Measurement of B --> K-*(892)gamma Branching Fractions and CP and Isospin Asymmetries

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.103.211802</td>
</tr>
<tr>
<td>Publisher</td>
<td></td>
</tr>
</tbody>
</table>
Measurement of $B \to K'(892)\gamma$ Branching Fractions and CP and Isospin Asymmetries

B. Aubert,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 E. Prencipe,1 X. Prudent,1 V. Tisserand,1 J. Garra Tico,2 E. Grauges,2 M. Martinelli,3a,3b A. Palano3a,3b M. Pappagallo,3a,3b G. Eigen,4 B. Stugu,4 L. Sun,4 M. Battaglia,5 D. N. Brown,5 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Lynch,7 I. L. Osipenkov,7 K. Tackmann,7 T. Tanabe,7 C. M. Hawkes,6 N. Soni,6 A. T. Watson,6 H. Koch,7 T. Schroeder,7 D. J. Asgeirsson,8 B. G. Fulsom,8 C. Hearty,8 T. S. Mattison,8 J. A. McKenna,8 M. Barrett,9 A. Khan,9 A. Randle-Conde,9 V. E. Blinov,10 A. D. Bukin,10 A. R. Buzykaev,10 V. P. Druzhinin,10 V. B. Golubev,10 A. P. Onuchin,10 S. I. Serednyakov,10 Yu. I. Skovpen,10 E. P. Solodov,10 K. Yu. Todyshev,10 M. Bondioli,11 S. Curry,11 I. Eschrich,11 D. E. Hutchcroft,13 D. J. Lange,13 D. M. Wright,13 I. Bingham,13 J. P. Burke,13 C. A. Chavez,13 J. R. Fry,13 E. Gabathuler,13 R. Gamet,13 B. Malaescu,13 S. Pruvot,13 P. Roudeau,13 M. H. Schune,13 J. Serrano,13 V. Sordini,13 S. Bettarini,55a G. Calderini,55a,55b M. Carpinelli,55a,55b,** A. Cervelli,55a,55b F. Forti,55a,55b M. A. Giorgi,55a,55b {\frac{6}{\gamma}} \frac{1}{2} = \frac{\pi}{\gamma} \frac{1}{2}

Measurement of $B \to K'(892)\gamma$ Branching Fractions and CP and Isospin Asymmetries

B. Aubert,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 E. Prencipe,1 X. Prudent,1 V. Tisserand,1 J. Garra Tico,2 E. Grauges,2 M. Martinelli,3a,3b A. Palano3a,3b M. Pappagallo,3a,3b G. Eigen,4 B. Stugu,4 L. Sun,4 M. Battaglia,5 D. N. Brown,5 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Lynch,7 I. L. Osipenkov,7 K. Tackmann,7 T. Tanabe,7 C. M. Hawkes,6 N. Soni,6 A. T. Watson,6 H. Koch,7 T. Schroeder,7 D. J. Asgeirsson,8 B. G. Fulsom,8 C. Hearty,8 T. S. Mattison,8 J. A. McKenna,8 M. Barrett,9 A. Khan,9 A. Randle-Conde,9 V. E. Blinov,10 A. D. Bukin,10 A. R. Buzykaev,10 V. P. Druzhinin,10 V. B. Golubev,10 A. P. Onuchin,10 S. I. Serednyakov,10 Yu. I. Skovpen,10 E. P. Solodov,10 K. Yu. Todyshev,10 M. Bondioli,11 S. Curry,11 I. Eschrich,11 D. E. Hutchcroft,13 D. J. Lange,13 D. M. Wright,13 I. Bingham,13 J. P. Burke,13 C. A. Chavez,13 J. R. Fry,13 E. Gabathuler,13 R. Gamet,13 B. Malaescu,13 S. Pruvot,13 P. Roudeau,13 M. H. Schune,13 J. Serrano,13 V. Sordini,13 S. Bettarini,55a G. Calderini,55a,55b M. Carpinelli,55a,55b,** A. Cervelli,55a,55b F. Forti,55a,55b M. A. Giorgi,55a,55b {\frac{6}{\gamma}} \frac{1}{2} = \frac{\pi}{\gamma} \frac{1}{2}

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a INFN Sezione di Bari, I-70126 Bari, Italy
3b Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TJ, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11University of California at Irvine, Irvine, California 92697, USA
12University of California at Riverside, Riverside, California 92521, USA
13University of California at San Diego, La Jolla, California 92093, USA
14University of California at Santa Barbara, Santa Barbara, California 93106, USA
15University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16California Institute of Technology, Pasadena, California 91125, USA
17University of Cincinnati, Cincinnati, Ohio 45221, USA
18University of Colorado, Boulder, Colorado 80309, USA
19Colorado State University, Fort Collins, Colorado 80523, USA
20Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
21Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
22Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24a INFN Sezione di Ferrara, I-44100 Ferrara, Italy
24b Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
25INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26a INFN Sezione di Genova, I-16146 Genova, Italy
26b Dipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
27Harvard University, Cambridge, Massachusetts 02138, USA
28Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29Humboldt-Universität zu Berlin, Institut für Physik, Newtonstraße 15, D-12489 Berlin, Germany
30Imperial College London, London, SW7 2AZ, United Kingdom
31University of Iowa, Iowa City, Iowa 52242, USA
32Iowa State University, Ames, Iowa 50011-3160, USA
33Johns Hopkins University, Baltimore, Maryland 21218, USA

PRL 103, 211802 (2009) PHYSICAL REVIEW LETTERS week ending 20 NOVEMBER 2009

211802-2
We present an analysis of the decays $B^0 \to K^0(892)\gamma$ and $B^+ \to K^{*+}(892)\gamma$ using a sample of about $383 \times 10^6 B\bar{B}$ events collected with the BABAR detector at the PEP-II asymmetric energy B factory. We measure the branching fractions $\mathcal{B}(B^0 \to K^0\gamma) = (4.47 \pm 0.10 \pm 0.16) \times 10^{-5}$ and $\mathcal{B}(B^+ \to K^{*+}\gamma) = (4.22 \pm 0.14 \pm 0.16) \times 10^{-5}$. We constrain the direct CP asymmetry to be
In the standard model (SM), the decays $B \rightarrow K^* \gamma$ [1] proceed dominantly through one-loop $b \rightarrow s \gamma$ electromagnetic penguin transitions. Some extensions of the SM predict new high-mass particles that can exist in the loop and alter the branching fractions from their SM predictions. Previous measurements of the branching fractions [2–4] are in agreement with and are more precise than SM predictions [5–9], which suffer from large hadronic uncertainties.

The time-integrated CP (\mathcal{A}) and isospin (Δ_{0-}) asymmetries have smaller theoretical uncertainties [10], and therefore provide more stringent tests of the SM. They are defined by

$$\mathcal{A} = \frac{\Gamma(B \rightarrow K^* \gamma) - \Gamma(B \rightarrow K^* \gamma)}{\Gamma(B \rightarrow K^* \gamma) + \Gamma(B \rightarrow K^* \gamma)},$$

$$\Delta_{0-} = \frac{\Gamma(B^0 \rightarrow K^{0*} \gamma) - \Gamma(B^- \rightarrow K^{++*} \gamma)}{\Gamma(B^0 \rightarrow K^{0*} \gamma) + \Gamma(B^- \rightarrow K^{++*} \gamma)},$$

where the symbol Γ denotes the partial width. The SM predictions for \mathcal{A} are on the order of 1% [11], while those for Δ_{0-} range from 2% to 10% [8,12]. However, new physics could alter these parameters significantly [12–14], and thus precise measurements can constrain those models. In particular, constraining the isospin asymmetry to be positive can exclude significant regions of the minimal supersymmetric model parameter space [12].

In this Letter, we report measurements of $\mathcal{B}(B^0 \rightarrow K^{0*} \gamma)$, $\mathcal{B}(B^- \rightarrow K^{++*} \gamma)$, Δ_{0-}, and \mathcal{A}. We use a data sample containing about 383×10^6 $B\bar{B}$ events, corresponding to an integrated luminosity of 347 fb$^{-1}$, recorded at a center-of-mass (c.m.) energy corresponding to the $Y(4S)$ mass. The data were taken with the BABAR detector [15] at the PEP-II asymmetric e^+e^- collider. We also make use of events simulated using Monte Carlo (MC) methods and a GEANT4 [16] detector simulation. These results supersede the previous BABAR measurements [3].

$B \rightarrow K^* \gamma$ decays are reconstructed in the following K^* modes: $K^{*0} \rightarrow K^+ \pi^-$, $K^{*0} \rightarrow K_S \pi^0$, $K^{*+} \rightarrow K^+ \pi^0$, and $K^{*+} \rightarrow K_S \pi^+$. For each signal decay mode, the selection requirements described below have been optimized for the maximum statistical sensitivity of $S/\sqrt{S+B}$, where S and B are the rates for signal and background, respectively, and the assumed signal branching fraction is 4.0×10^{-5} [3]. The dominant source of background is continuum events $[e^+e^- \rightarrow q\bar{q}(\gamma)]$, with $q = u, d, s, c$, that contain a high-energy photon from a π^0 or η decay or from an initial-state radiation process. Backgrounds coming from $B\bar{B}$ events are mostly from higher-multiplicity $b \rightarrow s \gamma$ decays, where one or more particles have not been reconstructed, and from decays of one $B \rightarrow K^* \gamma$ mode that enter the signal selection of another mode by misreconstructing the K^* meson.

Photon candidates are identified as localized energy deposits in the calorimeter (EMC) that are not associated with any charged track. The signal photon candidate is required to have a c.m. energy between 1.5 and 3.5 GeV, to be well isolated and to have a shower shape consistent with an individual photon [17]. In order to veto photons from π^0 and η decays, we form photon pairs composed of the signal photon candidate and all other photon candidates in the event. We then reject signal photon candidates consistent with coming from a π^0 or η decay based on a likelihood ratio that uses the energy of the partner photon, and the invariant mass of the pair.

Charged particles, except those used to form K_S candidates, are selected from well-reconstructed tracks that have at least 12 hits in the drift chamber (DCH), and are required to be consistent with coming from the e^+e^- interaction region. They are identified as K or π mesons by the Cherenkov angle measured in the Cherenkov photon detector (DIRC) as well as by energy loss of the track in the silicon vertex tracker and DCH. The K_S candidates are reconstructed from two oppositely charged tracks that come from a common vertex. In the $K^{*0} \rightarrow K_S \pi^0 (K^{++} \rightarrow K_S \pi^+)$ mode, we require the invariant mass of the pair to be $0.49 < m_{\pi^+\pi^-} < 0.52$ GeV/c2 ($0.48 < m_{\pi^+\pi^-} < 0.52$ GeV/c2) and the reconstructed decay length of the K_S to be at least 9.3(10) times its uncertainty.

We form π^0 candidates by combining two photons (excluding the signal photon candidate) in the event, each of which has an energy greater than 30 MeV in the laboratory frame. We require the invariant mass of the pair to be $0.112 < m_{\gamma\gamma} < 0.15$ GeV/c2 and $0.114 < m_{\gamma\gamma} < 0.15$ GeV/c2 for the $K^{*0} \rightarrow K_S \pi^0$ and $K^{*+} \rightarrow K^+ \pi^0$, respectively. In order to refine the π^0 three-momentum vector, we perform a mass-constrained fit of the two photons.

We combine the reconstructed K and π mesons to form K^* candidates. We require the invariant mass of the pair to satisfy $0.78 < m_{K^*\pi^-} < 1.1$ GeV/c2, $0.82 < m_{K_S\pi^0} < 1.0$ GeV/c2, $0.79 < m_{K^{*+}\pi^-} < 1.0$ GeV/c2, and $0.79 < m_{K_S\pi^+} < 1.0$ GeV/c2. The charged track pairs of the $K^{*0} \rightarrow K^+ \pi^-$ mode are required to originate from a common vertex.

The K^* and high-energy photon candidates are combined to form B candidates. We define in the c.m. frame (the asterisk denotes a c.m. quantity) $\Delta E \equiv E_B^* - E^*_{\text{beam}}$, where E_B^* is the energy of the B meson candidate and E^*_{beam} is the beam energy. The beam-energy-substituted mass is defined as $m^*_{\text{ES}} \equiv \sqrt{E^2_{\text{beam}} - p_B^*}$, where p_B^* is the moment-
tum of the B candidate. In addition, we consider the helicity angle θ_H of the K^*, defined as the angle between the momenta one of the daughters of the K^* meson and the B candidate in the K^* rest frame. The distribution of $\cos \theta_H$ is $\sin^2 \theta$ for signal events. Signal events have ΔE close to zero with a Gaussian resolution of approximately 50 MeV, and an m_{ES} distribution centered at the mass of the B meson with a Gaussian resolution of approximately 3 MeV/c2. We only consider candidates in the ranges $-0.3 < \Delta E < 0.3$ GeV, $m_{ES} > 5.22$ GeV/c2, and $|\cos \theta_H| < 0.75$. To eliminate badly reconstructed events, we apply a loose selection criterion to the vertex separation (and its uncertainty) along the beam axis between the B meson candidate and the rest of the event (ROE). The ROE is defined as all charged tracks and neutral energy deposits in the calorimeter that are not used to reconstruct the B candidate.

In order to reject continuum background, we combine 13 variables into a neural network. One class of these variables exploits the topological differences between isotropically distributed signal events and jetlike continuum events by considering correlations between the B meson candidate and the ROE. The other class exploits the fact that B meson decays tend to not conserve flavor, while continuum events tend to be flavor-conserving. The discriminating variables are described in Ref. [18]. Each signal mode has a separately trained neural network, whose output measures of the tails, respectively, to the left and right of the peak. We constrain σ_L and σ_R to values obtained from MC simulation. For the $K^{*0} \rightarrow K_S \pi^0$ and $K^{*+} \rightarrow K^+ \pi^0$ modes, the signal m_{ES} distribution is parametrized as a piecewise function $f(x) = \exp\{-f(x)^2/[f(x)^2 + \alpha_L(x - \mu)^2]\}$, defined to the left (L) and right (R) of μ, which is the peak position of the distribution. Here, α_L and α_R are the widths and measures of the tails, respectively, to the left and right of the peak. We constrain $\sigma_L = \sigma_R$, which is fixed, and float α_L and α_R to values obtained from MC simulation. This same function also describes the signal ΔE distribution for each mode, but with different values for the parameters. In addition, we allow σ_L and σ_R to float independently. The $\cos \theta_H$ distribution for the signal component is modeled by a second-order polynomial, with all of its parameters floating in the fit. For the continuum hypothesis, the m_{ES} PDF is parametrized by an ARGUS function [21], with its shape parameter floating in the fit. The continuum ΔE and $\cos \theta_H$ shapes are modeled by a first- or second-order polynomial with its parameters floating in the fit. Various functional

![Graphs](image)

FIG. 1 (color online). m_{ES} and ΔE projections of the fits. The points are data, the solid line is the fit result, the dotted line is the $B\bar{B}$ background, and the dash-dotted line is the continuum background. The dashed line gives the total ($B\bar{B}$ and continuum) contribution to the background.
forms are used to describe the $B\bar{B}$ background, all parameters of which are taken from MC simulation and held fixed. All of the component yields are floating.

Figure 1 and Table I show the results of the likelihood fit to data. The branching fractions have been obtained using $\mathcal{B}(Y(4S) \to B^0\bar{B}^0) = 0.484 \pm 0.006$, $\mathcal{B}(Y(4S) \to B^+B^-) = 0.516 \pm 0.006$ [19]. Also shown are the combined branching fractions, which have been calculated taking into account correlated systematic errors.

The CP asymmetry \mathcal{A} is measured in three modes: $K^{*0} \to K^+\pi^-$, $K^{*+} \to K^0\pi^+$, and $K^{*+} \to K_S\pi^+$. In each of these modes, the final state of the signal B meson is determined by its final state daughters. The fit is accomplished by performing a simultaneous fit to the two flavor subsamples (K^* and K^+) in each mode. All shape parameters are assumed to be flavor independent and the \mathcal{A} of each component is floated in the fit. Table I gives the individual and combined \mathcal{A} results.

Table II lists the sources of systematic uncertainty for the branching fractions for all four modes. The “fit model” systematic incorporates uncertainties due to imperfect knowledge of the normalization and shape of the inclusive $B \to X_c\gamma$ spectra, and the choice of fixed parameters. The “signal PDF bias” systematic uncertainty characterizes any bias resulting from correlations among the three observables, or incorrect modeling of the signal PDFs. The remaining sources of error on the signal efficiency are studied using control samples in the data. From all of these studies, we derive signal efficiency correction factors and associated uncertainties. The total corrections are 0.953, 0.897, 0.919, and 0.936 for the $K^{*0} \to K^+\pi^-$, $K^{*0} \to K_S\pi^0$, $K^{*+} \to K^0\pi^+$, and $K^{*+} \to K_S\pi^+$ modes, respectively. The systematic error on \mathcal{A} comes entirely from the hadronic interaction of the final state mesons with the detector material. This can cause asymmetries in tracking efficiency, which is studied using existing hadronic interaction data, and in particle identification, which is studied using a $D^{*-} \to D^0\pi^-(D^0 \to K^-\pi^+)$ control sample. The D^* control sample gives a shift of -0.33% for K^*'s and $+0.03\%$ for π^*'s, while the hadronic data give a shift of -0.38% for K^*'s and $+0.02\%$ for π^*'s. The systematic errors for the isospin asymmetry are calculated from the branching fractions, taking into account correlated systematic errors.

We combine the branching fractions and the ratio of the B^+ and B^0 lifetime $\tau_+ / \tau_0 = 1.071 \pm 0.009 [19]$ to obtain the isospin asymmetry $\Delta_{0\pm} = 0.066 \pm 0.021 \pm 0.022$, which corresponds to $0.017 < \Delta_{0\pm} < 0.116$ at the 90% confidence interval. We also measure $\mathcal{A}(B^+ \to K^+\gamma) = 0.018 \pm 0.028 \pm 0.007$. The total combined CP asymmetry is $\mathcal{A} = -0.003 \pm 0.017 \pm 0.007$, with a 90% confidence interval of $-0.033 < \mathcal{A} < 0.028$.

Figure 2 shows the relativistic P-wave Breit-Wigner line shape fit to the $K\pi$ invariant mass distribution of data events weighted using the sPlot technique [22] to project out the signal component. For the $K^{*0} \to K_S\pi^0$ and $K^{*+} \to K^0\pi^+$ modes, we convolve the Breit-Wigner line shape with a Gaussian with a width of 10 MeV (determined

Table I. The signal reconstruction efficiency ε, the fitted signal yield N_S, branching fraction, B, and CP asymmetry, \mathcal{A}, for each decay mode. Errors are statistical and systematic, with the exception of ε and N_S, which have only systematic and statistical errors, respectively.

<table>
<thead>
<tr>
<th>Mode</th>
<th>ε (%)</th>
<th>N_S</th>
<th>$B(\times 10^{-5})$</th>
<th>Combined $B(\times 10^{-5})$</th>
<th>\mathcal{A}</th>
<th>Combined \mathcal{A}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K^+\pi^-$</td>
<td>21.8 \pm 0.8</td>
<td>2400.0 \pm 55.4</td>
<td>4.45 \pm 0.10 \pm 0.17</td>
<td>4.47 \pm 0.10 \pm 0.16</td>
<td>-0.016 \pm 0.022 \pm 0.007</td>
<td>-0.003 \pm 0.017 \pm 0.007</td>
</tr>
<tr>
<td>$K_S\pi^0$</td>
<td>13.0 \pm 0.9</td>
<td>256.0 \pm 20.6</td>
<td>4.66 \pm 0.37 \pm 0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^+\pi^0$</td>
<td>15.3 \pm 0.8</td>
<td>872.7 \pm 37.6</td>
<td>4.38 \pm 0.19 \pm 0.26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K_S\pi^+$</td>
<td>20.1 \pm 0.7</td>
<td>759.1 \pm 33.8</td>
<td>4.13 \pm 0.18 \pm 0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II. Systematic errors (in %) of the branching fractions.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$K^+\pi^-$</th>
<th>$K_S\pi^0$</th>
<th>$K^+\pi^0$</th>
<th>$K_S\pi^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{B}(Y(4S) \to B^0\bar{B}^0)$/$\mathcal{B}(Y(4S) \to B^+B^-)$</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>$B\bar{B}$ sample size</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>1.2</td>
<td>\cdots</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Particle identification</td>
<td>0.6</td>
<td>\cdots</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Photon selection</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>π^0 reconstruction</td>
<td>\cdots</td>
<td>3.0</td>
<td>3.0</td>
<td>\cdots</td>
</tr>
<tr>
<td>π^0 and η veto</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>K_S reconstruction</td>
<td>\cdots</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Neural net efficiency</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fit model</td>
<td>0.8</td>
<td>5.6</td>
<td>3.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Signal PDF bias</td>
<td>0.9</td>
<td>2.2</td>
<td>1.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Sum in quadrature</td>
<td>3.9</td>
<td>7.5</td>
<td>5.7</td>
<td>4.1</td>
</tr>
</tbody>
</table>
from MC simulation) to account for detector resolution. For the $K^{0}\rightarrow K^{+}\pi^{-}$ and the $K^{+}\rightarrow K_{S}\pi^{0}$ modes, the detector resolution is negligible. The results are consistent with the signal containing only P-wave K^{*} mesons and no other $K\pi$ resonances. We estimate the contribution from the $K^{*}(1430)$ to the invariant mass regions $m_{K^{+}\pi^{-}}$, $m_{K^{+}\pi^{0}}$, and $m_{K_{S}\pi^{0}}$ defined above by using the measured values of the branching fractions of $B^{0}\rightarrow K^{0}(1430)\gamma$ and $B^{+}\rightarrow K^{+}(1430)\gamma$ [23]. We find that the contribution is ~ 1 event or less.

We conclude that, using a sample that is almost 5 times larger than previously used, we have made considerably more precise measurements of the $B\rightarrow K^{*}\gamma$ decay processes than Refs. [2–4]. The measured isospin and CP asymmetries and branching fractions are consistent with SM expectations. By tightly constraining these observables, we have set limits on supersymmetric and other new physics processes, which can interfere with SM processes.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

**Also at Universitá di Sassari, Sassari, Italy.

[1] K^{*} refers to the $K^{*}(892)$ resonance throughout this Letter.

[10] Charge conjugate modes are implied throughout, except for the CP asymmetry.

