Observation and polarization measurement of $B^{0}\rightarrow a_{1}(1260)^{+}a_{1}(1260)^{-}$ decay


http://dx.doi.org/10.1103/PhysRevD.80.092007

American Physical Society

Final published version

Thu Dec 27 20:07:08 EST 2018

http://hdl.handle.net/1721.1/57585

Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Observation and polarization measurement of $B^0 \to a_1(1260)\eta(1295)$ decay


PHYSICAL REVIEW D 80, 092007 (2009)

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3aINFN Sezione di Bari, I-70126 Bari, Italy
3bDipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6University of Birmingham, Birmingham, B15 2TT, United Kingdom
7Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11University of California at Irvine, Irvine, California 92697, USA
12University of California at Riverside, Riverside, California 92521, USA
13University of California at San Diego, La Jolla, California 92093, USA
14University of California at Santa Barbara, Santa Barbara, California 93106, USA
15University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16California Institute of Technology, Pasadena, California 91125, USA
17University of Cincinnati, Cincinnati, Ohio 45221, USA
18University of Colorado, Boulder, Colorado 80309, USA
19Colorado State University, Fort Collins, Colorado 80523, USA
20Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
21Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
22Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24aINFN Sezione di Ferrara, I-44100 Ferrara, Italy
24bDipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
25INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26aINFN Sezione di Genova, I-16146 Genova, Italy
26bDipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
27Harvard University, Cambridge, Massachusetts 02138, USA
28Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
30Imperial College London, London, SW7 2AZ, United Kingdom
31University of Iowa, Iowa City, Iowa 52242, USA
32Iowa State University, Ames, Iowa 50011-3160, USA
33Johns Hopkins University, Baltimore, Maryland 21218, USA
We present measurements of the branching fraction $B$ and longitudinal polarization fraction $f_L$ for $B^0 \to a_1(1260)^+ a_1(1260)^-$ decays, with $a_1(1260)^+ \to \pi^+\pi^\pm\pi^\mp$. The data sample, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represents $465 \times 10^6$ produced $B\bar{B}$ pairs. We measure $\mathcal{B}(B^0 \to a_1(1260)^+ a_1(1260)^-) \times [\mathcal{B}(a_1(1260)^+ \to \pi^+\pi^\pm\pi^\mp)]^2 = (11.8 \pm 2.6 \pm 1.6) \times 10^{-6}$ and $f_L = 0.31 \pm 0.22 \pm 0.10$, where the first uncertainty is statistical and the second systematic. The decay mode is measured with a significance of 5.0 standard deviations including systematic uncertainties.

We present measurements of the branching fraction $B$ and longitudinal polarization fraction $f_L$ for $B^0 \to a_1(1260)^+ a_1(1260)^-$ decays, with $a_1(1260)^+ \to \pi^+\pi^\pm\pi^\mp$. The data sample, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represents $465 \times 10^6$ produced $B\bar{B}$ pairs. We measure $\mathcal{B}(B^0 \to a_1(1260)^+ a_1(1260)^-) \times [\mathcal{B}(a_1(1260)^+ \to \pi^+\pi^\pm\pi^\mp)]^2 = (11.8 \pm 2.6 \pm 1.6) \times 10^{-6}$ and $f_L = 0.31 \pm 0.22 \pm 0.10$, where the first uncertainty is statistical and the second systematic. The decay mode is measured with a significance of 5.0 standard deviations including systematic uncertainties.

Charmless $B$ decays to final states involving two axial-vector mesons ($AA$) have received considerable theoretical attention in the last few years [1–3]. The branching fractions of several $B \to AA$ decay modes have been calculated using the QCD factorization [2] and the naive factorization [3] approaches. Theoretical predictions for the branching fraction of the $B^0 \to a_1(1260)^+ a_1(1260)^-$ decay mode vary between $37.4 \times 10^{-6}$ [2] and $6.4 \times 10^{-6}$ [3]. Branching fractions at this level should be observable with the BABAR data sample, which can be used to discriminate between the predictions. The only available experimental information on this $B$ decay mode is the branching fraction upper limit of $2.8 \times 10^{-3}$ at 90% confidence level measured by CLEO [4].

The study of the decay polarization in the charmless $B$ decays to vector vector ($VV$), vector axial-vector ($VA$), and $AA$ mesons provides information on the underlying helicity structure of the decay mechanism [2]. The measured value of the longitudinal polarization fraction $f_L \sim 0.5$ in penguin-dominated $B \to \phi K^*$ decays [5] is in contrast with naive standard model (SM) calculations predicting a dominant longitudinal polarization ($f_L \sim 1$) [6]. The naive SM expectation is confirmed in the tree-dominated $B^0 \to \phi \rho \rho$ [7] and $B^+ \to \phi \rho^+$ [8] decays. A value of $f_L \sim 1$ is found in vector-tensor $B^0 \to \phi K^*_c(1430)$ decays [9], while $f_L \sim 0.5$ is found in $B^0 \to \omega K^*_c(1430)$ decays [8]. The small value of $f_L$ observed in $B \to \phi K^*$ decays has stimulated theoretical effort, such as the introduction of nonfactorizable terms and penguin-annihilation amplitudes [10]. Other explanations invoke new physics [11].

There are no experimental measurements of $f_L$ in $B \to AA$ decays. The predicted value of the $f_L$ in $B^0 \to a_1^+ a_1^-$ [12] is 0.64 [2].

We present the first measurements of the branching fraction and polarization in $B^0 \to a_1^+ a_1^-$ decays, with $a_1^+ \to \pi^-\pi^+\pi^\mp$ [13]. We do not separate the $P$-wave ($\pi\pi\rho$) and the $S$-wave ($\pi\pi\sigma$) components in the $a_1 \to 3\pi$ decay; a systematic uncertainty is estimated due to the difference in the selection efficiencies [14]. Because of the limited number of signal events expected in the data sample, we do not perform a full angular analysis. Using helicity formalism, and after integration over the azimuthal angle between the decay planes of the two $a_1$ mesons, the predicted angular distribution $d\Gamma/d\cos\theta$ is

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta} \propto f_L(1 - \cos^2\theta) + \frac{1}{2} f_T(1 + \cos^2\theta),$$

where $f_Y = 1 - f_L$ and $\theta$ is the angle between the normal to the decay plane of the three pions of one $a_1$ and the flight direction of the other $a_1$, both calculated in the rest frame of the first $a_1$.

The results presented here are based on data collected with the BABAR detector [15] at the PEP-II asymmetric-energy $e^+e^-$ collider [16] located at the SLAC National Accelerator Laboratory. The analysis uses an integrated luminosity of 423.0 fb$^{-1}$, corresponding to $(465 \pm 5) \times 10^6$ $B\bar{B}$ pairs, recorded at the $Y(4S)$ resonance at a center-of-mass energy of $\sqrt{s} = 10.58$ GeV. An additional 43.9 fb$^{-1}$, taken about 40 MeV below this energy (off-resonance data), is used for the study of the $q\bar{q}$ continuum background ($e^+e^- \to q\bar{q}$, with $q = u, d, s, c$).

Charged particles are detected, and their momenta measured, by a combination of a vertex tracker consisting of five layers of double-sided silicon microstrip detectors, and a 40-layer central drift chamber, both operating in the 1.5 T magnetic field of a superconducting solenoid. The tracking system covers 92% of the solid angle in the center-of-mass frame. We identify photons and electrons using a CsI(Tl) electromagnetic calorimeter. Further charged-particle identification is provided by the specific energy loss ($dE/dx$) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector covering the central region. A $K/\pi$ separation of better than 4 standard deviations is achieved for momenta below 3 GeV/c, decreasing to 2.5 at the highest momenta in the $B$ decay final states. A more detailed description of the reconstruction of charged tracks in BABAR can be found elsewhere [17].

Monte Carlo (MC) simulations of the signal decay mode, continuum, $B\bar{B}$ backgrounds, and detector response [18] are used to establish the event selection criteria. The MC signal events are simulated as $B^0$ decays to $a_1^+ a_1^-$ with...
\[ a_1 \rightarrow \rho(770)\pi. \] The \( a_1 \) meson parameters in the simulation are mass \( m_{a_1} = 1230 \text{ MeV}/c^2 \) and width \( \Gamma_{a_1} = 400 \text{ MeV}/c^2 \) [19,20].

We reconstruct the decay of \( a_1^+ \) into three charged pions. Two pion candidates are combined to form a \( p^0 \) candidate. Candidates with an invariant mass between 0.51 and 1.10 GeV/c\(^2\) are combined with a third pion to form an \( a_1 \) candidate. The \( a_1 \) candidate is required to have a mass between 0.87 and 1.75 GeV/c\(^2\). We impose several particle identification requirements to ensure the identity of the signal pions. We also require the \( \chi^2 \) probability of the \( B \) vertex fit to be greater than 0.01 and the number of charged tracks in the event to be greater or equal to seven.

An \( B \) meson candidate is kinematically characterized by the energy-substituted mass \( m_{ES} = \sqrt{(s/2 + p_0 \cdot p_E)^2 / E_0^2 - p_0^2} \) and energy difference \( \Delta E = E^* - \sqrt{s}/2 \), where the subscripts 0 and \( E \) refer to the initial \( Y(4S) \) and the \( B \) candidate in the laboratory frame, respectively, and the asterisk denotes the \( Y(4S) \) frame. The resolutions in \( m_{ES} \) and \( \Delta E \) are about 3.0 MeV/c\(^2\) and 20 MeV, respectively. We require candidates to satisfy \( 5.27 \leq m_{ES} \leq 5.29 \text{ GeV}/c^2 \) and \( -90 < \Delta E < 70 \text{ MeV} \).

Background arises primarily from random track combinations in continuum events. We reduce this background by using the angle \( \theta_T \) between the thrust axis of the \( B \) candidate and the thrust axis of the rest of the event, evaluated in the \( Y(4S) \) rest frame. The distribution of \( |\cos\theta_T| \) is sharply peaked near 1 for combinations drawn from jetlike continuum events and is nearly uniform for \( B \bar{B} \) events; for this reason, we require \( |\cos\theta_T| < 0.65 \).

Background can also arise from \( B \bar{B} \) events, especially events containing a charmed meson (these are mostly events with five pions and a misidentified kaon in the final state). The charmed background includes peaking modes, with structures in \( m_{ES} \) and \( \Delta E \) that mimic signal events, and nonpeaking “generic” modes. To suppress the charm background, we reconstruct \( D \) and \( D^* \) mesons. Events are vetoed if they contain \( D \) or \( D^* \) candidates with reconstructed masses within 20 MeV/c\(^2\) (window size of about \( \pm 2\sigma \)) of the nominal charmed meson masses [19].

The mean number of \( B \) candidates per event is 2.9. If an event has multiple \( B \) candidates, we select the candidate with the highest \( B \) vertex \( \chi^2 \) probability. From MC simulation, we find that this algorithm selects the correct candidate 90% of the time in signal events while inducing negligible bias.

Using MC simulation of signal events with longitudinal (transverse) polarization, signal events are divided in two categories: correctly reconstructed signal (CR), where all candidate particles come from the correct signal \( B^0 \), and self-cross feed (SCF) signal, where candidate particles are exchanged with a rest of the event particle. The fraction of SCF candidates is 31.8 \( \pm 3.2 (19.4 \pm 1.9)% \).

We determine the number of signal events (the signal yield) from an unbinned extended maximum-likelihood fit. The seven input observables are \( \Delta E, m_{ES} \), a Fisher discriminant \( \mathcal{F} \) [17], the two \( a_1 \) masses, and the two \( \mathcal{H} = |\cos\theta| \). The Fisher discriminant \( \mathcal{F} \) combines four variables calculated in the \( Y(4S) \) frame: the absolute values of the cosines of the angles with respect to the beam axis of the \( B \) momentum and the thrust axis of the \( B \) decay products, and the zeroth and second angular Legendre moments \( L_{0,2} \) of the momentum flow about the \( B \) thrust axis. The Legendre moments are defined by \( L_k = \sum_{m} p_m |\cos\theta_m|^k \), where \( \theta_m \) is the angle with respect to the \( B \) thrust axis of a track or neutral cluster \( m \), \( p_m \) is its momentum, and the sum includes the rest of the event particles only.

There are five hypotheses in the likelihood model: signal, continuum, and three \( B \bar{B} \) components, which take into account charmless, generic charm, and peaking charm backgrounds. The likelihood function is

\[
\mathcal{L} = e^{-\left(\sum_{i=1}^{N} Y_i \right) \sum_{j=1}^{5} n_j \mathcal{P}_j(x_i)}.
\]

where \( N \) is the number of input events, \( n_j \) is the number of events for hypothesis \( j \), and \( \mathcal{P}_j(x_i) \) is the corresponding probability density function (PDF), evaluated with the observables \( x_i \) of the \( i \)th event. Since correlations among the observables are small (\(<10\%\)), we take each \( \mathcal{P} \) as the product of the PDFs for the separate variables.

The signal includes both CR and SCF signal components with the SCF fraction fixed in the fit to the value estimated from MC simulation. Both CR and SCF signals are used to measure the branching fraction and polarization. The PDF of the signal takes the form

\[
P_{\text{sig}} = f_L(1 - g_L^{\text{SCF}})\mathcal{P}_{\text{CR,L}} + f_L g_L^{\text{SCF}}\mathcal{P}_{\text{SCF,L}} + f_T(1 - g_T^{\text{SCF}})\mathcal{P}_{\text{CR,T}} + f_T g_T^{\text{SCF}}\mathcal{P}_{\text{SCF,T}},
\]

where \( g_L^{\text{SCF}} (g_T^{\text{SCF}}) \) is the fraction of SCF in longitudinal (transverse) polarized signal events and \( \mathcal{P}_{\text{CR,L}} \), \( \mathcal{P}_{\text{SCF,L}} \), \( \mathcal{P}_{\text{CR,T}} \), \( \mathcal{P}_{\text{SCF,T}} \) are the signal PDFs of CR and SCF signal components for longitudinal (transverse) polarization.

We determine the PDF parameters from Monte Carlo simulation for the signal and \( B \bar{B} \) backgrounds and from off-resonance data for the continuum background.

We parametrize \( m_{ES} \) and \( \Delta E \) using a Gaussian function with exponential tails [21] for the CR signal and charmless components, and using polynomials for all other components, except for the \( m_{ES} \) distribution for continuum events which is described by the ARGUS empirical phase space function [22] \( x\sqrt{1 - x^2}\exp[-\xi(1 - x^2)] \), where \( x = 2m_{ES}/\sqrt{s} \) and \( \xi \) is a parameter. The \( a_1 \) mass is described by a relativistic Breit-Wigner function for the CR signal component, an asymmetric Gaussian plus a linear polynomial for the SCF signal component, and polynomials for the remaining components. The Fisher variable is parametrized with an asymmetric Gaussian plus a linear polynomial in all cases. The \( \mathcal{H} \) variables are parametrized with a Gaussian plus a linear polynomial for the charm peaking
component and with a polynomial in all other cases. The parameters left free in the fit are the signal, continuum, and three $B\bar{B}$ component yields, and $f_L$. We also float some of the parameters of the continuum PDFs: the three parameters of the asymmetric Gaussian part of $f_\ell$, and one parameter each for the $H$, the $a_1$ masses, and $\Delta E$.

Large data samples of $B$ decays to charmed final states ($B^0 \to D^+ a_1^-$) which have similar topology to the signal, are used to verify the simulated resolutions in $m_{ES}$ and $\Delta E$. Where the data samples reveal differences from the Monte Carlo, we shift or scale the resolution function used in the likelihood fits. Any bias in the fit, which arises mainly from neglecting the small correlations among the discriminating observables, is determined from a large set of simulated experiments for which the continuum background is generated from the PDFs, and into which we have embedded the expected number of $B\bar{B}$ background, signal, and SCF events chosen randomly from fully simulated Monte Carlo samples.

The fit results are presented in Table I. The detection efficiencies are calculated as the ratio of the number of signal MC events passing all the cuts to the total number generated. We compute the branching fraction by subtracting the fit bias from the measured yield, and dividing the result by the number of produced $B\bar{B}$ pairs times the product of the daughter branching fractions and the detection efficiency. We assume that the branching fractions of the $Y(4S)$ to $B^+ B^-$ and $B^0 \bar{B}^0$ are each 50%. The branching fraction and $f_L$ are corrected for the slightly different reconstruction efficiencies in longitudinal and transversal polarizations. The statistical uncertainty on the signal yield is taken as the change in the central value when the quantity $-2 \ln \mathcal{L}$ increases by one unit from its minimum value. The significance is the square root of the difference between the value of $-2 \ln \mathcal{L}$ (with systematic uncertainties included) for zero signal and the value at its minimum. In this calculation we have taken into account the fact that the floating $f_L$ parameter is not defined in the zero signal hypothesis.

### Table I. Fitted signal yield and yield bias (in events), bias on $f_L$, detection efficiencies $\epsilon_\ell$ and $\epsilon_T$ for events with longitudinal and transversal polarization, respectively, significance $S$ (including systematic uncertainties), measured branching fraction $\mathcal{B}$, and fraction of longitudinal polarization $f_L$ with statistical and systematic uncertainties.

<table>
<thead>
<tr>
<th>Signal yield</th>
<th>545 ± 118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal yield bias</td>
<td>+14</td>
</tr>
<tr>
<td>$f_L$ bias</td>
<td>−0.06</td>
</tr>
<tr>
<td>$\epsilon_\ell$ (%)</td>
<td>9.0</td>
</tr>
<tr>
<td>$\epsilon_T$ (%)</td>
<td>10.0</td>
</tr>
<tr>
<td>$S$ ($\sigma$)</td>
<td>5.0</td>
</tr>
<tr>
<td>$\mathcal{B}$ ($\times 10^{-6}$)</td>
<td>11.8 ± 2.6 ± 1.6</td>
</tr>
<tr>
<td>$f_L$</td>
<td>0.31 ± 0.22 ± 0.10</td>
</tr>
</tbody>
</table>

Figure 1 shows the projections of $m_{ES}$, $\Delta E$, the $a_1$ invariant mass, $f_\ell$, and $H$ for a subset of the data for which the ratio of the signal likelihood to the total likelihood (computed without using the variable plotted) exceeds a threshold that optimizes the sensitivity.

A systematic uncertainty of 38 events on the signal yield due to the PDF parametrization is estimated by varying the signal PDF parameters within their uncertainties, obtained through comparison of MC and data in control samples. The uncertainty from the fit bias (7 events) is taken as half the correction itself. Uncertainty from lack of knowledge of the $a_1$ meson parameters is 31 events. We vary the SCF fractions by their uncertainties and estimate a systematic uncertainty of 12 events. A systematic uncertainty of 19 events from possible contamination by $B^0 \to a_1(1260)^+ a_2(1320)^-$ background events is estimated with simulated MC experiments. The uncertainty due to cross feed between the signal and nonresonant backgrounds, evaluated with MC events, is 10 events. Uncertainties of 1.4% and 3.6% are associated with the track efficiency and particle identification, respectively. Differences between data and simulation for the $\cos \theta_F$ variable lead to a systematic uncertainty of 2.5%.

Assuming that 20% of $a_1$ decays proceed through the $S$-wave $(\pi\pi)_\sigma$ channel [19], we estimate a systematic uncertainty of 6.8% from the difference in reconstruction efficiency between the $P$-wave $(\pi\pi)_P$ and $S$-wave components. The uncertainty in the total number of $B\bar{B}$ pairs in the data sample is 1.1%. The total systematic uncertainty, obtained by adding the individual terms in quadrature, is 12.9%.

The main systematic uncertainties on $f_L$ arise from the fit bias (0.03), the variation of PDF parameters (0.08), the $a_1$ parametrization (0.04), and the nonresonant background (0.02).

In conclusion, we have measured the branching fraction $\mathcal{B}(B^0 \to a_1^- a_1^-) \times \mathcal{B}(a_1^- \to (3 \pi)^\pm)$ is equal to $11.8 \pm 2.6 \pm 1.6 \times 10^{-6}$ and the fraction of longitudinal polarization $f_L = 0.31 \pm 0.22 \pm 0.10$. Assuming that $\mathcal{B}(a_1^- \to \pi^- \pi^+ \pi^\pm)$ is equal to $100\%$ [19], we obtain $\mathcal{B}(B^0 \to a_1^- a_1^-) = (47.3 \pm 10.5 \pm 6.3) \times 10^{-6}$. The decay mode is observed with a significance of 5.0σ including systematic uncertainties. The measured branching fraction and longitudinal polarization are in general agreement with the theoretical expectations in [2], while they disfavor those in [3].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSEC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands),
NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.


[12] $a_1$ will be used to indicate the $a_1(1260)$ meson.

[13] Charge conjugate decay modes are implied unless specifically stated.


[21] We use the following function:

$$ f(x) = \exp\left(\frac{-(x - \mu)^2}{2\sigma_{L,R}^2 + \alpha_{L,R}(x - \mu)^2}\right). $$

where $\mu$ is the peak position of the distribution, $\sigma_{L,R}$ are the left and right widths, and $\alpha_{L,R}$ are the left and right tail parameters.