A phase field model of unsaturated flow

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1029/2009wr007945</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Geophysical Union</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/59996</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
A phase field model of unsaturated flow

L. Cueto-Felgueroso and R. Juanes

Received 7 March 2009; revised 4 June 2009; accepted 30 June 2009; published 7 October 2009.

[1] We present a phase field model of infiltration that explains the formation of gravity fingers during water infiltration in soil. The model is an extension of the traditional Richards equation, and it introduces a new term, a fourth-order derivative in space, but not a new parameter. We propose a scaling that links the magnitude of the new term to the relative strength of gravity-to-capillary forces already present in Richards’ equation. We exploit the thermodynamic framework to design a flow potential that constrains the water saturation to be between 0 and 1, its physically admissible values. The model predicts a saturation overshoot at the wetting front, which is in good agreement with experimental measurements. Two-dimensional numerical simulations predict gravity fingers with the appearance and characteristics observed in visual laboratory experiments. A linear stability analysis of the model shows that there is a direct relation between saturation overshoot and the strength of the front instability. Therefore our theory supports the conjecture that saturation overshoot, a pileup of water at the wetting front, is a prerequisite for gravity fingering.

1. Introduction

[2] Infiltration of water in soil is an essential component of the hydrologic cycle [Horton, 1933; Hillel, 1980; Domenico and Schwartz, 1998]. It governs the presence of water and life at the land-atmosphere interface, in particular soil moisture [Liang et al., 1994] and vegetation [Rodriguez-Iturbe et al., 1999]. It also controls seasonal aquifer recharge in arid regions [Allison et al., 1994; Sophocleous, 2002], and soil weathering at the scale of millennia [Torn et al., 1997; Markewitz et al., 2001]. All of these feedbacks will be even more important under a scenario of global climate warming [Porporato et al., 2004], and will likely become crucial in an assessment of global desertification [Schlesinger et al., 1990].

[3] Infiltration is modeled using a variety of approaches, depending on the scale (and scope) of the problem [Philip, 1969; Hillel, 1980]. These range from the Horton method [Horton, 1940; Philip, 1957] and the Green-Ampt approximation [Green and Ampt, 1911; Philip, 1957], to the solution of Richards’ equation [Richards, 1931]: a partial differential equation that describes the evolution of water content in space and time, which is based on conservation of mass and the Darcy-Buckingham equation of fluid flux in an unsaturated medium [Buckingham, 1907].

[4] Richards’ equation, however, is unable to explain why the infiltration of water in homogeneous dry soil displays preferential flow, in the form of “fingers” [Hill and Parlange, 1972; Ruets, 1973]. In one dimension, it is also unable to explain the common experimental observa-

Copyright 2009 by the American Geophysical Union.
0043-1397/09/2009WR007945S09.00
nonmonotonic saturation profile. We investigate the impact of mild heterogeneity in two-dimensional simulations, and find that the preferential flow pattern is preserved, leading to realistic simulations of gravity fingering. We also analyze (and confirm) that saturation overshoot is indeed a prerequisite for finger formation. From the linear stability analysis, we find that there is a direct correspondence between the magnitude of the overshoot and the severity of the instability. We explain the derivation of the complete model, we give the physical reasoning behind it, and we frame it in the context of the entire body of literature on unstable unsaturated flow.

The new model is appealing. It is a simple extension of Richards’ equation, with a new term but without a new parameter. It reproduces the two key features of unsaturated flow: a nonmonotonic saturation profile, and the formation and persistence of gravity fingers. It shows good quantitative agreement with experiments in terms of tip saturation, tip velocity and finger width. The most attractive aspect is, however, that the new model offers a starting point for fundamentally new formulations of multiphase flow in porous media.

It is well known that hysteresis alone (without saturation overshoot) cannot explain fingering [Eliassi and Glass, 2001; van Duijn et al., 2004; Nieber et al., 2005; Fürst et al., 2009]. In this paper we show that our model can explain the features of fingered flow, including the saturation behind the front, without resorting to hysteresis, thereby resulting in a much simpler mathematical model. We do not argue, however, that hysteresis is unimportant. Hysteresis is a very real phenomenon, with important macroscopic consequences [Liu et al., 1994; Bauters et al., 1998; Spiteri and Juanes, 2006; Juanes et al., 2006]. It is likely that agreement with experimental data can be improved with hysteretic capillary pressure and relative permeability functions, and this can be incorporated readily in our model. The proposed model is for unsaturated flow, and it is no longer valid under fully saturated conditions. Extending the model to saturated-unsaturated conditions is likely that agreement with experimental data can be improved with hysteretic capillary pressure and relative permeability functions, and this can be incorporated readily in our model. The proposed model is for unsaturated flow, and it is no longer valid under fully saturated conditions. Extending the model to saturated-unsaturated conditions is not trivial.

We hope the model will be tested against more experimental data, to probe its range of applicability. One of the most interesting aspects is likely to be the strength of the new term. While we have good reasons to defend the proposed scaling (it allowed us to explain finger width, finger velocity, saturation overshoot, and the length of the traveling wave, without resorting to any tuning of the strength of the new term), its widespread validity remains to be investigated.

In section 2 we review infiltration experiments and existing models of unsaturated flow, highlighting their departure from Richards’ equation. In section 3 we give a brief overview of the mathematical model of flow of thin films, and stability characteristics of such flows. In section 4 we introduce the essential aspects of phase field models of interface dynamics. Next, in section 5, we present the proposed model of infiltration. We motivate it by means of the thin-film equation, and then formalize it within the framework of phase field models. In section 6 we present numerical simulations of 1-D and 2-D systems. In section 7 we give a summary of the linear stability analysis, which explains the relation between saturation overshoot and gravity fingering. We finish the paper with some conclusions and an outlook.

2. Infiltration Experiments and Existing Models of Unsaturated Flow

2.1. Experimental Evidence of Gravity Fingering

Experiments of water infiltration into dry, homogeneous sand, pervasively show preferential flow, in the form of “gravity fingers.” Experimental and theoretical work was initiated in the 1970s [Hill and Parlange, 1972; Philip, 1975; Parlange and Hill, 1976]. Since then, carefully designed experiments have repeatedly shown gravity fingering during infiltration in homogeneous sands [Diment and Watson, 1985; Glass et al., 1989b; Selker et al., 1992a; Lu et al., 1994; Bauters et al., 2000; Yao and Hendricks, 2001; Sililo and Tellam, 2000; Wang et al., 2004]. The selected pattern of the phenomenon is a winner-takes-all process, in which the fastest growing fingers channelize most of the flow, and the growth of other incipient fingers is thereby suppressed [Glass et al., 1989b; Selker et al., 1992b]. The fully formed fingers advance as traveling waves (with constant shape and velocity), and a saturation overshoot is observed at the tip of the fingers [Selker et al., 1992b; DiCarlo, 2004]. The initial moisture content plays a critical role in the fingering instability: even relatively low saturations lead to a compact, downward moving wetting front [Lu et al., 1994; Bauters et al., 2000]. Stable fronts are also observed in dry media when the infiltration rate is either very small or approaches the saturated conductivity [Hendricks and Yao, 1996]. In general, larger infiltration rates produce faster, thicker fingers [Glass et al., 1989b].

Many authors have approached the wetting front instability by drawing an analogy with the two-fluid system in a Hele-Shaw cell [Saffman and Taylor, 1958], and their analyses have led to kinematic models that reproduce trends observed in the experiments, such as relations between finger width and finger tip velocity with the flow rate through the finger [Chuoke et al., 1959; Weitz et al., 1987; Parlange and Hill, 1976; Glass et al., 1989a; Selker et al., 1992b; DiCarlo and Blunt, 2000].

Given that a saturation overshoot occurs at the tip of the fingers, recent experimental work has focused on reproducing this phenomenon in one-dimensional experiments [Stonestrom and Akstin, 1994; Geifer and Durnford, 2000; DiCarlo, 2004; Shiozawa and Fujimaki, 2004; DiCarlo, 2007]. In fact, it is widely believed that accumulation of water at the wetting front is a prerequisite for triggering the fingering instability [Geifer and Durnford, 2000; Eliassi and Glass, 2001; Egorov et al., 2003]. These experiments have shown conclusively that there is a critical initial saturation above which the saturation profile is monotonic [Lu et al., 1994; Bauters et al., 2000; Shiozawa and Fujimaki, 2004; DiCarlo, 2004, 2007]. They have also elucidated the role of the infiltration flow rate: the saturation overshoot increases with increasing flow rate up to a certain value, beyond which it decreases until the overshoot disappears completely under fully saturated infiltration conditions [DiCarlo, 2004].

2.2. Pore-Scale Models

Numerical models that implement the fluid-fluid displacement mechanisms have been successful at reproduc-
ing the regime transitions among viscous fingering, capillary fingering and stable displacement observed experimentally [Lenormand et al., 1988]. This can be achieved by means of modified invasion-percolation algorithms that incorporate the dynamics of fluid displacement [Blunt et al., 1992; Avraam and Payatakes, 1995; Lee et al., 1996; Valavanides et al., 1998; Fortsos et al., 1997; Aker et al., 1998; Dahle and Celia, 1999; Ferer et al., 2004].

[15] The effect of gravity on capillary-dominated displacements can be stabilizing [Birovljev et al., 1991] or destabilizing [Frette et al., 1992]. Gravity affects the structures that form in two-phase flow through correlated buoyancy [Auradou et al., 1999]. Extensions to the modified invasion-percolation models at the pore scale have, indeed, permitted simulating unstable gravity flows [Onody et al., 1995; Glass and Yarrington, 1996, 2003; Zhang et al., 2000]. They have been used to propose extensions to Lenormand's phase diagram [Lenormand et al., 1988] in order to account for gravity forces [Lee et al., 1996; Ewing and Berkowitz, 1998; Berkowitz and Ewing, 1998], and have led to the analysis of the roughening of drainage fronts under combined viscous, capillary, and gravity forces [Meheust et al., 2002].

2.3. Continuum Models

[16] Despite the abundant experimental evidence, the description of unstable gravity-driven unsaturated flow using macroscopic mathematical models (continuum balance laws) has remained a formidablely challenging task.

[17] Unsaturated flow is traditionally modeled at the continuum scale using Richards’ equation [Richards, 1931], which we express in several space dimensions as follows:

\[
\phi \frac{\partial S}{\partial t} + \nabla \cdot (K_s \mu_s (S) (\nabla z + \nabla \psi(S))) = 0,
\]

where \(S [-] \) is the water saturation, \(\phi [-] \) is the porosity, \(K_s [LT^{-1}] \) is the saturated hydraulic conductivity, and \(z [L] \) is depth (coordinate in the direction of gravity). The equation involves two functions of saturation: the relative permeability to water, \(k_r [-] \), and the suction head (or capillary pressure in units of head), \(\psi [L] \). The relative permeability is typically a monotonically increasing and convex function of saturation. The capillary pressure is a monotonically decreasing function of saturation and often has one inflection point. Both properties display strong hysteresis effects [Bear, 1972; Dullien, 1991].

[18] Richards’ equation is a statement of conservation of mass together with several assumptions, including: the medium remains unsaturated (\(S \) strictly less than 1); the mobility and compressibility of air are much larger than those of water; and the water flux is given by an extension of Darcy’s law to unsaturated conditions [Buckingham, 1907; Richards, 1931; Muskat and Mers, 1936; Muskat et al., 1937; see also Bear, 1972].

[19] Richards’ equation is unable to reproduce the fingering phenomenon. This was explicitly conjectured, supported by numerical simulations, by Eliassi and Glass [2001], who employed typical constitutive relations for \(k_r \) and \(\psi \), and hysteretic effects. The stability of Richards’ equation has been much debated using theoretical and numerical analysis [Diment et al., 1982; Diment and Watson, 1983; Kapoor, 1996; Ursino, 2000; Du et al., 2001; Egorov et al., 2003], until recent papers [van Duijn et al., 2004; Nieber et al., 2005; Furst et al., 2009] prove that Richards’ equation is totally stable, to infinitesimal and finite-size perturbations, with or without hysteresis, and in a modal (asymptotic) and nonmodal (transient) sense. The appellative “totally stable” is, in this context, a very negative one: the analogue in fluid mechanics would be that the Navier-Stokes equations of fluid motion did not have the ability to produce turbulent solutions. The relevant pattern-forming physical mechanisms are therefore missing in the classical model of unsaturated flow in porous media.

[20] Many researchers have proposed extended theories of multiphase flow that depart from the traditional Darcy-like formulation. Here, we review some of them, restricting our attention to those directly related to extended models of unsaturated flow.

[21] On the basis of volume averaging of the microscopic equations of conservation of mass and momentum, Hassanizadeh and Gray identified that additional terms should be present in the macroscopic equations [Hassanizadeh and Gray, 1990, 1993a, 1993b]. In particular, they introduced the concept of dynamic capillary pressure, which has been the subject of intense experimental [Hassanizadeh et al., 2002; O’Carroll et al., 2005], modeling [Beliaev and Hassanizadeh, 2001; Dahle et al., 2005; DiCarlo, 2005; Manthey et al., 2005; Mirzaei and Das, 2006; Helming et al., 2007], and theoretical research [Cuesta et al., 2000; Cuesta and Hulshof, 2003; Egorov et al., 2003; Nieber et al., 2005]. The concept of a “dynamic”, rate-dependent, macroscopic capillary pressure has also been postulated independently by other authors [see, e.g., Stauffer, 1978; Weitz et al., 1987; del Rio and de Haro, 1991]. The dynamic capillary pressure extension leads to a mixed third-order term (second order in space, first order in time), also known as relaxation term.

[22] Cuesta et al. [2000] analyzed a mathematical model of infiltration with a relaxation term, establishing existence of traveling wave solutions which exhibit oscillatory (nonmonotonic) behavior if the effect of dynamic capillary pressure is sufficiently large. DiCarlo [2005] reached similar conclusions; he used the relaxation term to achieve an analytic nonmonotonic solution by using the traveling wave properties of the observed infiltrations. The solutions were only nonmonotonic when the applied flux is above a critical flux, which depended on the magnitude of the additional term and the media properties. Nieber et al. [2005] gave a review of mathematical analyses of Richards’ equation with static and dynamic capillary pressure-saturation relationships. In addition to a thorough stability analysis of the equations, nonmonotonic analytical solutions were found when a relaxation term (due to dynamic capillary pressure) was included.

[23] Eliassi and Glass [2002] introduced the hold-back-pileup effect, and conjectured it is the mechanism responsible for gravity fingering. They proposed three different extensions of the traditional Richards’ equation: a hypodiffusive model (second order in space), a hyperbolic model (second order in time), and a mixed model (second order in space and first order in time). The hypodiffusive model is equivalent to the use of a nonmonotonic capillary pressure curve [Eliassi and Glass, 2003; DiCarlo et al., 2008]. The hyperbolic model is analogous to the Cattaneo extension of
3. Flow of Thin Films

An everyday example of fingered flow is that of fluid down a slope (such as water on a windshield). In fact, the nature and appearance of this instability is remarkably similar to the one observed during infiltration in dry homogeneous sands (Figure 2).

A mathematical model that explains the instability of the flow of thin films was first presented by Huppert [1982]. The important observation was that the dynamics of the thin film required a fourth-order derivative in space, a term associated with surface tension, to explain the instability. The model of thin films has been subsequently analyzed thoroughly [see, e.g., Bertozzi and Brenner, 1997], confirming the critical role of the fourth-order term.

Consider the flow of a fluid film down a plane (Figure 3). The equation governing the film thickness, h [L], is [Huppert, 1982]:

$$\frac{\partial h}{\partial t} + \nabla \cdot \left[\frac{pg h^3}{3\mu} \left(\sin \alpha \nabla z - \cos \alpha \nabla h + \frac{\gamma}{\rho g} \nabla (\nabla^2 h) \right) \right] = 0,$$

where ρ [ML$^{-3}$] is the density of the fluid, μ [ML$^{-1}$T$^{-1}$] is the fluid dynamic viscosity, g [LT$^{-2}$] is the gravitational acceleration, α [$-$] is the angle of the plane with the horizontal, z [L] is the coordinate down the gradient of the inclined plane, and γ [MT$^{-2}$] is the surface tension.

[25] A model related to the one proposed here was mentioned in passing by DiCarlo et al. [2008, p. 5] with reference to Witelski [1996], in which a fourth-order term is introduced in the formulation. This term, however, appears simply as a regularization term of strength $\varepsilon \to 0$, which allows for the recovery of well posedness of the equation when a nonmonotonic term of strength is used. Here, we introduce a fourth-order spatial derivative of finite magnitude, responsible for the dynamics of the wetting front (Figure 1).

4. Phase Field Models of Interface Dynamics

Phase field models have their origin in the mathematical description of phase transitions and solidification processes [Cahn and Hilliard, 1958; Cahn, 1961]. They are
based on two key ideas: (1) the idea of expressing the energy of the system accounting for the fact that the system is not homogeneous and that macroscopic interfaces exist and (2) the idea that a sharp macroscopic interface is replaced by a diffuse interface (Figure 4). This is done by introducing an “order parameter” \(\varphi \) (the phase field) that “labels” the two macroscopic bulk phases (say, liquid and gas) and, in the sharp interface limit, recovers the interface evolution equations [Elder et al., 2001].

Naturally, the energy functional includes nonlocal terms that involve the gradient (and possibly higher-order derivatives) of the order parameter \(\varphi \). In the simplest case, and because certain terms are ruled out because of symme-

Figure 2. (left) The instability observed in the flow of a thin film of fluid down a plane [from Huppert, 1982] (reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 1982) is remarkably similar to (right) that during infiltration in a dry homogeneous sand [from Selker et al., 1992b]. Therefore we use the well-known equations governing thin-film flow as the basis for our model of unsaturated flow in porous media.

Figure 3. Sketch of the flow of a thin film of fluid down a plane at a slope (angle \(\alpha \) with the horizontal). The thickness of the fluid film, \(h \), is typically nonmonotonic, showing a hump near the wetting front and then decaying to an asymptotic value.

Figure 4. Schematic diagram of the key elements of a phase field model. The model introduces an order parameter \(\varphi \) that labels the bulk phases. A macroscopic interface (thick solid line) is replaced by a diffuse interface of thickness \(\zeta \), which corresponds to a region of high gradients of \(\varphi \).
try considerations, the free energy per unit volume of the system takes the form [Bray, 1994]:

$$\mathcal{E} = \mathcal{E}_{\text{bulk}} + \mathcal{E}_{\text{inter}} = f(\varphi) + \frac{\epsilon}{2} |\nabla \varphi|^2. \quad (3)$$

[33] In phase separation problems, the function f typically a double-well potential (Figure 5), in which the local minima correspond to the homogeneous stable states [Cahn and Hilliard, 1958; Bray, 1994]. The gradient square term makes the evolution of the inhomogeneous system well posed. As we will see in section 5.4, however, the bulk energy function in our model of unsaturated flow is very different from a double-well potential.

[34] The chemical potential of the system is the variational derivative of the free energy functional. The phase field equations of the model can then be obtained by invoking mass conservation and a gradient-type flux [Bray, 1994; Emmerich, 2008]. In section 5, we will illustrate this formalism with the development of a phase field model of unsaturated flow.

[35] This type of models has been used to describe a variety of physical and biological phenomena, such as epitaxial growth of surfaces [Langer, 1989; Karma and Rappel, 1996; Gollub and Langer, 1999], binary transitions [Lowengrub and Truskinovsky, 1998], and solidification [Cahn and Hilliard, 1958; Cahn, 1961; Boettinger et al., 2002; Emmerich, 2008].

[36] The statistical physics community has employed this type of formulation to describe imbibition into random media [Dubé et al., 1999, 2000a, 2000b, 2001; Alava et al., 2004; Dubé et al., 2007] and Hele-Shaw cells with disorder [Hernández-Machado et al., 2001; Soriano et al., 2002, 2005]. These models have been used to understand the roughening of stable imbibition fronts, generalizing the description of interface dynamics put forward by Kardar-Parisi-Zhang [Kardar et al., 1986] (see also Horváth et al. [1991], Buldyrev et al. [1992], He et al. [1992], Horváth and Stanley [1995], and Lopez [1999] and the review by Halpin-Healey and Zhang [1995]), in order to satisfy mass conservation [Sun et al., 1989; Kim and Das Sarma, 1994].

[37] In these models, however, a double-well potential is assumed and, as a result, the flow physics in the bulk is overly simplified. The models only capture a “wet” and a “dry” region, without smooth changes in saturation in the wet region. The models have been designed for the analysis of stable fronts only (such as upward imbibition with stabilizing gravity, with or without the stabilizing effect of evaporation), and cannot model unstable infiltration or predict the onset of fingering.

[38] A related model was proposed by Papatzacos [Papatzacos, 2002; Papatzacos and Skjæveland, 2004, 2006] where, assuming a diffuse interface model at the pore level, a Cahn-Hilliard equation is obtained to describe macroscopic two-phase flow. The model is developed for a single-component system with phase change, and the proposed energy potential is also of double-well type.

5. A Phase Field Model of Unsaturated Flow

5.1. Analogy With Thin Films

[39] Driven by the analogy with the thin-film equation (2), we propose to add to Richards’ equation (1) a fourth-order term that is responsible for a macroscopic surface tension effect:

$$\rho \frac{\partial S}{\partial t} + \nabla \cdot \left(K_c k_r(S)(\nabla z + \nabla \psi(S) + \frac{S}{\rho g} \nabla (\nabla^2 S)) \right) = 0, \quad (4)$$

where Γ [MT$^{-2}$] plays the role of such macroscopic surface tension. The model was first proposed by Cueto-Felgueroso and Juanes [2008], and its stability characteristics were subsequently analyzed by Cueto-Felgueroso and Juanes [2009]. Far away from the region of high-saturation gradients (the wetting front), the equation reduces to Richards’ equation. Near the interface, however, the fourth-order term becomes dominant. The model is analogous to the equation describing the flow of thin films except that the scaling of the various terms is different.

[40] As we will see in section 6, the model is able to reproduce a nonmonotonic saturation profile, believed to be an essential feature of fingered flows. In the 2-D simulations, we will show that this is indeed the case, and that the fourth-order term allows us to explain the formation of fingers during infiltration.

5.2. Phase Field Framework

[41] The proposed governing equation for infiltration can be derived from the powerful framework of phase field models, without any analogy to thin-film flows. Water mass conservation leads to an evolution equation for the water saturation S:

$$\frac{\partial (\rho S)}{\partial t} + \nabla \cdot \mathbf{J} = 0, \quad (5)$$

Figure 5. Typical bulk energy double-well potential in phase field models of binary transitions and solidification. The function is locally convex around two local minima, $\varphi = 0, 1$, which correspond to thermodynamically stable states. In general, for asymmetric potentials the stable states are determined through the classical convex hull construction [Bray, 1994].
where J [ML$^{-2}$T$^{-1}$] is the water mass flux. We adopt a gradient flow formulation [see, e.g., Emmerich, 2008],

$$ J = -\rho \lambda \nabla \Phi, \quad (6) $$

where λ [M$^{-1}$L2T] is the water mobility, and Φ [ML$^{-1}$T$^{-2}$] is the flow potential. The water mobility includes the effect of reduced permeability to water due to partial saturation, and takes the form:

$$ \lambda = \frac{k}{\mu} k_c(S). \quad (7) $$

Under unsaturated conditions (water saturation strictly less than one), it is well justified to make two assumptions [Bear, 1972; Philip, 1969]. First, air is infinitely mobile compared to water and, as a result, the air pressure remains constant and equal to atmospheric pressure. The water pressure is then equal to the negative suction (or capillary pressure):

$$ p_{\text{water}} = p_{\text{air}} - P_c(S). \quad (8) $$

The capillary pressure is a monotonically decreasing but often nonconvex function of water saturation [Bear, 1972]. The second assumption is that the compressibility of water and rock is negligible compared to that of air, and therefore the water density ρ and the porosity ϕ are constant.

Under these conditions, we write the free energy per unit volume of the system as:

$$ \mathcal{E} = \mathcal{E}_{\text{gr}} + \mathcal{E}_{\text{cap}} + \mathcal{E}_{\text{nl}} = -\rho g S \xi + \Psi(S) + \frac{1}{\phi} \Gamma |\nabla S|^2, \quad (9) $$

which comprises the gravitational (\mathcal{E}_{gr}) and capillary pressure (\mathcal{E}_{cap}) energy potentials, as well as a nonlocal energy potential (\mathcal{E}_{nl}). The capillary pressure function is derived from the capillary potential:

$$ P_c(S) = -\frac{d\psi}{dS}, \quad (10) $$

which we can further express in head units [L]:

$$ \psi(S) = \frac{1}{\rho g} P_c(S). \quad (11) $$

The nonlocal term models the extra energetic cost associated with the displacement of water-air interfaces in areas of large saturation gradients. The coefficient Γ plays the role of an apparent surface tension associated with the wetting front [Huppert, 1982; Weitz et al., 1987; DiCarlo and Blunt, 2000].

The flow potential Φ is the variational derivative of the free energy:

$$ \Phi = \frac{\Delta \mathcal{E}}{\Delta S} = \frac{\Delta \mathcal{E}}{\Delta S} - \nabla \cdot \left(\frac{\partial \mathcal{E}}{\partial \nabla S} \right) = -\rho g z - \rho g \psi(S) - \Gamma |\nabla S|^2. \quad (12) $$

Combining equations (5), (6), and (12), and the unsaturated flow assumptions of constant water density and porosity, we arrive at the proposed model equation (4):

$$ \phi \frac{\partial S}{\partial t} + \nabla \cdot \left[\frac{k_p g}{\mu} k_c(S) \left(\nabla z + \nabla \psi(S) + \frac{\Gamma}{\rho g} \nabla (\nabla^2 S) \right) \right] = 0, \quad (13) $$

where we identify the saturated hydraulic conductivity, $K_s = k_p g / \mu$. The traditional Richards equation (1) can be recovered by neglecting the nonlocal energy term in equation (13).

5.3. Scaling of the Fourth-Order Term

The question arises: what is the value of the coefficient Γ that scales the fourth-order term? To address this question, we consider the vertical volumetric flux at a point in the transition region of the wetting front, of thickness ζ (Figure 4):

$$ q_v = K_s k_c(S) \left(1 + \frac{\partial \psi}{\partial z} + \Lambda \frac{\partial^2 \psi}{\partial z^2} \right), \quad (14) $$

where $\Lambda = \Gamma/(\rho g)$. The suction head is expressed as:

$$ \psi(S) = h_{\text{cap}} J(S), \quad (15) $$

where $J(S)$ [–] is a dimensionless capillary pressure function, and h_{cap} [L] is the capillary rise, whose dependence on the system parameters is given by the classical Leverett scaling [Leverett, 1941]:

$$ h_{\text{cap}} = \frac{\gamma \cos \theta}{\rho g \sqrt{k/\phi}}, \quad (16) $$

where γ is the surface tension between the fluids, and θ [–] is an effective contact angle. It is well known [see, e.g., Selker and Schroth, 1998] that this effective contact angle is, in general, different from the microscopic contact angle between the air-water interface and the solid surface [de Gennes, 1985]. Indeed, pore-scale modeling studies show that a relatively wide range of contact angles must be used to reproduce imbibition capillary pressure and relative permeability curves, even in water-wet media [Valvatne and Blunt, 2004]. In any case, the relevant quantity, and the only one that is used in our theory, is the capillary height h_{cap} (which incorporates the surface tension of the pair of fluids, the characteristic microscopic length scale of the medium, and the wetting characteristics).

The parameter Λ has dimensions of L2. One possibility is to understand it as a (new) free parameter. We find this choice unattractive, for several reasons. First, one can argue that by introducing a new parameter, it is “easy” to reproduce experimental data. Second, one should then provide a methodology to determine the new parameter experimentally. And third, it is unclear what would be the new physical property (not present in Richards’ equation) that gives rise to an independent parameter in the system. We argue, instead, that the system can be described with the physical properties already present: gravity, viscous resistance, and microscopic surface tension.
The dashed line is a typical capillary energy potential in our phase field model of unsaturated flow. The function is monotonically decreasing, and values of water saturation above one are favored. The solid line is the combined energy potential when a compressibility term is added to the formulation. The new function has a minimum near $S = 1$, which serves as an attractor for the phase field variable. Saturation values above one are disallowed.

We analyze the scaling of the capillary and nonlocal terms at the wetting front. The capillary term scales like h_{cap}/ζ. Therefore gravity and capillarity are both important at the wetting front if $\zeta \sim h_{\text{cap}}$, and their relative strength can be measured by the nondimensional group $Gr_{\zeta} = \zeta/h_{\text{cap}}$. The nonlocal term resembles a curvature-driven flux, where the Laplacian can be expressed as [Weatherburn, 1927; Lei, 1988]:

$$\nabla^2 S = \frac{\partial^2 S}{\partial n^2} + \kappa_{H}\nabla|S|,$$

(17)

where n is the space coordinate perpendicular to the front, and κ_{H} is the in-plane curvature of the front. Therefore we have the scaling:

$$\Lambda \frac{\partial \nabla^2 S}{\partial \zeta} \sim \Lambda \frac{1}{\zeta}.$$

To have an $O(1)$ term, we must have $\Lambda \sim \zeta^3$ and, from the scaling of the capillary term, $\Lambda \sim h_{\text{cap}}^3$. The relative strength of gravity to macroscopic surface tension effects is measured by the nondimensional group:

$$N_{\zeta} = \frac{\Lambda}{\zeta} \sim \frac{h_{\text{cap}}}{\zeta} = Gr_{\zeta}^{-3}. $$

(19)

This scaling is not coincidental: it is required to retain the balance among the different terms in the sharp interface limit $\zeta \to 0$ [Elder et al., 2001]. If one chooses $N_{\zeta} = Gr_{\zeta}^{-3}$ with $\alpha < 3$, the sharp interface limit corresponds to Richards’ equation. If $\alpha > 3$, imbibition is governed in the sharp interface limit purely by curvature-driven flow, an unphysical model.

In general, the coefficient of proportionality relating N_{ζ} and Gr_{ζ}^{-3} will depend on the rest of the properties of the system, such as initial saturation S_0, flux ratio R_s, and relative permeability and capillary pressure characteristics. For simplicity, here we take

$$N_{\zeta} = Gr_{\zeta}^{-3}. $$

(20)

As a summary, we express the mathematical model (13) in dimensionless form, by rescaling $x \rightarrow x/L$, where L is an arbitrary length, and $t \rightarrow t/T$, where $T = L/\phi/K_s$. We define the following two nondimensional groups:

$$Gr = \frac{L}{h_{\text{cap}}}$$ \ (gravity number),

(21)

$$N_\ell = \frac{\Lambda}{T}$$ \ (nonlocal number).

(22)

With the proposed scaling of equation (20), and understanding the space and time coordinates (x, t) as their dimensionless counterparts, the model reads:

$$\frac{\partial S}{\partial \ell} + \nabla \cdot [\kappa_{H}(S)(\nabla z + Gr^{-1}\nabla J(S) + Gr^{-3}\nabla(\nabla^2 S))] = 0. $$

(23)

5.4. Refinement of the Model: Bounded Saturation Overshoot

In the model as presented, the saturation overshoot is not bounded. That is, the solution to equation (13) may take values larger than one, clearly an unphysical situation. This is the case for most continuum extensions of Richards’ equation [Cuesta et al., 2000; Cuesta and Halushof, 2003; Eliassi and Glass, 2002, 2003; DiCarlo, 2005]. Nieber et al. [2005] avoid overshoots above 1 in their dynamic relaxation model by the use of a relaxation term of the form $r \sim dP_s/dS$ and a van Genuchten capillary pressure function $P_s(S)$; overshoots above 1 appear if a Brooks-Corey capillary pressure function is used. DiCarlo et al. [2008] also guarantee saturations below 1, but in their case the high-order term is a regularization term of infinitesimal strength.

The thermodynamic framework of phase field models indicates why saturations above 1 occur, and permits rectifying the model to yield a water saturation that is bounded between 0 and 1. When the medium approaches full saturation ($S \approx 1$), the two assumptions of infinite mobility and infinity compressibility of air cease to be valid. Just behind the wetting front, the water pressure is no longer the negative capillary suction [Bauters et al., 1998]. Therefore the energy of the system must include an extra term because of the water pressure. From the point of view of phase field models, the saturation overshoot occurs because the bulk energy potential in equation (9), unlike the double-well potential, does not an have a preferred “stable” state. The capillary potential is given by

$$f_{\text{cap}}(S) = \int_S^1 \psi(s) \, ds. $$

(24)

Typically, this potential function is monotonically decreasing (Figure 6). Therefore the equations do not prevent the saturation from achieving unboundedly large values.

8 of 23
Consider now an additional “compressibility” term in the bulk energy potential that introduces a boundary layer, such that the combined capillary-compressibility potential has a minimum near \(S = 1 \) (Figure 6). This minimum acts as an attractor for the phase-ordering parameter, and values of water saturation above one do not occur. We will see the effect clearly in the simulations of section 6.

6. Simulation Results

The mathematical model is given by equation (23), together with appropriate initial and boundary conditions, and constitutive relations. It is assumed that the initial water saturation \(S_0 \) is uniform, and that the infiltration rate \(R_f \) \([LT^{-1}]\) is uniformly distributed and constant in time (see Figure 1). The infiltration rate \(R_f \) may be expressed as a flux ratio, \(R_s = R_f/K_s \), with \(R_s \in [0,1] \).

We adopt a power law relative permeability of the form

\[k_r(S) = S^b, \]

(25)

and a Brooks-Corey capillary pressure function \([Brooks and Corey, 1966]\).

\[J(S) = S^{-1/\lambda}, \]

(26)

which yields a capillary potential

\[f_{\text{cap}}(S) = -\frac{\lambda}{\lambda - 1} S^{1-1/\lambda}. \]

(27)

We adopt an exponential compressibility potential of the form

\[f_{\text{comp}}(S) = \exp(-\kappa(1 - S))f_{\text{cap}}(S). \]

(28)

Hence, the total bulk free energy is given by

\[f(S) = f_{\text{cap}}(S) + f_{\text{comp}}(S) = -\frac{\lambda}{\lambda - 1} S^{1-1/\lambda}[1 - \exp(-\kappa(1 - S))]. \]

(29)

6.1. Traveling Waves

We present traveling wave solutions to equation (23), which represent 1-D infiltration fronts. Although we addressed their practical computation elsewhere \([Cueto-Felgueroso and Juanes, 2009a]\), we include some examples here in order to set the framework for the analysis of the saturation overshoot and wetting front stability.

The traveling wave solutions are computed using an adaptive rational spectral method with adaptively transformed Chebyshev nodes, which does not require that the underlying problem is transformed into new coordinates \([Tee and Trefethen, 2006; Cueto-Felgueroso and Juanes, 2009a]\). The method takes into account, and locates, a priori unknown singularities of the underlying solution. We use conformal mapping to design transformed nodes that improve the Chebyshev spectral method. Chebyshev-Padé approximation is used to determine the locations of the singularities of the solution in the complex plane. This type of discretization has allowed us to compute accurate traveling waves and eigenvalues for very small values of the initial water saturation, using just a few hundred grid points.

Traveling wave solutions to our model display a nonmonotonic saturation profile, with a sharp wetting front, a saturation overshoot at the tip, and a decay to an asymptotic saturation value \(S_\infty \). (Figure 7). Changes in the gravity number \(Gr \) induce changes in the scale of the solution, and thus the length scale of the bump increases like \(Gr^{-1} \) (Figure 7a). Stronger capillary dissipation, given in terms of the Brooks-Corey parameter \(\lambda \), results in a stabilization of the wetting front, and a smaller saturation overshoot (Figure 7b). Even slight increases in the initial saturation \(S_0 \) have a strong influence on the saturation overshoot: the magnitude of the overshoot decreases as the initial saturation increases (Figure 7c). The flux ratio \(R_s \) also plays a critical role in the structure and stability of the front. The overshoot increases with the flux ratio, until the tip reaches saturations close to one (Figure 7d). The behavior near \(S = 1 \) is fundamentally influenced by the compressibility model, through the parameter \(\kappa \).

To elucidate the influence of the compressibility model, we compute traveling waves for the same flux ratio and water relative permeability function, but changing the compressibility parameter \(\kappa \). As the minimum of the bulk free energy moves toward 1 (increasing \(\kappa \)), the maximum saturation attained also approaches 1 (Figure 8a). This maximum saturation depends not only on the position of the minimum in the bulk free energy, but also on the nonlinearity of the relative permeability curve. Highly nonlinear conductivities, corresponding to larger values of the exponent \(b \), result in larger saturation overshoots (Figure 8b). Indeed, one of the important insights of the present study is the dominant role of the relative permeability on the behavior of the saturation overshoot and subsequent fingering instability.

6.2. Comparison With Quasi-1-D Experiments of Infiltration

In this section we compare the model predictions of saturation overshoot with laboratory measurements from quasi-1-D experiments of infiltration into homogeneous sands \([DiCarlo, 2004]\). We first fit the unsaturated water conductivity measured experimentally to a piecewise polynomial:

\[k_r(S) \approx \begin{cases}
P_1(S) = S^a & \text{if } S < S_\infty, \\
P_2(S) = S^b & \text{if } S > S_\infty.
\end{cases} \]

(30)

where \(S_\infty \) is the crossover saturation. Such crossover in the power law behavior from low water saturation to high water saturation is observed experimentally \([DiCarlo, 2004, 2007]\). A smooth curve is obtained using a blending function, such that:

\[k_r(S) = P_1(S)g(S) + P_2(S)(1 - g(S)), \]

(31)

where

\[g(S) = \frac{1}{2}(1 - \tanh(c(S - S_\infty))). \]

(32)
The parameters a, b, c and S_0 determined to fit the experimental curves of DiCarlo [2004] are given in Table 1, and the relative permeability functions are plotted in Figure 9.

For the bulk free energies, we use generic Brooks-Corey capillary pressure functions, equation (26), with a parameter l. The compressibility potentials (equation (28)), introduce the compressibility parameter k. The values taken for DiCarlo’s experiments are given in Table 1. The resulting bulk free energies and their derivatives with respect to saturation are plotted in Figure 10.

6.2.1. Saturation Overshoot

We investigate the influence of the model parameters on the saturation overshoot by plotting the difference between the tip saturation S_{tip} and the tail saturation S_- against the flux ratio R_s (Figure 11). The most influential parameters are the initial saturation and the relative permeability function (Figures 11a and 11b, respectively). Large saturation overshoots are indicative of dry soils, with conductivities that behave like power laws with a large exponent, for which large water saturations are compatible with small fluxes. The form of the compressibility function has a mild influence in smoothing the overshoot for large flux ratios (Figure 11c), while the Brooks-Corey parameter l has a relatively uniform effect over the whole range of flux ratios (Figure 11d).

We compare the model predictions with the experimental measurements of DiCarlo [2004]. We have not intended to achieve a perfect fit of the experimental results by tuning the model parameters, but rather to show that the observed trends can be easily explained by the proposed theory. Nevertheless, we have fitted the experimental conductivity curves as closely as possible, as this appears to be the most critical constitutive relation, and the trends in saturation overshoot cannot be understood without capturing the highly nonlinear behavior of the measured conductivity curves. The initial saturation for all the dry sands is taken as $S_0 = 0.01$. This value was chosen by us; experi-

Figure 7. Influence of the model parameters on the traveling wave solutions to the proposed model. The default parameters are $k_r = S^3$, $\lambda = 4$, $\kappa = 20$, $S_- = 0.5$, and $S_0 = 0.01$. (a) Influence of the gravity number Gr. (b) Influence of the Brooks-Corey parameter λ. (c) Influence of the initial water saturation S_0. (d) Influence of the flux ratio $R_s = k_r S_-$.

mentally, the initial saturation was small enough that a numeric value was not reported by DiCarlo [2004].

The 30/40 sand shows the “canonical” overshoot behavior, with compressibility effects restricted to the highest flux ratios (Figure 12a). For the coarser 20/30 sand, the transition to almost fully saturated tips is smoother, which is partially due to the structure of the conductivity curve, but also to the form of the bulk free energy (Figure 12b). We test the ability of our model to reproduce the saturation overshoot under different conditions, without changes in any of the parameters. Simulations using higher initial saturation show a reduced saturation overshoot, in agreement with experimental measurements (Figures 12c and 12d).

DiCarlo [2004] presents as a paradox the fact that, while having similar capillary pressure–saturation properties, the 12/20 and grey sands exhibit radically different overshoot behavior. Our theory renders a simple explanation to their overshoot behavior: the relative permeability curves are very different. While this difference may be inconsequential within the classical theory, in our context this difference is essential. The 12/20 sand behaves as a very nonlinear power law until the medium reaches a certain saturation, whereas the grey sand behaves like a cubic function for most of the saturation range. This fact alone suffices to explain the observed differences (Figure 13).

6.2.2. Saturation Profiles

According to classical interpretations of unsaturated flow, our model would have, at best, the ability to predict the saturation overshoot at the wetting front (as that involves primary imbibition alone) but should miss the shape of the saturation profile behind the wetting front [Eliaasi and Glass, 2002; DiCarlo, 2007; DiCarlo et al., 2008]. While it is true that the system undergoes drainage behind the front tip, and that the constitutive relations will in general be different from those in imbibition, our model predictions, without any hysteretic effects, are in good quantitative agreement with the saturation profiles measured experimentally (Figure 14). The far end of the profiles match the experimental curves because we fit the unsaturated conductivity. However, the transition behind the wetting front is also captured well with our model. We conclude that the characteristics and length scale of the saturation overshoot can be explained with a continuum model, using macroscopic concepts, and without introducing rate-dependent or history-dependent constitutive relations.

6.3. Two-Dimensional Simulations

We present 2-D simulations of gravity fingering during constant-flux infiltration in heterogeneous soils. Results for homogeneous media were presented by Cueto-Felgueroso and Juanes [2008], where we showed the development of fingering instability, and analyzed the

<table>
<thead>
<tr>
<th>Table 1. Parameters Chosen to Fit the Relative Permeability and Capillary Pressure Functions Measured Experimentally by DiCarlo [2004]a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>30/40</td>
</tr>
<tr>
<td>20/30 (dry)</td>
</tr>
<tr>
<td>20/30 (wet)</td>
</tr>
<tr>
<td>12/20</td>
</tr>
<tr>
<td>Grey</td>
</tr>
</tbody>
</table>

aSee text for the definition and explanation of each parameter.
Figure 9. Relative permeability functions that fit the experimental results of DiCarlo [2004]: (a) 30/40 and 20/30 sands and (b) 12/20 and grey sands.

Figure 10. Bulk free energies f and their derivatives with respect to water saturation, $J = df/dS$. The (a) capillary free energies f_{cap} are constructed from (c) classical Brooks-Corey capillary pressure functions $J = df_{\text{cap}}/dS$. Adding the compressibility free energies, we obtain (b) the total bulk free energies $f = f_{\text{cap}} + f_{\text{comp}}$, whose derivative with respect to water saturation gives (d) the bulk flow potential, $J = df/dS$.
influence of the various system parameters on the fingered flow. The objective of the present simulations is to demonstrate the effect of mild heterogeneity in the finger evolution, and the critical role played by the nonlinearity of the relative permeability function. We consider heterogeneity in the absolute permeability, but assume that it does not affect the form of the relative permeability or capillary pressure functions.

The computational domain is the rectangle $[-C_0, 2] 	imes [-C_0, 2]$. For the capillary pressure function we use a standard van Genuchten-Mualem model [Mualem, 1976; van Genuchten, 1980] with $n = 10$ and $m = 1 - 1/n$. The relative permeability is a simple polynomial function, $k_r = S^n$. We use two permeability fields. The first has a short correlation length, with range $r \approx 0.08$. The permeability follows a lognormal distribution with mild heterogeneity: $k_{\text{max}}/k_{\text{min}} \approx 25$, and $\sigma_{\text{rel}} \approx 0.16$ (Figure 15a). The second permeability field is generated by filtering the fine-scale one to obtain a finger-scale correlation length (range $r \approx 0.16$), while keeping the ratio $k_{\text{max}}/k_{\text{min}} \approx 25$ (Figure 15c).

The domain is periodic in the horizontal direction. The initial saturation is $S_0 = 0.01$. The saturation at the top boundary is $S_{\text{top}} = 0.4$, corresponding to a flux ratio $R_s = 2.62 \times 10^{-3}$. The flow is initialized assuming a perturbed, flat front near the top of the domain.

Our simulations use eighth-order finite differences in the vertical direction, and Fourier expansions in the horizontal direction (which is assumed to be periodic). For the convective term, the stencil is slightly upwinded in order to avoid the spurious growth of unresolved high frequencies near the wetting front. The time integration is based on the semiimplicit method presented by Zhu et al. [1999], which

Figure 11. Influence of the model parameters on the saturation overshoot. The default properties are those of the 30/40 sand. (a) Initial saturation S_0. (b) Relative permeability power law exponent b. (c) Compressibility parameter κ. (d) Brooks-Corey parameter λ.

[69] The domain is periodic in the horizontal direction. The initial saturation is $S_0 = 0.01$. The saturation at the top boundary is $S_{\text{top}} = 0.4$, corresponding to a flux ratio $R_s = 2.62 \times 10^{-3}$. The flow is initialized assuming a perturbed, flat front near the top of the domain.

[70] The numerical simulation of the proposed model in multiple dimensions is significantly more demanding than similar computations with Richards’ equation. Moreover, the field of numerical methods for higher-order equations is still in its infancy. In the present context, the reference point is previous work on numerical simulation of the Cahn-Hilliard equation [see, e.g., Cueto-Felgueroso and Peraire, 2008; Gomez et al., 2008], and thin-film flows [Kondic, 2003].

[71] Our simulations use eighth-order finite differences in the vertical direction, and Fourier expansions in the horizontal direction (which is assumed to be periodic). For the convective term, the stencil is slightly upwinded in order to avoid the spurious growth of unresolved high frequencies near the wetting front. The time integration is based on the semiimplicit method presented by Zhu et al. [1999], which
Figure 12. Comparison of the saturation overshoot predictions from our model with the quasi-1-D experiments of DiCarlo [2004]: (a) 30/40 dry sand, $S_0 = 0.01$, (b) 20/30 dry sand, $S_0 = 0.01$, (c) 20/30 sand, $S_0 = 0.03$, and (d) 20/30 sand, $S_0 = 0.06$.

Figure 13. Comparison of the saturation overshoot predictions from our model with the quasi-1-D experiments of DiCarlo [2004]: (a) 12/20 dry sand and (b) grey sand.
is very efficient for spectral discretizations. We acknowledge that the wetting front is not fully resolved in our simulations, and therefore the full extent of the saturation overshoots at the finger tips is not converged in the computations presented here. From simulations on coarser grids, finger width and the range of finger velocities are not greatly affected. However, simulations with a finer grid will lead to a sharper wetting front and larger saturation overshoot at the finger tips.

[73] Snapshots of the saturation field corresponding to the two permeability fields are shown in Figure 15. The most significant feature of the simulated saturation field is the development and growth of gravity fingers that follow the pattern observed in visual laboratory experiments (compare Figures 15b and 15d with, e.g., Glass et al. [1989b] and Selker et al. [1992b]). Our model also predicts the observed saturation overshoot at the tip of the fingers, and the existence of a saturation ridge along the finger root front (also known as distribution layer), which should be analyzed in future experiments.

[74] In Figure 16, we show eight snapshots with the evolution of the fingered flow for the case with finger-scale correlation length heterogeneity. This sequence illustrates the process of finger formation from the initial condition, and finger persistence once the fingers form: finger width is constant along the length of the finger, and also essentially constant in time. The presence of mild heterogeneity induces slight meandering of the fingers, which show “slabs” of alternate high and low saturation. Their predominant straight shape is, however, preserved. Compared to the case of a homogeneous system, heterogeneity also results in a wider distribution of finger velocities.

[75] Additional insight into the behavior of the system is obtained by analyzing the capillary pressure term and the fourth-order term, which contribute, along with gravity, to

![Figure 14. Simulated saturation profiles for the 20/30 dry sand with different flux ratios (dashed lines) and comparison with the experimental measurements of DiCarlo [2004] (solid lines). We set a gravity number of $Gr = 1/3$. The reference length is 1 cm, and therefore we are assuming a capillary rise of 3 cm.](image-url)

Figure 14. Simulated saturation profiles for the 20/30 dry sand with different flux ratios (dashed lines) and comparison with the experimental measurements of DiCarlo [2004] (solid lines). We set a gravity number of $Gr = 1/3$. The reference length is 1 cm, and therefore we are assuming a capillary rise of 3 cm.
the flow potential (see equation (12)). In Figure 17 we plot the dimensionless capillary pressure head, $Gr^{-1}J(S)$, and the dimensionless fourth-order term, $Gr^{-3}\nabla^2S$, for the case with finger-scale correlation length heterogeneity at $t = 174$ (Figure 15d).

Figure 16. Two-dimensional simulations of fingered flow for the case with finger-scale correlation length heterogeneity (Figure 15d). Shown are the snapshots at different simulation times, illustrating the details of the initial condition, finger formation at early time, and finger persistence at late time.

The distribution of capillary pressure reflects the fingered pattern. Average horizontal gradients of capillary pressure between the finger core and the space between fingers are of the order of $Gr^{-1}\delta J/\delta x \approx 0.2$. Although we have not made any attempt to reproduce them quantitatively, horizontal matric potential gradients of this magnitude are observed in the experiments of Selker et al. [1992a]. Figure 17b shows the contribution to the potential from the fourth-order term. This term takes highest values on a fringe immediately outside of the fingered wetting front, where the saturation field is “convex,” and lowest values along...
the finger core and, especially, at the finger tip, where the saturation field is “concave.” The flow induced by this term is toward the fringe of high values, which explains finger persistence without hysteresis effects, and the interpretation of this fourth-order term as an effective surface tension along the wetting front.

When we compute the average saturation \bar{S} as a function of depth, we obtain a rather dispersed infiltration profile (Figure 18a). The solution is completely different from the compact front that would be predicted from the one-dimensional Richards equation. The average saturation is approximately self-similar: the saturation profiles at different times collapse onto a single curve $\bar{S}(\xi)$ under the scaling $\xi = z/t$ (Figure 18b).

A critical aspect of the impact of fingering on transport mechanisms is the relative velocities of the fingers with respect to the root front they emerge from. The larger the ratio of finger/root velocities, the more relevant fingering is; this ratio is indicative of the fraction of the flow that is channelized through the fingers. The key parameters governing finger-to-root velocity ratio are the initial saturation and the form of the relative permeability function. As an example, we repeat the simulation for the permeability field in Figure 15c, but now with different relative permeability functions. We analyze the role of the power law exponent in the range of small water saturations. In particular, we compare simulation results obtained with $k_r = S^5$ (Figure 19a) and $k_r = S^3$ (Figure 19b). It is apparent that the fingering instability becomes much milder as the power law exponent decreases. This behavior is consistent with the dependence of the saturation overshoot on the relative permeability exponent, hinting at a direct relation between...
saturation overshoot and gravity fingering. This link is explored next.

7. Saturation Overshoot and the Onset of Fingering

[79] It has been hypothesized that saturation overshoot at the wetting front is the mechanism responsible for the formation of gravity fingers during infiltration [Geiger and Durnford, 2000; Eliassi and Glass, 2001; Egorov et al., 2003]. Experimental evidence seems to confirm these intuitions [DiCarlo, 2004]. The link between saturation overshoot and instability, by means of a linear stability analysis, has been investigated by Nieber et al. [2005] for an extended model with a relaxation dynamic term. They showed that the magnitude of the instability is related to the magnitude of the overshoot. For a very slight overshoot the flow is still basically stable; once past a critical value the flow becomes unstable.

[80] Here, we show that such a relationship between overshoot and instability of the wetting front can be naturally understood within the proposed theory. We establish the link between saturation overshoot and fingering formation by performing a linear stability analysis of our model [Cueto-Felgueroso and Juanes, 2009b]. Stability refers here to the growth or decay of planar infinitesimal perturbations to the traveling wave solutions to equation (23). For a given set of parameters (gravity number, initial saturation, flux ratio, and constitutive relations) we compute the dispersion relation: a curve of the asymptotic growth factor β associated with each frequency ω of the initial perturbation. A positive value of β indicates asymptotic exponential growth of the perturbation. Negative values are indicative of asymptotic exponential decay. From the dispersion curve, we determine the frequency ω_{max} of the most unstable mode, as well as its associated asymptotic growth factor β_{max}.

[81] The dependency of the stability properties on the various parameters is shown in Figure 20. The growth factor and frequency of the most unstable mode both increase linearly with the gravity number Gr (Figure 20a). This reflects the stabilizing effect of capillary diffusion. From the perspective of characterizing the incipient fingers, this can be interpreted as the formation of thicker, slower fingers as $Gr \to 0$. For a fixed gravity number, capillary effects are smaller for higher values of the Brooks-Corey parameter λ (recall equation (26)). As a result, β_{max} increases with increasing λ. The most unstable mode, however, is rather insensitive to λ (Figure 20b). Consistent with experimental observations, the initial water saturation has a critical effect on the instability: even small values of S_0 result in a drastic reduction of β_{max}, effectively suppressing the instability (Figure 20c). Of particular importance is the dependence of asymptotic exponential growth on the flux ratio R_s. For very low values of R_s, the corresponding value of β_{max} is also very small. Then, the growth rate increases with increasing values of R_s, while the frequency of the most unstable mode remains fairly constant. One of the key results of the stability analysis is that there is a critical flux ratio beyond which β_{max} starts to decrease, along with a decrease in ω_{max}. This trend means that for a sufficiently large flux ratio, close to saturated conditions, the instability is suppressed (Figure 20d).

[82] We now analyze the relation between saturation overshoot and flow instability. We compute traveling wave solutions to equation (23) for increasing flux ratios $R_s \in [0, 1]$. Through a linear stability analysis [Cueto-Felgueroso and Juanes, 2009b], we determine the maximum growth factor β_{max} and the corresponding wave number ω_{max} of the perturbation. We adopt $Gr = 1$, $S_0 = 0.01$ and the constitutive relations

$$k_r(S) = S^3, \quad J(S) = S^{-1/5}. \quad (33)$$

The compressibility parameter is $\kappa = 100$.

[83] Sample traveling waves for different flux ratios are shown in Figure 21a. As the flux ratio increases, the overshoot at the tip also increases. Eventually, the tip saturates and the traveling waves exhibit a relatively flat plateau near the wetting front. Figure 21b shows the “instability path” in $\beta_{\text{max}} - \omega_{\text{max}}$ space, for increasing flux ratios between 0 and 1. Initially, as the flux ratio increases, the system becomes more unstable but with a relatively constant unstable frequency. Beyond a critical flux ratio,
Figure 20. Influence of the model parameters on the stability properties of the traveling wave solutions to equation (23). These results correspond to the traveling waves in Figure 7. (a) Influence of the gravity number Gr. (b) Influence of the Brooks-Corey parameter λ. (c) Influence of the initial water saturation S_0. (d) Influence of the flux ratio $R_s = k_r(S)$.

Figure 21. Relationship between saturation overshoot and stability. (a) Sample traveling waves for various flux ratios. (b) Locus of the pairs $(\omega_{max}, \beta_{max})$, for the range $R_s \in [0, 0.925]$.

however, there is a transition back to stability, in the form of slower (decreasing β_{max}), thicker fingers (decreasing ω_{max}).

[84] A powerful, quantitative analysis of this general picture is provided by Figure 22a. We plot the saturation overshoot and maximum growth factor β_{max}, against flux ratio. The two curves are essentially on top of each other, strongly suggesting a direct relation between the magnitude of the pileup effect and the instability of the front. Both the saturation overshoot and β_{max} are monotonically increasing functions of the flux ratio, until the tip saturates (Figure 22b). After saturation, β_{max} shows a fast decay, and eventually the system is stable for $R_s = 1$. Near-saturated conditions lead to more stable fronts than unsaturated flows.

8. Conclusions and Outlook

[85] We have presented a phase field model of infiltration that explains gravity fingering during water infiltration in soil [Cueto-Felgueroso and Juanes, 2008]. The model is an extension of the traditional Richards equation, and it introduces a new term, a fourth-order derivative in space, but not a new parameter. We propose a scaling that links the magnitude of the new term to the relative strength of gravity-to-capillary forces already present in Richards’ equation. We motivated the new model by analogy with the thin-film equations, which describe a similar phenomenon: the instability of a liquid film down a plane. The model is formulated, however, in the framework of phase field models. This allowed us to endow the model with a sound thermodynamical basis, and to refine it to constrain the saturation field between its physical values (0 and 1).

[86] The comparison with experiments is very favorable. In 1-D, the model reproduces the trends of saturation overshoot versus infiltration rate observed experimentally for different sands and different initial saturations. It also reproduces the saturation profile behind the wetting front. In 2-D, numerical simulations show the formation of gravity fingers with the appearance and characteristics (finger width, finger velocity, and oversaturation at the tip) observed in the experiments [Cueto-Felgueroso and Juanes, 2008]. Our simulations also show the pervasive nature of the fingers, even in the presence of heterogeneity, and they elucidate the critical role of the initial saturation and the nonlinearity of the unsaturated conductivity in the development of the fingering instability.

[87] The linear stability analysis of the model [Cueto-Felgueroso and Juanes, 2009b, 2009a] allowed us to establish a direct relationship between the saturation overshoot and the strength of the wetting front instability, supporting the view that saturation overshoot is a prerequisite for gravity fingering [Geiger and Durnford, 2000; Eliassi and Glass, 2001; Niefier et al., 2005].

[88] It may seem counterintuitive that by adding a highly dissipative fourth-order derivative to a model that is totally stable, Richards’ equation, a conditionally stable model emerges. The physical explanation is that the fourth-order term introduces a macroscopic surface tension at the wetting front, responsible for a hold-back–pileup effect [Eliassi and Glass, 2002]. The model predicts an accumulation of water at the front, which then has sufficient “energy” to trigger the instability.

[89] The phase field model of unsaturated flow presented here is a first step toward the explanation and quantitative prediction of the dynamics of unstable multiphase flow through porous media using continuum models.

[90] Acknowledgments. We thank John Selker for leading an insightful review process, which led to an improved presentation of the material. We gratefully acknowledge funding for this research, provided by Eni S.p.A. under the Multiscale Reservoir Science project and by the ARCO Chair in Energy Studies.

References

Stauffer, F. (1978), Time dependence of the relations between capillary pressure, water content and conductivity during drainage of porous media, paper presented at IAHR Symposium on Scale Effects in Porous Media, Thessaloniki, Greece.

