Quantum Capacitance in Scaled Down III-V FETs
Donghyun Jin, Daehyun Kim, Taewoo Kim and Jesús A. del Alamo
Massachusetts Institute of Technology, Cambridge, MA 02139; jinnara@mit.edu; +1-617-253-1620; FAX +1-617-258-7393

Abstract
We have built a physical gate capacitance model for III-V FETs that incorporates quantum capacitance and centroid capacitance in the channel. We verified its validity with simulations (Nextnano) and experimental measurements on High Electron Mobility Transistors (HEMTs) with InAs and InGaAs channels down to 30 nm in gate length. Our model confirms that in the operational range of these devices, the quantum capacitance significantly lowers the overall gate capacitance. In addition, the channel centroid capacitance is also found to have a significant impact on gate capacitance. Our model provides a number of suggestions for capacitance scaling in future III-V FETs.

Introduction
As Si CMOS approaches the end of the roadmap, finding a new transistor technology that allows the extension of Moore’s law has become a technical problem of great significance. Among the various candidates, III-V-based Field-Effect Transistors represent a very promising technology. In particular, low-effective mass materials with high electron velocities, such as InGaAs and InAs are of great interest [1,2].

A concern with this approach is the relatively small inversion-layer capacitance that is associated with the channel and the limits that this imposes on the gate capacitance that can be attained from barrier thickness scaling [3]. This can seriously limit the current driving ability of scaled down devices. The inversion-layer capacitance has two main contributions: quantum capacitance [4] and centroid capacitance [5]. The first one originates in the penetration of the Fermi level inside the 2D subbands of a quantum well due to the finite density of states. The second one is related to the shape of the charge distribution in the inversion layer. In low effective mass III-V channels, both capacitances can be relatively small.

In order to understand the scaling potential of III-V FETs, we have built a physical gate capacitance model and compared it with experimental measurements on InGaAs- and InAs-channel HEMTs. From this analysis, we conclude that the relatively small quantum capacitance of InAs-rich channels significantly limits the overall gate capacitance in scaled down designs. In addition, our experiments suggest a large increase of the in-plane effective mass in very thin channel designs as a result of non-parabolicity and strain. This should help to achieve a relatively high electron concentration in future scaled down high-k dielectric III-V FETs.

Gate Capacitance Model
In this work, the gate capacitance of a III-V FET is modeled as the series combination of the insulator capacitance and the inversion-layer capacitance (Fig. 1). This one consists of a parallel combination of the contributions of each occupied electron subband in the channel. For each subband i, the inversion-layer capacitance (C_{inv}) consists of the quantum capacitance ($C_{Q.i}$) and the centroid capacitance ($C_{cent.i}$) which are connected in series (Fig. 1). We derived this from the definition of inversion-layer capacitance:

$$C_{inv} = \sum_i \left(\frac{1}{C_{Q.i}} + \frac{1}{C_{cent.i}} \right)^{-1}$$

where ψ_S is surface potential, and E_C is conduction band edge at the barrier-channel interface on the channel side. From (1), (2) and (3), inversion-layer capacitance is expressed as $C_{inv} = \sum_i \left(\frac{1}{C_{Q.i}} + \frac{1}{C_{cent.i}} \right)^{-1}$ where analytic
formulas for $C_{Q,i}$ and $C_{Cent,i}$ are given in Fig. 2. If the location of each subband energy level (E_i) and the Fermi level are known with respect to the conduction band edge, then all capacitance components can be evaluated. Rather than attempt to analytically solve the quantization problem for realistic FET structures, in this work, we used a one-dimensional Poisson-Schrodinger solver (Nextnano) to obtain the subband energy levels as a function of V_G.

We have investigated the gate capacitance in three HEMT structures with different channel and barrier designs (Fig. 3). In essence, we have two channels, one with $\text{In}_{0.7}\text{Ga}_{0.3}\text{As}$ at the center of a 13 nm thick channel [1] and another one with pure InAs at the center of a 10 nm channel [2]. In both cases, the channel cladding is $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ (2±3 nm). For the InAs-channel design, we have two $\text{In}_{0.53}\text{Ga}_{0.47}\text{As}$ barrier thicknesses, t_{ins}, of 4 and 10 nm. For the InGaAs sample, t_{ins} is 4 nm.

Before analyzing the experimental gate capacitance in these devices, we verified the accuracy of our physical gate capacitance model. Fig. 4 shows that our model agrees very well with simulation results obtained directly from Nextnano through $C_G = d(Q_S)/dV_G$ for the three heterostructures. In the

C_G (in fF/mm) = C_g (in $\text{fF}/\mu\text{m}^2$) x L_G + $2 \times C_{\text{gext_outer}}(V_{GS}) + 2 \times C_{\text{gext_inner}}$

Nextnano simulations, the Schottky barrier height was adjusted to match the experimental threshold voltage.

CG Measurements on Scaled Down HEMTs

We have compared our model against experimental gate capacitance for these three heterostructures. C_G was obtained from S-parameter measurements [6] of HEMTs with gate lengths (L_G) from 30 to 200 nm in the linear regime (V_{DS}= 10 mV) for different values of V_{GS}. After deembedding the pads, we extracted the intrinsic gate capacitance by eliminating all the parasitic components (Fig. 5). We define two different kinds of parasitic gate capacitance. There is an outer component, $C_{\text{gext_outer}}$, associated with the top of the T-gate. $C_{\text{gext_inner}}$ is associated with the sidewall of the gate stem. Unlike $C_{\text{gext_outer}}$, this parasitic component depends on V_G. In order to eliminate these two parasitic terms, we measured C_G in devices with different L_G as a function of V_{GS}.

For the InAs-channel HEMTs with t_{ins} = 4 nm, $C_G(V_{GS} = -0.3 \text{ V})$ corresponds to $C_{\text{gext_outer}}$ in Fig. 5.
Comparison of Model and Experiments

Figs. 8, 9 and 10 show the experimental intrinsic gate capacitance vs VGS for the three heterostructures as well as the gate capacitance components that are derived from our model. The agreement between modeled and experimental capacitance is reasonable although there are some discrepancies that are discussed below. In all three cases, the degradation in overall gate capacitance that comes from the finite inversion-layer capacitance is evident. The measured CG in strong inversion is between 35% and 62% of Cin.

An additional conclusion is that the 1st subband dominates the overall gate capacitance in the operational range of a scaled down HEMT. This is particularly the case of the InAs channel structures which have significant more channel quantization due to the thinner channel and the lower effective mass. A third conclusion is that Ccent1 is also highly relevant to determining CG. Comparing the two devices with tin = 4 nm in Figs. 8 and 9, we see that Ccent1 is significantly larger in the thin channel device (Fig. 9) vs. the thicker channel device (Fig. 8). This compensates for the lower quantum capacitance of the InAs device which ends up with a higher overall value of CG. This suggests that scaling down the channel thickness is an effective way to enhance gate capacitance.

Discussion

The agreement between model and experiments is worst for the tin = 4 nm InAs channel device (Fig. 9). This is the structure in which quantum capacitance is most relevant. This discrepancy cannot come alone from experimental uncertainties in tin, which is measured by TEM [7]. The
Our model allows us to estimate CG in future scaled down III-V FETs. In future devices, the adoption of a high-k gate dielectric and the use of a very thin quantized channel with a low-effective mass material will establish the quantum capacitance of the first subband as the dominant term in CG. Using our model, we can examine the implications of this. Fig. 11 shows the agreement between experiments and the model for the InAs-channel devices improves when we increase m*_i of InAs from bulk value (0.026m_e) to the value around 0.05m_e with ±0.005m_e variation. This seems like a large increase but it is actually expected by theoretical and experimental studies of these effects [8-11]. With the combination of thickness uncertainty and effective mass increase, the discrepancy between model and measurements is significantly reduced.

Our model allows us to estimate CG in future scaled down high-k dielectric III-V FETs. In future devices, the adoption of a high-k gate dielectric and the use of a very thin quantized channel with a low-effective mass material will establish the quantum capacitance of the first subband as the dominant term in CG. Using our model, we can examine the implications of this. Fig. 12 shows the sheet carrier concentration as a function of gate overdrive for a future 10 nm gate length prototype device with t_channels = 3 nm and t_ins = 2.6 nm (ε = 25ε_o). The dotted lines show the expected N_s for different values of the in-plane effective mass in the channel. Due to the dominance of CQ1, the effective mass in the channel greatly affects N_s. As m*_i increases, so does CQ1 and N_s at a given overdrive. It is clear that in future III-V FETs, an enhancement of channel effective mass is essential to attain N_s in the high 10^12 cm^-2 range. However this seems eminently feasible through non-parabolicity, the strong quantum confinement expected from a very thin channel [8,10] and by proper engineering of in-grown biaxial strain [9].

Conclusions

We have developed a simple quantitative model for CG in III-V FETs that includes the quantum capacitance. We validate this model through simulations. The model provides reasonable agreement with experiments on InGaAs and InAs FETs with different designs. Residual discrepancies are likely due to the non-parabolic nature of the bands and biaxial strain. Our model suggests that quantum capacitance will dominate in future scaled III-V FETs. Furthermore, the expected increase of effective mass in thin channel designs will provide the required sheet charge density for high-performance operation.

References