Citation

As Published
http://dx.doi.org/10.1109/JDT.2009.2029059

Publisher
Institute of Electrical and Electronics Engineers

Version
Final published version

Accessed
Thu Dec 20 21:07:52 EST 2018

Citable Link
http://hdl.handle.net/1721.1/58726

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A Low Temperature Fully Lithographic Process For Metal–Oxide Field-Effect Transistors

Annie Wang, Burag Yaglioglu, Charles G. Sodini, Fellow, IEEE, Vladimir Bulović, and Akintunde I. Akinwande, Fellow, IEEE

Abstract—We report a low temperature (~100 °C) lithographic method for fabricating hybrid metal oxide/organic field-effect transistors (FETs) that combine a zinc–indium–oxide (ZIO) semiconductor channel and organic, parylene, dielectric layer. The transistors show a field-effect mobility of (12 ± 0.8) cm²V⁻¹s⁻¹, on/off ratio of 10⁶ and turn-off voltage of V₉off = −1 V. This work demonstrates that organic and inorganic layers can be deposited and patterned using a low temperature budget, integrated lithographic process to make FETs suitable for large area electronic applications.

Index Terms—Thin-film transistors (TFTs), amorphous semiconductors.

I. INTRODUCTION

A MORPHOUS wide bandgap (~3 eV) metal–oxide thin films have been investigated by many researchers as semiconducting layers in field-effect transistors (FETs) [1]–[5]. Metal–oxide-based FETs have been demonstrated with higher charge carrier mobilities, higher current densities, and faster response performance than amorphous silicon (a-Si) FETs, which are the dominant technology used in display backplanes. Furthermore, the optically transparent semiconducting oxide films can be deposited in a near-room-temperature process, making the materials compatible with future generations of large-area electronics technologies that require use of flexible substrates. In this study we present a fully photolithographic, low temperature process for fabricating metal–oxide FETs, consisting of zinc indium oxide (ZIO) semiconductor and parylene dielectric layers, in a top gate configuration. This technique enables processing of complex multilayer structures at low temperatures, as needed for large area electronic applications on low thermal budget substrates such as heat-sensitive plastic foils.

Amorphous n-type ZIO films can be deposited at room temperature by sputter deposition, a process suitable for large scale processing of uniform thin films. In addition, by controlling oxygen partial pressure during deposition, the carrier concentration of deposited films can be varied from sufficiently low values to generate insulating films to higher than 10¹⁹ cm⁻³ [6], [7]. The high mobility of amorphous metal oxides compared to a-Si is attributed to the direct overlap of spherically symmetric metal s orbitals [3], [8]. FET performance is not solely determined by the semiconductor mobility, however, and the selection of an appropriate dielectric material strongly affects FET performance. Amorphous Si FETs in large area display applications, for example, utilize SiNₓ as a dielectric material. SiNₓ can be deposited by plasma-enhanced chemical-vapor deposition (PECVD) methods, which typically require temperatures around 300 °C and hence are not suitable for deposition on heat sensitive substrates [9]. In the fully lithographic process for ZnO FETs demonstrated by Hsieh et al., the SiNₓ layers used as dielectric were deposited by PECVD at 200 °C [10].

As an alternative to high temperature deposition processes, we demonstrate use of a room temperature-deposited polymer, parylene-C, as the dielectric layer. In the chemical-vapor deposition (CVD) process, parylene dimer is cleaved in a vacuum pyrolysis furnace (T ~ 700 °C) into monomer units which are flowed into a room-temperature deposition chamber to adsorb and polymerize on the substrate. Unlike spin-coated or solution-processed films, no annealing is required after deposition. The conformal, transparent films have a dielectric constant of ε ~ 3.9 and a breakdown voltage of 3 MV/cm [11]. Their pinhole-free structure enables their use as low leakedielectric thin films necessary for FET fabrication.

II. PROCESS FLOW

A schematic illustration of the lithographic process flow for fabricating ZIO/parylene FETs is shown in Fig. 1. Photolithography allows subtractive patterning by liftoff or by etching, but liftoff is considered less desirable for sputtered films because of their increased step coverage and hence liftoff was avoided here. The process was run on 100-nm borosilicate glass wafers, which were cleaned in a piranha bath (3:1 H₂SO₄:H₂O₂) before starting device fabrication. The maximum process temperatures (~100 °C) were dictated by photoresist baking steps. No intentional annealing of the electrode, semiconductor, or dielectric layers was performed.

A. Source/Drain Layer

After piranha cleaning, a 100-nm-thick layer of indium–tin–oxide (ITO) was sputter-deposited in Ar onto the substrates. During deposition, the chamber pressure was kept at 4 mTorr and the unheated substrate holder rotated for uniformity in thickness of the deposited films. The source/drain
electrodes were then dry-etched in a CH\textsubscript{3}/H\textsubscript{2}/Ar mixture (1.7:3:4 ratio) at 80 °C in a reactive ion etching system.

B. Semiconductor Layer

After patterning of the source/drain contacts, the substrates were returned to the sputtering chamber for semiconductor deposition. A 50-nm-thick layer of ZIO was RF sputtered from a mixed oxide target (2:1 ZnO:In\textsubscript{2}O\textsubscript{3}, AJA International) at room temperature in 15% oxygen. A deposition pressure and power of 5 mTorr and 50 W, respectively, were used.

Fig. 2 shows a typical X-ray diffraction (XRD) pattern collected in a Bragg-Brantano geometry with a CuK\textsubscript{α} radiation at 40 kV and 40 mA for a 50-nm-thick ZIO film, deposited on a glass substrate using RF magnetron sputtering. The absence of sharp diffraction peaks in Fig. 2 indicates that the material is fully amorphous.

Since ZIO is easily wet-etched compared to ITO, patterning of the semiconductor was performed in a very dilute hydrochloric acid solution (400:1 H\textsubscript{2}O:HCl). Patterning the semiconductor is desirable to isolate the devices from each other, thereby avoiding current leakage between transistors and other circuit elements.

C. Dielectric/Via Layer

It is known that parylene does not adhere readily on inorganic substrates [11]. Especially in a lithographic process, where multiple patterning steps follow parylene deposition, avoiding parylene delamination is crucial for repeatable fabrication of the integrated circuits. Thus, immediately prior to parylene deposition, the substrates were treated briefly in an oxygen plasma to functionalize the surface before being exposed to vinyltrimethoxysilane, an adhesion promoter, in vapor form for 2 h. Parylene-C was then deposited by CVD (di-XC dimer, Daisan Kasei Company) to form a 250-nm-thick dielectric layer. During the deposition process, the substrate itself remains at room temperature. Finally, similar to the process outlined by Kymissis et al., vias were opened through the parylene using an oxygen reactive ion etch [12]. Parylene’s relative insolubility allows for use of standard photolithography solvents.

D. Gate Layer

After via definition, a chromium/gold (Cr/Au) thin film was e-beam evaporated onto the substrates for gate electrodes and probe pads. The 10-nm-thick Cr layer serves as adhesion layer for the 100-nm-thick Au film. The two metal layers were then wet-etched in two steps, first a potassium-iodide-based etch (Transene TFA) to pattern the gold, then Cr-7 chromium etchant (Cyantek) to remove the exposed chromium.

Fig. 3 shows a completed array of single transistors of varying channel lengths. The inset shows a magnified view of a single FET ($W/L = 100 \mu m/100 \mu m$).

III. DEVICE CHARACTERIZATION

Electrical characterization of the fabricated devices was performed using an Agilent 4156C semiconductor parameter analyzer. Fig. 4(a) shows output–voltage (I–V) characteristics for a typical enhancement mode transistor with $W/L = 100 \mu m/100 \mu m$. The corresponding saturation region transfer characteristics (solid line), linear region transfer characteristic (dashed line) and gate currents (dotted lines) are shown in Fig. 4(c). From the saturation transfer characteristic the extracted subthreshold slope is 0.7 V/dec and the current
on/off ratio is $\sim 10^8$. The turn-off voltage, V_{off}, where the drain current falls below gate leakage current, is close to 0 V. The low leakage through parylene is shown by the low gate current which, normalized for area, is $< 9 \times 10^{-8}$ A/cm² at $V_{\text{GS}} = 20$ V. The channel capacitance, as measured in the quasi-static capacitance-voltage (C–V) curve shown in Fig. 4(b), was 19 nF/cm² and the overlap capacitance normalized for width, is <5 fF/µm.

Several methods for extracting effective carrier mobility in amorphous semiconductor FETs have been reported in literature. It is common to report mobility values calculated from saturation region transfer characteristics, borrowing the definition of saturation mobility from crystalline Si models. However, as noted by Hoffman [13] for oxide FETs and by Ryu et al. [14] for organic FETs, the assumptions of the ideal crystalline Si conduction models may not hold true for disordered semiconductors.

The mobility extraction method developed by Hoffman calculates an average mobility, μ_{avg}, from the channel conduction assuming drift-dominated charge transport. Noting the difficulty in estimating the induced charge in the channel, Q_{ind}, from a frequency-dependent measured capacitance, this derivation calculates Q_{ind} from simple electrostatics to be $Q_{\text{ind}} = C_{\text{ins}}(V_{\text{GS}} - V_{\text{on,H}})$, where C_{ins} is the insulator capacitance and V_{GS} the gate-to-source bias. The parameter $V_{\text{on,H}}$ is defined as the gate voltage at which drain current begins to increase exponentially from the off-state. (An ‘H’ subscript was added to V_{on} to differentiate the parameter V_{on}, defined by Hoffman from that defined by Ryu et al. Note that when gate leakage current is sufficiently low, $V_{\text{on,H}}$ is the same as the previously defined V_{off}.) Combining expressions for channel conductance and induced channel charge yields the following equation for average mobility at low drain-to-source bias ($V_{\text{DS}} \rightarrow 0$):

$$
\mu_{\text{avg}} = \frac{G_{\text{ch}}(V_{\text{GS}})}{L C_{\text{ins}}(V_{\text{GS}} - V_{\text{on,H}})}
\quad (1)
$$

where G_{ch} is the channel conductance as a function of V_{GS}.

As Hoffman notes, this expression appears almost the same as that for Si MOSFET mobility in the linear regime, μ_{eff}, except that threshold voltage, $V_{\text{T,Lin}}$, is replaced here by $V_{\text{on,H}}$. Fig. 5 plots the linear region transfer characteristic for a 100 µm x 100 µm FET on both log and linear scales and compares $V_{\text{T,Lin}}$, found by the commonly-used linear extrapolation method, with $V_{\text{on,H}}$. As shown, $V_{\text{on,H}} = 0$ V is several volts lower than $V_{\text{T,Lin}} = 3.8$ V. The higher calculated value of $\mu_{\text{eff}} = 15 \text{ cm}^2/\text{V} \cdot \text{s}^{-1}$ compared to $\mu_{\text{avg}} = 12 \text{ cm}^2/\text{V} \cdot \text{s}^{-1}$ results from an understimation of induced channel charge, which must be accurately determined for mobility calculations.

The method proposed by Ryu et al. [14] also starts from simple electrostatics but calculates the total sheet charge density by integrating over the quasi-static C–V curve, $Q = \int_{-\infty}^{V_{\text{GS}}}(C_{\text{ch}})/(WL)dv$, where the channel capacitance, C_{ch}, is the capacitance due to charge induced in the semiconductor. In this derivation, the model parameter $V_{\text{on,R}}$ can be defined from the C–V characteristic such that the total integrated charge $Q = -(C_{\text{ch,accumulated}})/(WL)(V_{\text{GS}} - V_{\text{on,R}})$.

Fig. 3. Micrograph of a fabricated array of single devices with varying channel lengths. The inset gives a larger view of a single field effect transistor ($W/L = 100 \mu m/100 \mu m$).

Fig. 4. (a) Output I–V characteristics for a W/L = 100 µm/100 µm zinc-indium-oxide FET. (b) Quasi-static C–V characteristics of the same device. The overlap capacitance C_{overlap} is 0.5 pF. (c) Transfer I–V characteristics for the same device shown in (a) and (b), double-swept from negative to positive and back. Both the linear region (dashed line) and saturation region (solid line) characteristics in (c) show a turn-off voltage, V_{off}, close to 0 V. Gate leakage currents (dotted lines) were <1 pA.

Fig. 5. Transfer I–V characteristics for a W/L = 100 µm/100 µm zinc-indium oxide FET at $V_{\text{DS}} = 1$ V. The same curve is plotted on both log and linear scales, and $V_{\text{on,eff}}$ and $V_{\text{T,Lin}}$, are pointed out for comparison. The 3.8 V difference between $V_{\text{on,H}}$, the gate voltage at which drain current beings to increase exponentially from the off-state, and $V_{\text{T,Lin}}$, as commonly found by linear extrapolation method, leads to a discrepancy in the calculated channel charge used in mobility calculations.
Fig. 6. The table summarizes mobility values calculated in the linear region ($V_{DS} = 100$ mV) with $V_{GS} = 20$ V for 50, 100, 150, and 200 μm channel length FETs. Two methods used to calculate mobility (following Hoffman [13] and Ryu et al. [14]) are compared. The channel width for all devices was 100 μm.

Table: Charge mobility (cm²/V·s)

<table>
<thead>
<tr>
<th>L (μm)</th>
<th>Hoffman (μavg)</th>
<th>Ryu, et al. (μ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>13.1</td>
<td>12.7</td>
</tr>
<tr>
<td>100</td>
<td>11.8</td>
<td>11.4</td>
</tr>
<tr>
<td>150</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>200</td>
<td>11.2</td>
<td>10.8</td>
</tr>
</tbody>
</table>

(An ‘R’ subscript was added to V_{on} to differentiate the parameter ‘V_{on}’ defined by Ryu et al. from that defined by Hoffman.)

The calculated channel mobility, μ, is given by

$$\mu = \frac{I_D}{W \int_{V_{GS}}^{V_{on}} \left(\frac{C_T}{C_W} \right) dV \left(\frac{L}{V_{DS}} \right)}.$$

The calculated channel mobility is then an average mobility over the total gate-bias induced charge, which includes free and trapped charges.

A comparison of the mobility values obtained using each of these methods is shown in Fig. 6. The table lists values for devices with channel width of 100 μm and four different channel lengths (50, 100, 150, and 200 μm); the reported values were taken near $V_{GS} = 20$ V when $V_{DS} = 100$ V. For all channel length devices, both the Hoffman (μ_{avg}) and Ryu et al. (μ) methods give similar values. The slightly lower μ values suggest that not all the channel charge is accounted for in μ_{avg}, but for $V_{GS} \gg V_{on}$ the difference does not appear significant. Overall, the calculated mobility values are very similar for transistors of different channel lengths. Both μ_{avg} and μ are (12 ± 0.8) cm²/V·s across the four different channel length transistors shown in Fig. 6.

IV. CONCLUSION

In this study we demonstrate that parylene dielectric and ZIO semiconducting layers can be integrated in a fully lithographic process to fabricate high performance field effect transistors. The steps of the photolithographic process flow are described and device characteristics are reported. Field effect mobility values in the linear region are extracted by employing I-V and C-V measurements and are found to be (12 ± 0.8) cm²/V·s across the channel on the Hoffman and Ryu et al. models. In summary, the low temperature (≤ 100 °C) processing of these devices along with their superior characteristics compared to a-Si based FETs hold promise for future large area electronic applications.

ACKNOWLEDGMENT

The XRD measurements were performed in MIT’s Center for Materials Science and Engineering (CMSE) shared facilities and fabrication was carried out in MIT Laboratory for Organic Optics & Electronics through the use of MIT’s Microsystems Technology Laboratories. The authors thank S. Desai for help developing an initial ITO dry etch recipe and S. G. Im for help in developing the parylene adhesion promoter process.

REFERENCES

Annie Wang received the S.B. and M.Eng. degrees in electrical engineering and computer science in 2004 from the Massachusetts Institute of Technology (MIT), Cambridge. She is currently working toward the Ph.D. degree in electrical engineering at MIT, studying metal-oxide thin-film devices for electronic and optoelectronic applications.

Burag Yagiloglu received the B.Sc. degree in metallurgical and materials engineering from Istanbul Technical University, Istanbul, Turkey, in 2001, and M.Sc. and Ph.D. degrees in materials science from Brown University, Providence, RI, in 2003 and 2007, respectively. He is currently conducting research as a Post-Doctoral associate in the Department of Electrical Engineering and Computer Science at MIT. His research interests involve processing and electrical characterization of thin film devices for large area electronic applications.

Charles G. Sodini (M’82–SM’90–F’95) received the B.S.E.E. degree from Purdue University, West Lafayette, IN, in 1974, and the M.S.E.E. and Ph.D. degrees from the University of California, Berkeley, in 1981 and 1982, respectively, all in electrical engineering.

From 1974 to 1982, he was a Technical Staff at Hewlett-Packard Laboratories, Palo Alto, CA, where he was engaged in research on the design of MOS memory. Since 1983, he has been with the Microsystems Technology Laboratory, Massachusetts Institute of Technology, Cambridge, where he is currently the LeBel Professor of Electrical Engineering. He was a cofounder of SMAI.
Camera Technologies. His current research interests include mixed signal integrated circuit and system design. He is the coauthor of an undergraduate textbook *Microelectronics: An Integrated Approach* (Prentice Hall, 1997).

Dr. Sodini was on several IEEE Conference Committees, including the International Electron Devices Meeting, where he was the 1989 General Chairman and the IEEE Electron Devices Society Administrative Committee. During 2002–2004, he was the President of the IEEE Solid-State Circuits Society. He is currently the Chair of the Executive Committee for the VLSI Symposia.

He is the KDD Career Development Associate Professor of Electrical Engineering at the Massachusetts Institute of Technology (MIT), Cambridge. At MIT, his research interests include studies of physical properties of organic and organic/inorganic nanocrystal composite thin films and structures, and development of novel optoelectronic organic and hybrid nano-scale devices. Prior to joining MIT, he was a Senior Scientist and Project Head of Strategic Technology Development at Universal Display Corporation (UDC) where he developed applications of organic materials to light emitting and photosensitive devices. He has authored over 60 published research articles and is inventor of more than 40 U.S. patents in areas of organic and nanostructured light emitting diodes, lasers, photovoltaics, photodetectors, and programmable memories, most of which have been licensed and utilized by both start-up and multinational companies.

Prof. Bulovic is a recipient of the U.S. Presidential Early Career Award for Scientist and Engineers, the National Science Foundation Career Award, and was named to Technology Review TR100 List.

Akintunde Ibitayo (Tayo) Akinwande (S’81–M’86–SM’04–F’08) received the B.Sc. degree in electrical and electronic engineering from the University of Ife, Ife, Nigeria, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from Stanford University, Stanford, CA, in 1981 and 1986, respectively.

During 1986, he was with Honeywell Inc., where he was initially engaged in research on GaAs complementary FET technology for very high speed-signal processing, and later, on pressure sensors, accelerometers, thin-film field emission, and display devices. Since 1995, he has been with the Massachusetts Institute of Technology, Cambridge, where he is currently a Professor in the Department of Electrical Engineering and Computer Science. His current research interests include devices for smart displays, large area electronics, field emission, field ionization, gas analysis, electrospray, and electric propulsion. He is the holder of several patents in microelectromechanical systems (MEMS) and display technologies.

Prof. Akinwande was the recipient of the 1996 National Science Foundation (NSF) CAREER Award. He was on Technical Program Committees for various conferences, including the Device Research Conference, the International Electron Devices Meeting, the International Solid-State Circuits Conference, the International Display Research Conference, and the International Vacuum Microelectronics Conference. He is a member of the Materials Research Society, the Society of Information Display, and the Electrochemical Society.