Scalability of sub-100 nm thin-channel InAs PHEMTs

http://dx.doi.org/10.1109/ICIPRM.2009.5012459

Institute of Electrical and Electronics Engineers

Final published version

Wed Nov 21 21:03:54 EST 2018

http://hdl.handle.net/1721.1/59462

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Please share how this access benefits you. Your story matters.
Scalability of sub-100 nm thin-channel InAs PHEMTs

Dae-Hyun Kim and Jesús A. del Alamo

Microsystems Technology Laboratories (MTL), MIT
Cambridge, MA 02139, U.S.A, E-mail: alamo@mit.edu

ABSTRACT

We have experimentally investigated the role of thinning down the channel thickness and using high InAs composition as a channel material, which aims to improve the electrostatic integrity of the device as well as high frequency characteristics of the device. To do so, we have fabricated InAs PHEMTs with $t_h = 10$ nm, together with reference In$_{0.7}$Ga$_{0.3}$As PHEMTs with $t_h = 13$ nm. In comparison with reference In$_{0.7}$Ga$_{0.3}$As ones, InAs PHEMTs with $t_h = 10$ nm exhibit excellent electrostatic integrity of the device down to $L_g = 30$ nm regime, such as subthreshold swing ($S=75$ mV/dec), DIBL = 84 mV/V and $g_{m,max} = 1.9$ mS/mm at $V_{DS} = 0.5$ V. Besides, InAs PHEMTs with $L_g = 30$ nm show outstanding $f_t = 600$ GHz and $f_{max} = 490$ GHz at $V_{DS} = 0.5$ V. More importantly, InAs PHEMTs exhibit a far better scaling behaviors, down to $L_g = 30$ nm regimes. Indeed, InAs is a promising choice of the channel material for future THz and logic applications.

Introduction

InP-based High-Electron-Mobility-Transistors (HEMTs) have shown outstanding promise for future Tera-Hz (THz) electronics as well as post-Si CMOS logic applications. This is mainly as a result of the excellent carrier transport properties of high-InAs composition InGaAs which is used as channel material [1-3]. In FETs, the path for high-frequency and high-speed performance is gate-length (L_g) scaling. However, this requires harmonious scaling of all device dimensions. Without this, in the sub-100 nm regime, gate length scaling alone often results in at best modest performance improvements [4]. In particular, maintaining electrostatic integrity in the sub-100 nm regime requires the use of a very thin channel, together with a thin barrier. Thin channels suffer from enhanced carrier scattering and result in decreased performance. We have recently been investigating the combination of a very thin channel with enhanced InAs composition as a way to remedy this problem. Our results have shown outstanding high frequency performance as well as logic operation that compares favorably to that of Si in the 30 nm gate length range [5-6].

In order to understand in detail advantages of this device design, in this work, we report on sub-100 nm InAs PHEMTs and reference In$_{0.7}$Ga$_{0.3}$As PHEMTs that have been fabricated simultaneously following an identical process. This study reveals the relative roles of channel composition and channel thickness in device performance.

Process Technology

Fig. 1 shows a cross-sectional view of the devices fabricated in this work. Our devices are built in an InP substrate. The heterostructures and the device fabrication process have been reported before [5-6]. The only difference in both families of devices is the channel design. The InAs PHEMTs feature a 10 nm thick channel containing a 5 nm pure InAs layer inside, whereas In$_{0.7}$Ga$_{0.3}$As PHEMTs features a 13 nm thick channel containing an 8 nm In$_{0.7}$Ga$_{0.3}$As layer. In Hall epilayers but using a simpler 10 nm In$_{0.53}$Ga$_{0.47}$As cap with 1×10^{18} /cm3, the Hall mobility ($\mu_{H, Hall}$) of InAs PHEMTs was 13,200 cm2/V-s, which is about 20% better than that of reference In$_{0.7}$Ga$_{0.3}$As PHEMTs.

The fabricated devices here bring together novel design features to reduce parasitic capacitance and resistance, to improve short-channel effects, to speed up electron transport. Among them, a three-step gate recess process was used to scale down the In$_{0.7}$Ga$_{0.3}$As...
barrier layer to $t_{\text{ins}} = \sim 4$ nm. A Ti/Pt/Au metal stack was utilized in a T-gate with a stem height of about 150 nm. The side-recess spacing (L_{side}) was about 80 nm. We have made devices with L_g in the range of 30 nm to 130 nm.

Fig. 1 Schematic of InAs and In$_{0.7}$Ga$_{0.3}$As PHEMTs.

Results & Discussions

Fig. 2 (a) and (b) show output characteristics of both classes of devices for various L_g. InAs PHEMTs exhibit better current driving capability than In$_{0.7}$Ga$_{0.3}$As ones. In addition, as L_g decreases, InAs devices show better ID scalability than In$_{0.7}$Ga$_{0.3}$As ones. A trade-off with InAs subchannel is an increased output conductance (g_o) or kink effect. These are related with the used InAs subchannel with narrow bandgap (E_g), which presumably induces more impact-ionization rate in the channel [7]. As shown below, however, this does not result in degraded RF gain characteristics for InAs PHEMTs.

Fig. 3 shows subthreshold and gate leakage current (I_c) characteristics of both families of devices with $L_g = 30$ nm at $V_{DS} = 0.05$ and 0.5 V. The benefits of thinning down the channel are now evident. The InAs PHEMTs exhibit better subthreshold swing (75 mV/dec) and DIBL (84 mV/V) than the InGaAs devices ($S = 95$ mV/dec and DIBL = 120 mV/V). It is also to be noted that in both types of devices the off-state current (I_{OFF}) is dominated by Schottky gate current, not by band-to-band-tunneling (BTBT). The lack of significant BTBT in InAs PHEMTs might be due to electron quantization in the thin channel.
Improvements in the carrier transport properties can be more clearly observed in the transconductance \(g_m \) characteristics. \textbf{Fig. 4} shows the measured \(g_m \) as a function of \(V_{GS} \) for both types of 30 nm devices at \(V_{DS} = 0.5 \text{ V} \). We can see how InAs PHEMTs outperform against In\(_{0.7}\)Ga\(_{0.3}\)As ones, especially in the sense of much higher peak \(g_m \). \textbf{Fig. 5} shows the scaling behavior of \(g_{m,\text{max}} \) (on the left axis) and DIBL (on the right axis) as a function of \(L_g \) at \(V_{DS} = 0.5 \text{ V} \). The InAs PHEMTs exhibit much higher values of \(g_{m,\text{max}} \) and, more importantly, better \(g_{m,\text{max}} \) scalability than InGaAs PHEMTs. In fact, the InAs devices show outstanding \(g_{m,\text{max}} \) of 1.9 mS/\(\mu \text{m} \), at \(V_{DS} = 0.5 \text{ V} \). At the same time, the InAs devices show much better DIBL scalability down to \(L_g = 30 \text{ nm} \).

Microwave performance was characterized from 0.5 to 40 GHz using an HP 8510C network analyzer with an LRM calibration standard. \textbf{Fig. 6} shows the extracted cut-off frequency \((f_T) \) and maximum oscillation frequency \((f_{\text{max}}) \) as a function of \(L_g \) for both families of devices. Here, we used on-wafer open/short de-embedding method to subtract pad capacitances and inductances. Similar to DC characteristics above, InAs PHEMTs exhibit not only higher values of \(f_T \) and \(f_{\text{max}} \), but also much better \(f_T \) and \(f_{\text{max}} \) scalability down to \(L_g = 30 \text{ nm} \). In particular, 30 nm InAs devices show an excellent \(f_T \) of above 600 GHz at \(V_{DS} = 0.5 \text{ V} \). Looking at \(f_{\text{max}} \) characteristics in both families of devices, we find an interesting contradiction of the higher \(f_{\text{max}} \) of the InAs devices even with their worse DC output conductance \((g_o) \) caused by the kink effect. In trying to understand this behavior, \textbf{Fig. 7} plots small-signal extracted \(g_o \) against frequency for both devices with \(L_g = 30 \text{ nm} \) for different values of \(V_{DS} \). InAs devices exhibit more frequency dispersion in \(g_o \) in the lower frequency range as a consequence of the kink effect. However, as the frequency increases beyond the key time constant for the kink effect [8], InAs devices eventually show lower values of \(g_o \) than InGaAs ones. This improvement in \(g_o \) arises from the use of a thin channel, and eventually results in an improved \(f_{\text{max}} \) for the InAs devices.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig4}
\caption{\(g_m \) characteristics of 30 nm In\(_{0.7}\)Ga\(_{0.3}\)As and InAs PHEMTs at \(V_{DS} = 0.5 \text{ V} \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5}
\caption{\(g_{m,\text{max}} \) and DIBL as a function of \(L_g \).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig6}
\caption{\(f_T \) and \(f_{\text{max}} \) scaling behavior for both families of devices. The bias point is the one corresponding to peak \(f_T \) at \(V_{DS} = 0.5 \text{ V} \).}
\end{figure}
Conclusions

In summary, we have experimentally identified the benefit of thin channel and high InAs composition, aiming to improve the electrostatic integrity of the device as well as carrier transport properties. In comparison with reference In0.7Ga0.3As PHEMTs with $t_{ch} = 13$ nm, InAs PHEMTs with $t_{ch} = 10$ nm exhibit excellent electrostatic integrity of the device, such as better subthreshold swing, DIBL and g_m scalability down to 30 nm L_g regime. Besides, InAs PHEMTs with $L_g = 30$ nm show outstanding $g_{m\text{max}} = 1.9$ S/mm, $f_t = 600$ GHz and $f_{max} = 490$ GHz at $V_{DS} = 0.5$ V. Indeed, InAs is a promising choice of the channel material for future THz and logic applications.

References

Acknowledgements

This work was sponsored by Intel Corporation and MARCO Focus Center on Material, Structures and Devices (MSD) at MIT. Epitaxial heterostructures were supplied by MBE Technology. Device fabrication took place at the facilities of the Microsystems Technology Laboratories (MTL), the Scanning Electron Beam Lithography (SEBL) and the Nano-Structures Laboratory (NSL) at MIT. We appreciate discussions with Prof. D. A. Antoniadis.