Search for New Bottomlike Quark Pair Decays $QQ\overline{q} \rightarrow (tW^{±})(t\overline{W}^{±})$ in Same-Charge Dilepton Events

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Search for New Bottomlike Quark Pair Decays $Q\bar{Q} \rightarrow (t\bar{W}^{+})(t\bar{W}^{±})$

in Same-Charge Dilepton Events

We report the most restrictive direct limits on masses of fourth-generation down-type quarks b', and quarklike composite fermions (B or T_5^3), decaying promptly to tW^\pm. We search for a significant excess of events with two same-charge leptons (e, μ), several hadronic jets, and missing transverse energy. An analysis of data from $p\bar{p}$ collisions with an integrated luminosity of 2.7 fb$^{-1}$ collected with the CDF II detector at Fermilab yields no evidence for such a signal, setting mass limits $m_{b'} > 338$ GeV/c^2 and $m_{T_5^3} > 365$ GeV/c^2 at 95% confidence level.
The standard model (SM) of particle physics accommodates three generations of fundamental quarks and leptons, but does not prohibit a fourth. Recent measurements of charge-parity (CP) nonconservation in B-meson decays [1] are more than 2 standard deviations from SM expectations, and are sensitive to contributions [2] from a fourth-generation up-type quark, \(t' \). This pattern of measurements [3–6], if genuine, warrants a search for another generation of quarks or a multiplet of quarklike objects. A four-generation model (cf. [7]) could provide sources of particle-antiparticle asymmetries large enough to account for the baryon asymmetry of the Universe [8] and accommodate a heavier Higgs boson (the source of mass generation) than a three-generation model [9].

This Letter reports a search for heavy particles \(Q \) decaying to a \(t \) quark and a \(W \) boson at a mass scale relevant to both the \(B \)-meson anomalies and the Higgs mechanism. We search for pair-production of \(Q\bar{Q} \) via strong interactions, where \(Q \) is either a fourth-generation down-type quark \(b' \) or a quarklike (nonhadronic) composite fermion \(B \) or \(T_{5/3} \) [10]. The \(B \) and \(T_{5/3} \) (with \(5/3 \) electron charge) that we consider might arise from symmetries, consistent with precise electroweak measurements [11,12]. If \(T_{5/3} \) exists, the existence of \(B \) is implied, doubling the expected event rate. Many models of new phenomena providing a Higgs mechanism predict particles with large couplings to the third-generation \(t \) quark. For instance, models of warped extra dimensions, equivalent to models of strongly interacting composite particles, predict fermion excitations with the quantum numbers of quarks. A summary is given in [13].

In each case, \(Q \to tW^\pm \), \(t \to bW^+ \) [14]. We investigate the case in which two same-charge \(W \) bosons decay leptonically (including \(\tau \) decays to \(e \) or \(\mu \)). This is the first search for quarklike particles in this mode [15], achieving the most sensitive direct limits on short-lived fourth-generation particles. (Long-lived particles have displaced vertices and require different analysis methods.)

We assume that \(Q \) decays exclusively to \(tW^\pm \). This is expected for \(B \) and \(T_{5/3} \), and for \(b' \), it is expected [16] under the assumptions that (a) coupling to light quarks is insignificant, (b) \(m_{b'} > m_t + m_W = 255 \text{ GeV}/c^2 \), and (c) \(|m_{b'} - m_W| < m_W \). These assumptions are justified by experimental constraints. A search for \(Q \to W + \text{jet} \) [17] found \(m_W > 311 \text{ GeV}/c^2 \), implying a similar limit on \(m_{b'} \) if the \(b' \) decay to this channel is significant. Combining this limit with results of a search for \(Q \to Z + \text{jets} \) [18] and an analysis of branching fractions for \(b' \) [16], we infer \(m_{b'} > 255 \text{ GeV}/c^2 \). A fourth-generation is most consistent with precise electroweak measurements when the mass splitting \(\Delta m \) between \(b' \) and \(t' \) is less than the \(W \)-boson mass but nonzero; Ref. [9] gives \(\Delta m = 50 \text{ GeV}/c^2 \).

We use a data sample corresponding to an integrated luminosity of 2.7 fb\(^{-1} \) collected with the CDF II detector [19] at the Tevatron \(p\bar{p} \) collider at Fermilab. The data acquisition system is triggered by \(e \) or \(\mu \) candidates with \(p_T > 18 \text{ GeV}/c \) [20]. We require the \(\ell^+\ell^- bj_\ell \) signature, following [21]: two same-charge reconstructed leptons (\(e \) or \(\mu \)) with pseudorapidity magnitude \(|\eta| < 1.1 \) and \(p_T > 20 \text{ GeV}/c \), where at least one lepton is isolated [22]; at least two jets with \(E_T > 15 \text{ GeV} \) and \(|\eta| < 2.4 \); at least one of the jets with evidence of a long-lived particle (\(b \) tag) using the tight SECVTX algorithm [23]; and missing transverse energy \(E_T > 20 \text{ GeV} \) [24].

The dominant background comes from events in which one of the leptons is a misidentified light-flavor jet or a lepton from the decay of a bottom or charmed hadron in a heavy flavor jet, largely from \(W \) production in association with light or heavy flavor jets or from \(t\bar{t} \) production with semileptonic decays. This background is described using a lepton misidentification model from inclusive jet data [25] applied to \(W + \text{jet} \) events. In same-charge dilepton control regions without a \(b \)-tag requirement, this model describes well the kinematics of observed events with large \(E_T \). Nevertheless, the requirement of a \(b \) tag in the final selection introduces uncertainty regarding the misidentification model, leading to a final 100% systematic uncertainty, as described in [21].

Other backgrounds include processes that produce electron–positron pairs. These may be reconstructed with the same charge due to asymmetric \(\gamma \) conversions in the process \(e_{\text{hard}} \to e_{\text{soft}} \gamma \to e_{\text{hard}}^{+}e_{\text{soft}}^{-}e_{\text{soft}}^{-} \), where hard and soft refer to large and small transverse momentum, respectively. The major contributions from this mechanism are

![Fig. 1](https://via.placeholder.com/150)

FIG. 1 (color online). (a) Missing transverse energy in events with same-charge leptons in 2.7 fb\(^{-1} \). The right outermost bin includes overflow events with \(E_T > 160 \text{ GeV} \). (b) Number of reconstructed jets for the expected backgrounds. The observed data and the \(b' \) (or \(B \)) signal are shown at the best-fit rate for \(m_{b'} = 330 \text{ GeV}/c^2 \). The fitted size and shape for the \(T_{5/3} + B \) signal is nearly identical. In both, light gray represents events with fake leptons, medium gray \(Z \) or diboson events, and dark gray leptons from \(t\bar{t} \) events. In (b), the hatched area represents the fitted signal contribution.
from events with a Z or virtual γ in association with jets ($Z/\gamma^* + \text{jets}$), or from dileptonic $t\bar{t}$ decays.

Estimates of the backgrounds from $Z/\gamma^* + \text{jets}$ processes are made with the ALPGEN [26] v2.10 simulation code interfaced with PYTHIA 6.325 [27] in the MLM scheme [26] for the hadronization and fragmentation and normalized to data in opposite-charge events in the Z mass region. The detector response for both $Z + \text{jets}$ and $t\bar{t}$ processes is evaluated using the CDF simulation program CDFSIM [28], where, to avoid double counting, the same-charge leptons are required to originate from the W or Z decays rather than from misidentified jets.

To validate the modeling of the rate of hard bremsstrahlung from electrons, we compare our prediction for the contribution from electrons, we compare our prediction for the

decays rather than from misidentified jets.

Backgrounds to the $\ell^+\ell^-b\bar{b}E_T$ signature with real same-charge leptons are rare in the SM; they are largely from WZ and ZZ production and are highly suppressed by the requirement of a b tag. Backgrounds from diboson production WW, WZ, ZZ, $W\gamma$, and $Z\gamma$ in association with b jets are modeled with PYTHIA 6.216 and BAUR [29] generators.

Backgrounds from charge mismeasurement are insignificant, as the charge of a particle with $p_T \approx 100 \text{ GeV}/c$ is typically determined with more than 5σ significance [30]. Charge mismeasurement is very rare in this range, confirmed by the absence of any strong features in dilepton invariant mass in the Z mass region in same-charge muon events. The largest potential source comes from $t\bar{t}$ events, in which the lepton momenta are typically smaller than 100 GeV/c. The final background estimates are given in Table I.

The b' and $T_{5/3} + B$ signals are modeled with the MADGRAPH simulation program following the minimal composite Higgs model described in [10] and paired with PYTHIA for hadronization and fragmentation. The acceptance is approximately 2.2%, nearly independent of heavy quark masses in the range 300–400 GeV/c^2. The expected numbers of events for b' (or B), and $T_{5/3} + B$ are given in Table II.

We observe two events in the signal region, in agreement with the expected backgrounds (see Table I). To calculate the most likely signal cross section, we perform a binned maximum-likelihood fit to the number of reconstructed jets. Figure 1(b) shows the number of reconstructed jets in the observed events, as well as the signal distribution

<table>
<thead>
<tr>
<th>Source</th>
<th>ee</th>
<th>$\mu\mu$</th>
<th>$e\mu$</th>
<th>Total $\ell\ell$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>0.01 ± 0.01</td>
<td>0</td>
<td>0.02 ± 0.02</td>
<td>0.03 ± 0.03</td>
</tr>
<tr>
<td>(b)</td>
<td>0.06 ± 0.04</td>
<td>0</td>
<td>0.09 ± 0.03</td>
<td>0.15 ± 0.05</td>
</tr>
<tr>
<td>(c)</td>
<td>0.6 ± 0.6</td>
<td>0.3 ± 0.3</td>
<td>0.5 ± 0.5</td>
<td>1.4 ± 1.4</td>
</tr>
<tr>
<td>Total</td>
<td>0.7 ± 0.6</td>
<td>0.3 ± 0.3</td>
<td>0.6 ± 0.5</td>
<td>1.6 ± 1.4</td>
</tr>
</tbody>
</table>

Table I. Expected background contributions to the ee, $e\mu$, and $\mu\mu$ channels in 2.7 fb$^{-1}$ from (a) Z and diboson, (b) $t\bar{t} \rightarrow \ell^+\ell^-b\bar{b}$, and (c) misidentified lepton.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b' or B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_{NLO}</td>
<td>227</td>
<td>176</td>
<td>137</td>
<td>106</td>
<td>83</td>
<td>64</td>
<td>34</td>
<td>18</td>
</tr>
<tr>
<td>N</td>
<td>13.4</td>
<td>9.6</td>
<td>7.5</td>
<td>5.9</td>
<td>4.6</td>
<td>3.5</td>
<td>1.9</td>
<td>1.0</td>
</tr>
<tr>
<td>$\sigma_{\text{exp/d}}$</td>
<td>67</td>
<td>63</td>
<td>63</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>σ_{obs}</td>
<td>67</td>
<td>96</td>
<td>83</td>
<td>94</td>
<td>85</td>
<td>83</td>
<td>78</td>
<td>67</td>
</tr>
<tr>
<td>$T_{5/3} + B$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>454</td>
<td>352</td>
<td>274</td>
<td>212</td>
<td>166</td>
<td>128</td>
<td>68</td>
<td>36</td>
</tr>
<tr>
<td>$\sigma_{\text{exp/d}}$</td>
<td>86</td>
<td>89</td>
<td>69</td>
<td>62</td>
<td>59</td>
<td>65</td>
<td>66</td>
<td>60</td>
</tr>
<tr>
<td>σ_{obs}</td>
<td>86</td>
<td>89</td>
<td>69</td>
<td>98</td>
<td>91</td>
<td>83</td>
<td>83</td>
<td>79</td>
</tr>
</tbody>
</table>

Table II. Theoretical cross sections (σ_{NLO} in fb [31,32]), expected yield (N), median expected 95% C.L limit ($\sigma_{\text{exp/d}}$ in fb), and observed 95% C.L limit (σ_{obs} in fb) for b' (or B) and ($T_{5/3} + B$) signals at varying masses.
with the best-fit value of the signal cross section. Kinematics of the two signal events is shown in Fig. 2 and the p_T values are given in Table III. Shown in (a) and (c) are views of the events along the beam axis; jets shown as cones, electrons as solid lines, muons as dotted lines, and missing transverse energy as an arrow; lengths are proportional to p_T (see Table III). Shown in (b) and (d) are views of the events in $\eta - \phi$; jets shown as open circles, electrons as filled circles, and muons as dashed circles; radii are proportional to p_T.

We construct confidence intervals [33] in the theoretical cross section by generating ensembles of simulated experiments that describe expected fluctuations of statistical and systematic uncertainties, including uncertainties in the jet-energy scale [34], gluon radiation [35], signal and background normalization, and parton distribution functions [36,37]. The median expected and observed limits and theoretical next-to-leading-order (NLO) cross sections [31,32] are given in Table II and shown in Fig. 3.

We convert limits on the pair-production cross sections to limits on the fermion masses and obtain $m_{b'}$, $m_B > 338 \text{ GeV}/c^2$, and $m_{T_{5/3}} > 365 \text{ GeV}/c^2$ at 95% confidence level. The two events observed are consistent with the predicted number of background events, although we note that the $e\mu$ event has a number of jets characteristic of the signal, reducing the observed lower limits from what is expected. This is the most restrictive direct lower limit on the mass of a down-type fourth-generation quark, significantly reducing the allowed SM mass range, and the first lower limits on the masses of quarklike fermions $T_{5/3}$ and B, which may figure prominently in future searches.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

Deceased.

Visitors from University of Massachusetts Amherst, Amherst, MA 01003.

Visitors from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

Visitors from University of Bristol, Bristol BS8 1TL, United Kingdom.

Visitors from Chinese Academy of Sciences, Beijing 100864, China.

<table>
<thead>
<tr>
<th>Event</th>
<th>ℓ_1</th>
<th>ℓ_2</th>
<th>jet$_1$</th>
<th>b-jet</th>
<th>E_T</th>
<th>other jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+\mu^-$</td>
<td>80</td>
<td>31</td>
<td>78</td>
<td>25</td>
<td>87</td>
<td>40</td>
</tr>
<tr>
<td>$e^+\mu^-$</td>
<td>73</td>
<td>21</td>
<td>60</td>
<td>42</td>
<td>27</td>
<td>39, 33, 24</td>
</tr>
</tbody>
</table>
Specifically, we refer to the mixing-induced CP asymmetry in the decays $B_s \rightarrow J/\psi f$ [3], the difference between direct CP asymmetries in the decays $B^0 \rightarrow K^+ \pi^-$ and $B^+ \rightarrow K^+ \pi^0$ [4,6], and the values of mixing-induced CP asymmetry obtained from $B^0 \rightarrow J/\psi K_S^0$ or $B^0 \rightarrow (\phi, \eta', K_S^0 K_L^0) K_S^0$ [5,6].

[13] Unless otherwise indicated, particle types and decay processes imply also their charge conjugates.

[19] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. Pseudorapidity is $\eta = -\ln[\tan(\theta/2)]$, where θ is the polar angle relative to the proton beam direction, and ϕ is the azimuthal angle while $p_T = |p| \sin \theta$, $E_T = E \sin \theta$.

[21] A lepton is isolated if the calorimeter energy in a cone $\Delta R < 0.4$ surrounding the lepton is less than 10% of the energy of the lepton.

[23] Missing transverse energy, E_T, is defined as the magnitude of the vector $\sum_i E_i \hat{n}_i$, where E_i are the magnitudes of transverse energy contained in each calorimeter tower i, and \hat{n}_i is the unit vector from the interaction vertex to the tower in the transverse x, y plane. E_T is further corrected for the energy of identified muons.
