars are combined systematic and statistical errors. The first three Fourier components are shown in solid lines. (Bottom) The residual correlation functions after the first three Fourier components are subtracted.

FIG. 1. (Top) Azimuthal correlation functions for mid-central (10–20%) Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV obtained from projections of two-dimensional $\Delta \eta$, $\Delta \phi$ correlation measurements by PHOBOS [19,25] and STAR [41]. The transverse momentum and pseudorapidity ranges are indicated on the figures. Errors bars are combined systematic and statistical errors. The first three Fourier components are shown in solid lines. (Bottom) The residual correlation functions after the first three Fourier components are subtracted.
consistent with the expected fluctuations in the initial state geometry with the new definition of eccentricity [46]. In this article, we use this method of quantifying the initial anisotropy exclusively.

Mathematically, the participant eccentricity is given as

$$\varepsilon_2 = \sqrt{\frac{(\sigma_x^2 - \sigma_y^2)^2 + 4(\sigma_{xy})^2}{\sigma_x^2 + \sigma_y^2}},$$

where σ_x^2, σ_y^2, and σ_{xy}, are the event-by-event (co-)variances of the participant nucleon distributions along the transverse directions x and y [8]. If the coordinate system is shifted to the center of mass of the participating nucleons such that $\langle x \rangle = \langle y \rangle = 0$, it can be shown that the definition of eccentricity is equivalent to

$$\varepsilon_2 = \sqrt{\frac{(r^2 \cos(2\phi_{\text{part}}))^2 + (r^2 \sin(2\phi_{\text{part}}))^2}{r^4}},$$

in this shifted frame, where r and ϕ_{part} are the polar coordinate positions of participating nucleons. The minor axis of the ellipse defined by this region is given as

$$\psi_2 = \frac{\text{atan2}(r^2 \sin(2\phi_{\text{part}}), (r^2 \cos(2\phi_{\text{part}}))) + \pi}{2}.\quad (5)$$

Since the pressure gradients are largest along ψ_2, the collective flow is expected to be the strongest in this direction. The definition of ψ_2 has conceptually changed to refer to the second Fourier coefficient of particle distribution with respect to ψ_2 rather than the reaction plane

$$v_2 = \langle \cos(2(\phi - \psi_2)) \rangle.\quad (6)$$

This change has not affected the experimental definition since the directions of the reaction plane angle or ψ_2 are not a priori known.

Drawing an analogy to eccentricity and elliptic flow, the initial and final triangular anisotropies can be quantified as participant triangularity, ε_3, and triangular flow, v_3, respectively:

$$\varepsilon_3 \equiv \sqrt{\frac{(r^2 \cos(3\phi_{\text{part}}))^2 + (r^2 \sin(3\phi_{\text{part}}))^2}{r^4}},$$

$$v_3 \equiv \langle \cos(3(\phi - \psi_3)) \rangle,$$

where ψ_3 is the minor axis of participant triangularity given by

$$\psi_3 = \frac{\text{atan2}(r^2 \sin(3\phi_{\text{part}}), (r^2 \cos(3\phi_{\text{part}}))) + \pi}{3}.\quad (9)$$

It is important to note that the minor axis of triangularity is found to be uncorrelated with the reaction plane angle and the minor axis of eccentricity in Glauber Monte Carlo calculations. This implies that the average triangularity calculated with respect to the reaction plane angle or ψ_2 is zero. The participant triangularity defined in Eq. (7), however, is calculated with respect to ψ_3 and is always finite.

The distributions of eccentricity and triangularity calculated with the PHOBOS Glauber Monte Carlo implementation [47] for Au + Au events at $\sqrt{s_{NN}} = 200$ GeV are shown in Fig. 2. The value of triangularity is observed to fluctuate event by event and have an average magnitude of the same order as eccentricity. Transverse distribution of nucleons for a sample Monte Carlo event with a high value of triangularity is shown in Fig. 3. A clear triangular anisotropy can be seen in the region defined by the participating nucleons.

FIG. 3. Distribution of nucleons on the transverse plane for a $\sqrt{s_{NN}} = 200$ GeV Au + Au collision event with $\varepsilon_3 = 0.53$ from Glauber Monte Carlo. The nucleons in the two nuclei are shown in gray and black. Wounded nucleons (participants) are indicated as solid circles, while spectators are dotted circles.
It is possible to calculate the values of ϵrms width and away-side splitting parameter D on transverse momentum and reaction plane in AMPT reproduces the experimental results successfully, where a ZYAM-based elliptic flow subtraction is applied to both the data and the model [50,51]. Furthermore, ridge and broad away-side features in two-particle correlations are also observed in the AMPT model [48,49]. Additionally, contributions from elliptic (triangular) flow in the second (third) Fourier coefficient of two-particle azimuthal correlations, \(v_n \), can be calculated in AMPT by averaging \(\cos(n \Delta \phi) \) over all particle pairs. Contributions from elliptic (triangular) flow is present in the second (third) Fourier coefficient of \(\Delta \phi \) distribution since

\[
\int \frac{1}{4\pi^2} \{1 + 2v_n \cos(n\phi)\}[1 + 2v_n \cos(n(\phi + \Delta \phi))]d\phi = \frac{1}{2\pi} \{1 + 2v_n^2 \cos(n\Delta \phi)\}.
\]

For a given pseudorapidity window, this contribution can be calculated from average elliptic (triangular) flow values as

\[
\langle v_n^2 \rangle = \frac{\langle v_n \rangle \int d\eta (v_n(\eta_1) d\eta (v_n(\eta_2)) d\eta_1 d\eta_2}{\langle v_n \rangle^2 \int d\eta (v_n(\eta_1) d\eta (v_n(\eta_2)) d\eta_1 d\eta_2},
\]

where \(n = 2 \) (3) and the integration is over the pseudorapidity range of particle pairs. The average single-particle distribution coefficients, \(\langle v_n(\eta) \rangle \), are used in this calculation to avoid contributions from nonflow correlations which may be present if the two-particle distributions, \(v_n(\eta_1) \times v_n(\eta_2) \), are calculated event by event. The ratio \(\langle v_n \rangle^2 / \langle v_n \rangle^2 \) accounts for the difference between \(\langle v_n(\eta_1) \times v_n(\eta_2) \rangle \) and \(\langle v_n(\eta_1) \times v_n(\eta_2) \rangle \) expected from initial geometry fluctuations.

We have calculated the magnitude of the second and third Fourier components of two-particle azimuthal correlations and expected contributions to these components from elliptic and triangular flow for particle pairs in \(\sqrt{s_{NN}} = 200 \text{ GeV} \).
Au + Au collisions from AMPT within the pseudorapidity range $|\eta| < 3$ and $2 < \Delta \eta < 4$. The results are presented in Fig. 5 as a function of number of participating nucleons. More than 80% of the third Fourier coefficient of azimuthal correlations can be accounted for by triangular flow with respect to the minor axis of triangularity. The difference between V_{3A} and V_{flow} may be due to two different effects. There might be contributions from correlations other than triangular flow to V_{3A} or the angle with respect to which the global triangular anisotropy develops might not be given precisely by the minor axis of triangularity calculated from positions of participant nucleons, i.e., $v_3 = \langle \cos(3(\phi - \psi)_3) \rangle$ might be an underestimate for the magnitude of triangular flow. More detailed studies are needed to distinguish between these two effects.

We have also studied the magnitudes of elliptic and triangular flow more differentially as a function of transverse momentum and number of participating nucleons in the AMPT model. Figure 6 shows the results as a function of transverse momentum for particles at mid-rapidity ($|\eta| < 1$) for different ranges of number of participating nucleons. The dependence of triangular flow on transverse momentum is observed to increase with centrality and transverse momentum. This observation is qualitatively consistent with the trends in experimentally measured ridge yield [25].

V. TRIANGULAR FLOW IN EXPERIMENTAL DATA

While AMPT reproduces the expected proportionality of v_2 and v_3, the absolute magnitude of v_3 is underestimated compared to data and hydrodynamic calculations. To allow a comparison of the V_{3A} calculations to data, we therefore use the ratio of the third and second Fourier coefficients. For data, this ratio is given by

$$\frac{V_{3A}}{V_{2A}} = \frac{\int C(\Delta \phi) \cos(3\Delta \phi)d\Delta \phi}{\int C(\Delta \phi) \cos(2\Delta \phi)d\Delta \phi}.$$

The factors A and B in Eq. (2) cancel out in this ratio. Results for PHOBOS [19,25] and STAR [41] measurements are plotted as a function of number of participating nucleons in Figs. 8(a) and 8(b), respectively. It is observed that V_{3A}/V_{2A} increases with centrality and with the transverse momentum of the trigger particle. Comparing inclusive correlations from STAR and PHOBOS, it is also observed that the value of V_{3A}/V_{2A}

![Graphs showing the ratio of V_{3A} to V_{2A} as a function of transverse momentum and number of participating nucleons in the AMPT model.](image_url)
is higher for STAR measurements. We have found that the ratio $V_{3\Delta}/V_{2\Delta}$ calculated for the same PHOBOS measurement in the range $1.2 < |\Delta \eta| < 2$ is consistent with the values for $2 < |\Delta \eta| < 4$ within the systematic uncertainties. The difference between the STAR and PHOBOS measurements is, therefore, likely caused by the difference in pseudorapidity acceptance and the lower transverse momentum reach of the PHOBOS detector compared to STAR.

Also shown in Fig. 8 is the magnitude of $V_{1\Delta}/V_{2\Delta}$ in the AMPT model with similar η, $\Delta \eta$, and p_T selections to the available experimental data. The calculations from the model show a qualitative agreement with the data in terms of the dependence of $V_{1\Delta}/V_{2\Delta}$ on the pseudorapidity region, trigger particle momentum, and centrality. Since the $V_{1\Delta}$ component of two-particle correlations in the model is known to be mostly due to the triangular anisotropy in the initial collision geometry, this observation suggests that triangular flow may play an important role in understanding the ridge and broad away-side structures in data.

A closer look at the properties of the ridge and broad away-side is possible via studies of three particle correlations. Triangular flow predicts a very distinct signature in three particle correlation measurements. Two recent publications by the STAR experiment present results on correlations in $\Delta \phi_1 - \Delta \phi_2$ space for $|\eta| < 1$ [28] and in $\Delta \eta_1 - \Delta \eta_2$ space for $|\Delta \phi| < 0.7$ [53]. In $\Delta \phi_1 - \Delta \phi_2$ space, off diagonal away-side correlations have been observed (e.g., first associated particle at $\Delta \phi_1 \approx 120^\circ$ and second associated particle at $\Delta \phi_2 \approx -120^\circ$) consistent with expectations from triangular flow. In $\Delta \eta_1 - \Delta \eta_2$ space, no correlation structure between the two associated ridge particles was detected, also consistent with triangular flow.

VI. SUMMARY

We have introduced the concepts of participant triangularity and triangular flow, which quantify the triangular anisotropy in the initial and final states of heavy-ion collisions. It has been shown that inclusive and triggered two-particle azimuthal correlations at large $\Delta \eta$ in heavy-ion collisions are well described by the first three Fourier components. It has been demonstrated that event-by-event fluctuations lead to a finite triangularity value in Glauber Monte Carlo events and that this triangular anisotropy in the initial geometry leads to a triangular anisotropy in particle production in the AMPT model. The third Fourier coefficient of azimuthal correlations at large pseudorapidity separations have been found to be dominated by triangular flow in the model. We have studied the ratio of the third and second Fourier coefficients of azimuthal correlations in experimental data and the AMPT model as a function of centrality, pseudorapidity range and trigger particle momentum. A qualitative agreement between data and model has been observed. This suggests that the ridge and broad away-side features observed in two-particle correlation measurements in Au + Au collisions contain a significant, and perhaps dominant, contribution from triangular flow. Our findings support previous evidence from
measurements of the system size dependence of elliptic flow and elliptic flow fluctuations on the importance of geometric fluctuations in the initial collision region. Detailed studies of triangular flow can shed new light on the initial conditions and the collective expansion of the matter created in heavy-ion collisions.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with Wei Li, Constantin Loizides, Peter Steinberg, and Edward Wenger. This work was supported by US DOE grant DE-FG02-94ER40818.