A Unified Point Process Framework for Assessing Heartbeat Dynamics and Cardiovascular Control

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/NEBC.2009.4967633</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Mon Feb 04 06:29:38 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/58951</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A Unified Point Process Framework for Assessing Heartbeat Dynamics and Cardiovascular Control

Zhe Chen, Emery N. Brown, Riccardo Barbieri
{zhechen,brown,barbieri}@neurostat.mgh.harvard.edu
Massachusetts General Hospital/Harvard Medical School/Massachusetts Institute of Technology
Boston, MA 02114, USA

Abstract— We present a unified probabilistic point process framework to estimate and monitor the instantaneous heartbeat dynamics as related to specific cardiovascular control mechanisms and hemodynamics. Assessment of the model’s statistics is established through the Wiener-Volterra theory and a multivariate autoregressive (AR) structure. A variety of instantaneous cardiovascular metrics, such as heart rate (HR), heart rate variability (HRV), respiratory sinus arrhythmia (RSA), and baroreceptor-cardiac reflex (baroreflex), can be rigorously derived within a parametric framework and instantaneously updated with an adaptive algorithm. Nonlinearity metrics, as well as the bispectrum of heartbeat intervals, can also be derived. We have applied the proposed point process framework to a number of recordings under different experimental protocols. Results reveal interesting dynamic trends across different posture/pharmacological/age/heart disease conditions, pointing at our mathematical approach as a promising monitoring tool for an accurate, noninvasive assessment of a large spectrum of cardiovascular diseases and disorders, including hypertension and congestive heart disease.

I. INTRODUCTION

In recent years, advanced statistical models have been developed for evaluating the heartbeat dynamics [1-3]. Heartbeats, once detected from continuous electrocardiogram (ECG) signal, are treated as discrete events that can be modeled by a stochastic point process [2, 3]. Various probabilistic models (e.g., the inverse Gaussian, Gaussian, lognormal, or gamma distribution) can be used to model the heartbeat interval (EeG) signal, are treated as discrete events that can be modeled as the bispectrum of heartbeat intervals, can also be derived. We have applied the proposed point process framework to a number of recordings under different experimental protocols. Results reveal interesting dynamic trends across different posture/pharmacological/age/heart disease conditions, pointing at our mathematical approach as a promising monitoring tool for an accurate, noninvasive assessment of a large spectrum of cardiovascular diseases and disorders, including hypertension and congestive heart disease.

II. A POINT PROCESS FRAMEWORK FOR HEARTBEAT DYNAMICS

A. Heartbeat Interval Point Process Model

Given a set of R-wave events \(\{ u_j \}_{j=1}^n \) detected from the ECG, let \(RR_{i-j} \) denote the \(j \)th R-R interval. By treating the R-waves as discrete events, and assuming history dependence, the waiting time \(t-u_i \), until the next R-wave event can be modeled by an inverse Gaussian model [2, 3]:

\[
p(t) = \frac{\theta}{2\pi} \exp\left(-\frac{\theta(t-u_i - \mu_i)^2}{2\mu_i^2(t-u_i)}\right)
\]

where \(u_i \) denotes the previous R-wave event occurred before time \(t \), \(\theta > 0 \) denotes the shape parameter, and \(\mu_i = \mu_{RR}(t) \) denotes the instantaneous R-R mean. In point process theory, the inter-event probability \(p(t) \) is related to the conditional intensity function (CIF) \(\lambda(t) \) by a one-to-one transformation:

\[
\lambda(t) = \frac{p(t)}{1 - \int_0^t p(\tau)\,d\tau}
\]

the goodness-of-fit of the heartbeat point process model.

B. Instantaneous Indices of HR and HRV

Heart rate is defined as the reciprocal of the R-R intervals. For RR measured in seconds, the HR \(r = c(t-u_i)^{-1} \) (where \(c=60 \) s/min) is a physiological measurement in beats per minute (bpm). By the change-of-variables formula, the HR probability

\[
p(r) = p(c(t-u_i)^{-1})
\]

is given by

\[
p(r) = \frac{dr}{dt} p(t),
\]

and the mean HR and the HRV can be derived [1, 2]:

\[
\mu_{HR} = a^{-1} + b^{-1}, \quad \sigma_{HR} = \frac{(2a+b)}{ab^2}^{1/2},
\]

where \(a = c^{-1}\mu_{RR} \) and \(b = c^{-1}\theta \).

III. MODELING OF INSTANTANEOUS HEARTBEAT INTERVAL

In general, let us consider a causal, continuous-time nonlinear mapping \(F \) between an output variable \(y(t) \) and two zero-mean input variables \(x(t) \) and \(u(t) \). In light of the Wiener-Volterra theory, expanding the Volterra series of function \(F \) (up to the second order) with respect to \(x(t) \) and \(u(t) \) yields

\[
y(t) = F(x(t),u(t))
\]

\[
= \int_0^t a(\tau)x(t-\tau)d\tau + \int_0^t b(\tau)u(t-\tau)d\tau
+ \int_0^t \int_0^\tau h_1(\tau_1,\tau_2)x(t-\tau_1)u(t-\tau_2)d\tau_1d\tau_2
+ \int_0^t \int_0^\tau h_2(\tau_1,\tau_2)x(t-\tau_1)x(t-\tau_2)d\tau_1d\tau_2
+ \int_0^t \int_0^\tau h_3(\tau_1,\tau_2)u(t-\tau_1)u(t-\tau_2)d\tau_1d\tau_2
\]

This work was supported by NIH Grants R01-HL084502, R01-DAO15644 and DP1-OD003646.
where $F(\bullet)$: $\mathbb{R}^2 \rightarrow \mathbb{R}$, and $a(\bullet), b(\bullet), h_1(\bullet, \bullet), h_2(\bullet, \bullet), h_3(\bullet, \bullet)$ are Volterra kernels with appropriate orders. In our case, $y(t)$ is replaced by $\mu(t)$, $x(t)$ by previous R-R intervals, $u(t)$ by either blood pressure or respiration as covariate, and the continuous-time integral will be approximated by a finite and discrete approximation.

1) Case 1: Dropping of all second-order terms in (2), we obtain a bivariate discrete-time linear system [4, 6, 8]:

$$\mu_t = a_0(t) + \sum_{i=1}^{p} a_i(t)RR_{t-i} + \sum_{j=1}^{q} b_j(t)u_{t-j}$$ \hspace{1cm} (3)

2) Case 2: Dropping of the last two quadratic terms in (2), we obtain a discrete-time bilinear system [7]:

$$\mu_t = a_0(t) + \sum_{i=1}^{p} a_i(t)RR_{t-i} + \sum_{j=1}^{q} b_j(t)u_{t-j}$$

$$+ \sum_{i=1}^{r} \sum_{j=1}^{r} h_{ij}(t)(RR_{t-i} - \langle RR \rangle)u_{t-j}$$ \hspace{1cm} (4)

3) Case 3: Dropping of the terms that involve the covariate measure $u(t)$ in (2), it follows that [5]:

$$\mu_t = a_0(t) + \sum_{i=1}^{p} a_i(t)RR_{t-i}$$

$$+ \sum_{i=1}^{r} \sum_{j=1}^{r} h_{ij}(t)(RR_{t-i} - \langle RR \rangle)(RR_{t-j} - \langle RR \rangle)$$ \hspace{1cm} (5)

Therefore, by taking different terms from the Wiener-Volterra series expansion, we may derive and study the interactions between the random variables of interest.

IV. ASSESSMENT OF CARDIOVASCULAR FUNCTIONS AND INSTANTANEOUS SPECTRAL ANALYSIS

From (3), depending on specific covariate measurement $u(t)$, we can evaluate the transfer function and frequency response of the $u \rightarrow RR$ feedback loop as follows:

$$H_{12}(f) = \frac{\sum_{j=1}^{q} b_j(k)z^{-j}}{1 - \sum_{i=1}^{p} a_i(k)z^{-i}}$$ \hspace{1cm} (6)

where f_1 and f_2 denote the sample rate for the RR and covariate measurements, respectively. For instance, if $u(t)$ is a respiration measure, we can compute the RSA from (6) [4, 8]; if $u(t)$ is a blood pressure measure, then the baroreflex gain can be evaluated [6, 7]. Of note, when blood pressure is considered, the interaction is modelled by a bivariate closed-loop AR structure to acknowledge the observed cardiovascular physiology [1].

In light of (3)-(5), we can also perform various types of parametric spectral analysis, which may include the autospectrum and bispectrum of the instantaneous R-R interval, as well as the coherence and cross-bispectrum between the R-R and the covariate measures [4-8]. Therefore, our probabilistic model offers a convenient framework to assess heartbeat dynamics and cardiovascular control in both time and frequency domains.

We can update the model parameters in an online fashion using an adaptive point process filter [3]. By virtue of online estimation, we can compute various instantaneous indices regarding the heartbeat dynamics and the cardiovascular control in a nonstationary environment. Finally, model goodness-of-fit of can be evaluated with a Kolmogorov-Smirnov (KS) test based on the so-called time-rescaling theorem [2, 3].

V. SUMMARY OF RESULTS AND CONCLUSION

Results on application of our model framework include instantaneous assessment of sympatho-vagal balance and RSA during autonomic blockade, of nonlinear dynamics in cardiac heart failure subjects, and of instantaneous baroreflex gain in healthy subjects during a tilt procedure and under progressive stages of anesthesia [4-8]. All instantaneous indices are estimated to accommodate the nonstationary nature of the experimental recordings. Overall, our observations have confirmed established findings regarding the most important physiological and pathological mechanisms involved in cardiovascular control, and they also reveal interesting dynamic trends across different conditions.

In summary, a unified point process framework is proposed which enables us to simultaneously assess the linear and nonlinear indices of HRV, together with important cardiovascular functions of interest, under a wide range of experimental protocols.

ACKNOWLEDGEMENT

The authors thank Drs. T. Heldt, R. G. Mark, P. L. Purdon, and G. B. Stanley for sharing some of experimental recordings used in our studies [2-8].

REFERENCES

