On Symmetry, Perspectivity, and Level-Set-Based Segmentation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/tpami.2008.160</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 05 10:14:10 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/60292</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
On Symmetry, Perspectivity, and Level-Set-Based Segmentation

Tammy Riklin-Raviv, Member, IEEE, Nir Sochen, Member, IEEE, and Nahum Kiryati, Senior Member, IEEE

Abstract—We introduce a novel variational method for the extraction of objects with either bilateral or rotational symmetry in the presence of perspective distortion. Information on the symmetry axis of the object and the distorting transformation is obtained as a by-product of the segmentation process. The key idea is the use of a flip or a rotation of the image to segment as if it were another view of the object. We call this generated image the symmetrical counterpart image. We show that the symmetrical counterpart image and the source image are related by planar projective homography. This homography is determined by the unknown planar projective transformation that distorts the object symmetry. The proposed segmentation method uses a level-set-based curve evolution technique. The extraction of the object boundaries is based on the symmetry constraint and the image data. The symmetrical counterpart of the evolving level-set function provides a dynamic shape prior. It supports the segmentation by resolving possible ambiguities due to noise, clutter, occlusions, and assimilation with the background. The homography that aligns the symmetrical counterpart to the source level-set is recovered via a registration process carried out concurrently with the segmentation. Promising segmentation results of various images of approximately symmetrical objects are shown.

Index Terms—Symmetry, segmentation, level-sets, homography.

1 INTRODUCTION

Shape symmetry is a useful visual feature for image understanding [48]. This research employs symmetry for segmentation.1 In the presence of noise, clutter, shadows, occlusions, or assimilation with the background, segmentation becomes challenging. In these cases, object boundaries do not fully correspond to edges in the image and may not delimit homogeneous image regions. Hence, classical region-based (RB) and edge-based segmentation techniques are not sufficient. We therefore suggest a novel approach to facilitate segmentation of objects that are known to be symmetrical by using their symmetry property as a shape constraint. The model presented is applicable to objects with either rotational or bilateral (reflection) symmetry distorted by projectivity.

The proposed segmentation method partitions the image into foreground and background domains, where the foreground region is known to be approximately symmetrical up to planar projective transformation. The boundary of the symmetrical region (or object) is inferred by minimizing a cost functional. This functional imposes the smoothness of the segmenting contour, its alignment with the image edges, and the homogeneity of the regions it delimits. The assumed symmetry property of the object to extract provides an essential additional constraint.

There has been intensive research on symmetry related to human and computer vision. We mention a few of the classical and of the most recent papers. Most natural structures are only approximately symmetrical, therefore there is a great interest, pioneered by the work in [56] and followed by [18], in defining a measure of symmetry. There is a mass of work on symmetry and symmetry-axis detection [1], [5], [19], [23], [29], [31], [34], [44], [49]. Recovery of 3D structure from symmetry is explored in [12], [42], [45], [46], [50], [53], [57]. There are a few works that use symmetry for grouping [43] and segmentation [13], [14], [25], [27], [54]. The majority of the symmetry-related papers consider either bilateral symmetry [12], [42], [57] or rotational symmetry [5], [16], [55], [34]. Some studies are even more specific, for example, Milner et al. [30] suggest a symmetry measure for bifurcating structures, Ishikawa et al. [17] handle tree structures, and Hong et al. [16] and Yang et al. [53] demonstrate the relation between symmetry and perspectivity on simple geometrical shapes.

Only a few algorithms treat the symmetrical object shape as a single entity and not as a collection of landmarks or feature points. Refer for example to [44], which suggests the edge strength function to determine the axes of local symmetry in shapes, using variational framework. In the suggested framework, the symmetrical object contour is represented as a single entity by the zero-level of a level-set function. We assign, without loss of generality, the positive levels to the object domain. Taking the role of object indicator functions, level-sets are most adequate for...
dynamic shape representation. A dissimilarity measure between objects is defined as a function of the image regions with contradicting labeling. Transformation of the region bounded by the zero level is applied by a coordinate transformation of the domain of the embedding level-set function [38], as illustrated in Fig. 1.

We define the concept of symmetrical counterpart in the context of image analysis. When the imaged object has a bilateral symmetry, the symmetrical counterpart image is obtained by a vertical (or horizontal) flip of the image domain. When the imaged object has a rotational symmetry, the symmetrical counterpart image is provided by a rotation of the image domain. In the same manner, we define the symmetrical counterpart of a level-set (or a labeling) function. The symmetry constraint is imposed by minimizing the dissimilarity measure between the evolving level-set function and its symmetrical counterpart. The proposed segmentation approach is thus fundamentally different from other methods that support segmentation by symmetry [13], [14], [25], [27], [54].

When symmetry is distorted by perspectivity, the detection of the underlying symmetry becomes nontrivial, thus complicating symmetry-aided segmentation. In this case, even a perfectly symmetrical image is not identical to its symmetrical counterpart. We approach this difficulty by performing registration between the symmetrical counterparts. The registration process is justified by showing that an image of a symmetrical object, distorted by a projective transformation, relates to its symmetrical counterpart by a planar projective homography. A key result presented in this manuscript is the structure of this homography, which is determined, up to well-defined limits, by the distorting projective transformation. This result allows us to bypass the phase of symmetry axis detection.

Figs. 2 and 3 illustrate the main idea of the proposed framework. Fig. 2a shows an approximately symmetrical object (its upper left part is corrupted) that underwent a perspective distortion. Fig. 2b is a reflection of Fig. 2a with respect to the vertical symmetry axis of the image domain. Note, however, that this is not the symmetry axis of the object, which is unknown. We call Fig. 2b the symmetrical counterpart of Fig. 2a. Figs. 2a and 2b can be considered as two views of the same object. Fig. 2b can be aligned to Fig. 2a by applying a perspective transformation different from the counter reflection, as shown in Fig. 2c. Superposition of Figs. 2a and 2c yields the complete noncorrupted object view as shown in Fig. 2d. In the course of the iterative segmentation process, the symmetrical counterpart of the object delineated provides a dynamic shape prior and thus facilitates the recovery of the hidden or vague object boundaries.

Fig. 3 demonstrates the detection of symmetrical objects. In Fig. 3a, only one of the flowers imaged has rotational symmetry (up to an affine transformation). The symmetrical counterpart image (Fig. 3b) is generated by rotation of the image domain. Fig. 3c shows the superposition of the images displayed in Figs. 3a and 3b. Fig. 3d presents the superposition of the original image (Fig. 3a) and its symmetrical counterpart aligned to it. Note that the alignment between the two images was not obtained by the counter rotation but by an affine transformation.

This paper contains two fundamental, related contributions. The first is the use of an intrinsic shape property—symmetry—as a prior for image segmentation. This is made possible by a group of theoretical results related to symmetry and perspectivity that are the essence of the second contribution. Specifically, we present the structure of the homography that relates an image (or a level-set function) to its symmetrical counterpart. The unknown projective transformation that distorts the object symmetry can be recovered from this homography under certain conditions. These conditions are specified, defining the concept of symmetry preserving transformation. Specifically, we show that transformations that do not distort the image symmetry cannot be recovered from this homography. We also propose a measure for the “distance” between a labeling function and its symmetrical counterpart. We call it the symmetry imperfection measure. This measure is the basis of the symmetry constraint that is incorporated within a unified segmentation functional. The suggested segmentation method is demonstrated on various images of approximately symmetrical objects distorted by planar projective transformation.

This paper is organized as follows: In Section 2, we review the level-set formulation, showing its use for dynamic shape representation and segmentation. In Section 3, the concepts of symmetry and projectivity are reviewed. The main theoretical contribution resides in Section 3.3 which establishes the key elements of the suggested study. In particular, the structure of the homography that relates between symmetrical counterpart images is analyzed. In Section 4, a measure of symmetry imperfection of approximately symmetrical images, based on that homography, is defined. We use this measure to construct a symmetry-shape term. Implementation details and further implications are presented in Section 5. Experimental results are provided in Section 6. We conclude in Section 7.

2 LEVEL-SET FRAMEWORK

We use the level-set formulation [11], [33] since it allows nonparametric representation of the evolving object boundary and automatic changes of its topology. These characteristics are also most desirable for the dynamic representation of the shape of the image region bounded by the zero level.

2. The same expression with a different meaning was introduced in [6], [24] to denote shape prior which captures the temporal evolution of shape.
The optimal segmentation is therefore inferred by minimizing a cost functional \(E(\phi, I) \) with respect to \(\phi \). The optimizer \(\phi \) is derived iteratively by \(\phi(t + \Delta t) = \phi(t) + \phi_t \Delta t \). The gradient descent equation \(\phi_t \) is obtained from the first variation of the segmentation functional using the Euler-Lagrange equations.

The suggested segmentation framework utilizes a unified functional which consists of an energy term driven by the symmetry constraint together with the classical terms derived from the constraints related to the low-level image features:

\[
E(\phi, I) = E_{\text{DATA}}(\phi, I) + E_{\text{SYM}}(\phi). \tag{2}
\]

The data terms of \(E_{\text{DATA}} \) are briefly reviewed in Sections 2.2, 2.3, and 2.4 based on current state-of-the-art level-set segmentation methods [3], [2], [20], [22], [51]. Section 2.5 outlines the main idea behind the prior shape constraint [38], which is the "predecessor" of the shape-symmetry term. The remainder of this paper relates to \(E_{\text{SYM}} \).

2.2 Region-Based Term

In the spirit of the Mumford-Shah observation [32], we assume that the object contour \(C = \partial \omega \), represented by the zero level of \(\phi \), delimits homogeneous image regions. We use the Heaviside function (as in [3]) to assign the positive levels of \(\phi \) to the object domain (\(\omega \)) and the negative levels to the background domain (\(\Omega \setminus \omega \)):

\[
H(\phi(t)) = \begin{cases}
1 & \phi(t) \geq 0 \\
0 & \text{otherwise}
\end{cases}
\tag{3}
\]

Let \(I_{\text{in}} : \omega \rightarrow \mathbb{R}^+ \) and \(I_{\text{out}} : \Omega \setminus \omega \rightarrow \mathbb{R}^+ \) be the image foreground and background intensities, respectively. Denoting the gray-level averages by \(\{u_1^+, u_1^-\} \) and the respective gray-level variances by \(\{u_2^+, u_2^-\} \), we look for a level-set function \(\phi \) that minimizes the following region-based (RB) term [3], [28], [52]:

\[
E_{\text{RB}}(\phi) = \int_\Omega \sum_{i=1}^2 \left[(G_i^+(I(x)) - u_i^+)^2 H(\phi) + (G_i^-(I(x)) - u_i^-)^2 (1 - H(\phi)) \right] dx,
\tag{4}
\]

where \(G_1^+(I) = G_1^+(I) = I \),

\[
G_2^+(I) = \left(I(x) - \overline{I_{\text{in}}} \right)^2, \quad G_2^-(I) = \left(I(x) - \overline{I_{\text{out}}} \right)^2.
\]

The level-set function \(\phi \) is updated by the gradient descent equation:

\[
\phi_t = \delta(\phi) \sum_{i=1}^2 \left[-(G_i^+(I(x)) - u_i^+)^2 + (G_i^-(I(x)) - u_i^-)^2 \right]. \tag{5}
\]

The sets of scalars \(\{u_i^+\} \) and \(\{u_i^-\} \) are updated alternately with the evaluation of \(\phi(t) \):
\[
\begin{align*}
 u_1^+ &= A^+ \int_\Omega G_1^+(I(x))H(\phi)dx, \\
 u_1^- &= A^- \int_\Omega G_1^-(I(x))(1 - H(\phi))dx,
\end{align*}
\]

where \(A^+ = 1/\int_\Omega H(\phi)dx \) and \(A^- = 1/\int_\Omega (1 - H(\phi))dx \).
Practically, a smooth approximation of the Heaviside function rather than a step function is used [3]:

\[
H_\epsilon(\phi) = \frac{1}{2} \left(1 + \frac{2}{\pi} \arctan \left(\frac{\phi}{\epsilon} \right) \right).
\]

The evolution of \(\phi \) at each time step is weighted by the derivative of the regularized form of the Heaviside function:

\[
\delta_\epsilon(\phi) = \frac{dH(\phi)}{d\phi} = \frac{1}{\pi \epsilon^2 + \phi^2}.
\]

To simplify the notation, the subscript \(\epsilon \) will be hereafter omitted.

2.3 Geodesic Active Contour and Smoothness Terms

The edge-based segmentation criterion is derived from the assumption that the object boundaries coincide with the local maxima of the absolute values of the image gradients. Let \(\nabla I(x,y) = \{I_x, I_y\} = \{\frac{\partial I(x,y)}{\partial x}, \frac{\partial I(x,y)}{\partial y}\} \) denote the vector field of the image gradients. Following [20] [2], the inverse edge alignment (EA) term constrains the level-set function to align with the image gradient direction \(\nabla I \) [51], [21], [22]:

\[
E_{EA} = -\int_\Omega \left\langle \nabla I, \nabla \phi \right\rangle \left\langle \nabla H(\phi) \right\rangle dx.
\]

The associated gradient descent equation is

\[
\frac{d\phi}{dt}^{EA} = -\delta(\phi) \text{sign}(\nabla \phi, \nabla I) \Delta I,
\]

where \(\langle \cdot, \cdot \rangle \) denotes the inner-product operation.

2.5 From Shape Constraint to Symmetry Constraint

Shape constraint, in level-set-based segmentation techniques, is commonly defined by a dissimilarity measure between the evolving level-set function and a representation of the prior shape [4], [7], [10], [8], [9], [26], [38], [41], [47]. The main difficulty stems from the fact that the prior shape and the shape to segment are not aligned. Hence, shape transformations must be taken into consideration and the segmentation should be accompanied by a registration process.

2.5.1 Shape Transformations

Transformation of the shape defined by the propagating contour is obtained by a coordinate transformation of the image domain \(\Omega \) [38]. Let \(\mathcal{H} \) denote a \(3 \times 3 \) matrix that represents a planar transformation. The matrix \(\mathcal{H} \) operates on homogeneous vectors \(X = (x,1)^T = (x, y, 1)^T \). We define an operator \(h: \Omega \rightarrow \Omega, \) where \(\Omega \in \mathbb{R}^2 \) is the projective domain such that \(h(x) = X \). Let \(X' = (X', Y', b) = \mathcal{H}X \) denote the coordinate transformation of the projective domain \(\Omega \). The entries of the two-vector \(x' \in \Omega \) are the ratios of the first two coordinates of \(X' \) and the third one, i.e., \(x' = (x', y') = (X'/b, Y'/b) \). Equivalently, one can use the “inverse” operator \(h^{-1}: \Omega \rightarrow \Omega \) and write \(h^{-1}(X') = X' \).

Let \(L(x) = H(\phi(x)) \) denote the indicator function of the object currently being segmented. Transformation of \(L(x) \) by a planar transformation \(\mathcal{H} \) will be denoted by \(L \circ \mathcal{H} = L(\mathcal{H}(x)) \), where \(\mathcal{H} \) is a shorthand to \(h^{-1}(h(\mathcal{H}(x))) \). Fig. 1 illustrates this notion. We can also use the coordinate transformation to define shape symmetry, for example, if \(L(x) = L(x, y) \) embeds a shape with left-right bilateral symmetry, then \(L(x, y) = L(-x, y) \).

In general, we can think of \(L \) as a function defined on \(\mathbb{R}^2 \), where \(\Omega \) is the support of the image. This way, the operation \(\mathcal{H} \) maps vectors in \(\mathbb{R}^2 \) to vectors in \(\mathbb{R}^2 \) and is well defined. Note that the shape of the support may be changed under the action of the operator/matrix \(\mathcal{H} \).

2.5.2 Shape Dissimilarity Measure

Let \(\tilde{L} \) be a binary representation of the prior shape. The segmentation process is defined by the evolution of the object indicator function \(L \). A shape constraint takes the form \(D(L(x), \mathcal{H}(L(x))) < \epsilon \), where \(D \) is a dissimilarity measure between \(L(x) \) and the aligned prior shape representation \(\mathcal{L}(\mathcal{H}(x)) \). The matrix \(\mathcal{H} \) represents that alignment and is recovered concurrently with the segmentation process.

When only a single image is given, such a prior is not available. Nevertheless, if an object is known to be symmetrical, we can treat the image and its symmetrical counterpart (e.g., its reflection or rotation) as if they are two different views of the same object. The instantaneous symmetrical counterpart of the evolving shape provides a dynamic shape prior. The symmetry dissimilarity measure is based on a theoretical framework established in Section 3. Section 4 considers the incorporation of the symmetry constraint within a level-set framework for segmentation.
3 SYMMETRY AND PROJECTIVITY

3.1 Symmetry

Symmetry is an intrinsic property of an object. An object is symmetrical with respect to a given operation if it remains invariant under that operation. In 2D geometry, these operations relate to the basic planar euclidean isometries: reflection, rotation, and translation. We denote the symmetry operator by S. The operator S is an isometry that operates on homogeneous vectors $X = (x, 1)^T = (x, y, 1)^T$ and is represented as

$$S = \begin{bmatrix} s R(\theta) & t \\ 0^T & 1 \end{bmatrix},$$

(14)

where t is a 2D translation vector, 0 is the null 2D vector, R is a 2×2 rotation matrix, and s is the diagonal matrix $\text{diag}(\pm 1, \pm 1)$.

Specifically, we consider one of the following transformations:

1. S is translation if $t \neq 0$ and $s = R(\theta) = \text{diag}(1,1)$.
2. S is rotation if $t = 0, s = \text{diag}(1,1)$, and $\theta \neq 0$.
3. S is reflection if $t = 0, \theta = 0$, and s is either $\text{diag}(-1,1)$ for left-right reflection or $\text{diag}(1,-1)$ for up-down reflection.

In the case of reflection, the symmetry operation reverses orientation; otherwise (translation and rotation), it is orientation preserving.

The particular case of translational symmetry requires an infinite image domain. Hence, it is not specifically considered in this manuscript.

Definition 1 (symmetrical image). Let S denote a symmetry operator as defined in (14). The operator S is either reflection or rotation. The image $I : \Omega \rightarrow \mathbb{R}^+$ is symmetrical with respect to S if

$$I(x) = I(Sx) \equiv I \circ S.$$

(15)

The concept of symmetry is intimately related to the notion of invariance. We say that a vector or a function L is invariant with respect to the transformation (or operator) S if $SL = L$.

Since we are interested in symmetry in terms of shape and not in terms of gray levels, we will therefore consider the object indicator function $L : \Omega \rightarrow \{0,1\}$ as defined in Section 2.5. Hereafter, we use the shorthand notation for the coordinate transformation of the image domain as defined in Section 2.5.

Definition 2 (symmetrical counterpart). Let S denote a symmetry operator. The object indicator function $L(x) = L \circ S(x) = L(Sx)$ is the symmetrical counterpart of $L(x)$. L is symmetrical iff $L = L$.

We claim that the object indicator function of a symmetrical object distorted by a projective transformation is related to its symmetrical counterpart by projective transformation different from the defining symmetry. Before we proceed with proving this claim, we recall the definition of projective transformation.

3.2 Projectivity

This section follows the definitions in [15].

Definition 3. A planar projective transformation (projectivity) is a linear transformation represented by a nonsingular 3×3 matrix H operating on homogeneous vectors, $X' = HX$, where

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}. $$

(16)

Important specializations of the group formed by projective transformation are the affine group and the similarity group which is a subgroup of the affine group. These groups form a hierarchy of transformations. A similarity transformation is represented by

$$H_{\text{SIM}} = \begin{bmatrix} \kappa R(\theta) & t \\ 0^T & 1 \end{bmatrix},$$

(17)

where R is a 2×2 rotation (by θ) matrix and κ is an isotropic scaling. When $\kappa = 1$, H_{SIM} is the euclidean transformation denoted by H_E. An affine transformation is obtained by multiplying the matrix H_{SIM} with

$$H_A = \begin{bmatrix} K & 0 \\ 0^T & 1 \end{bmatrix}. $$

(18)

K is an upper-triangular matrix normalized as $\det K = 1$. The matrix H_P defines the “essence” [15] of the projective transformation and takes the form:

$$H_P = \begin{bmatrix} 1 & 0 \\ v^T & v \end{bmatrix},$$

(19)

where 1 is the two-identity matrix. A projective transformation can be decomposed into a chain of transformations of a descending (or ascending) hierarchy order

$$H = H_{\text{SIM}}H_AH_P = \begin{bmatrix} A & t \\ v^T & v \end{bmatrix}, $$

(20)

where $v \neq 0$ and $A = \kappa RK + tv^T$ is a nonsingular matrix.

3.3 Theoretical Results

In this section, we consider the relation between an image (or an object indicator function) of a symmetrical object distorted by planar projective transformation H and its symmetrical counterpart. The object indicator function L will be treated as a binary image and will be called, for simplicity, image.

Recall from the previous section that a symmetrical image (or labeling function) L with respect to the symmetry operator S is invariant to S. We next define an operator (matrix) S_H such that a symmetrical image that underwent a planar projective transformation is invariant to its operation.

Theorem 1. Let $L_H = L(Hx)$ denote the image obtained from the symmetrical image L by applying a planar projective transformation H. If L is invariant to S, i.e., $L(x) = L(Sx) = L(S^{-1}x)$, then L_H is invariant to S_H, where $S_H = H^{-1}SH \equiv H^{-1}S^{-1}H$.

The next theorem gives tighter characterization of $L_H(x) = L_H(S_H x)$.

We define $y = H x$.

\[
L_H(S_H x) = L_H(H^{-1} S_H x) = L(S_H x) = L(S y) = L(y) = L(H x) = L_H(x).
\] (21)

\[
M = S^{-1} H^{-1} S H.
\] (22)

Proof. We need to prove that $L_H(x) = \hat{L}_H(M x)$, where $M = S^{-1} H^{-1} S H$.

The image L_H is invariant to S_H, thus, $L_H(x) = L_H(S_H x)$. By definition, $\hat{L}_H(x) = L_H(S x)$. From the above equations and Theorem 1, defining $y = S^{-1} S_H x$, we get

\[
L_H(x) = L_H(S_H x) = L_H(S S^{-1} S_H x) = L_H(S y) = \hat{L}_H(y) = \hat{L}_H(S^{-1} S_H x) = \hat{L}_H(S^{-1} H^{-1} S H x) = \hat{L}_H(M x).
\] (23)

The image L_H can be generated from its symmetrical counterpart \hat{L}_H either by applying the inverse of the symmetry operation S or by a projective transformation M which is different from S^{-1}.

Let M_{INV} denote a 3×3 nonsingular matrix such that $M_{\text{INV}} = H^{-1} S^{-1} H S$. M_{INV} is a projective transformation since $HM_{\text{INV}} = S^{-1} HS$ is a projective transformation according to

\[
S^{-1} HS = S^{-1} \begin{bmatrix} A & t \\ v^T & 1 \end{bmatrix} S = \begin{bmatrix} A' & t' \\ v'^T & v \end{bmatrix} = H',
\] (24)

where H is scaled such that $v = 1$.

Thus, $M = M_{\text{INV}}$ represents a projective transformation. It is easy to prove that $M \neq S^{-1}$ when S is not the identity matrix. Assume to the contrary that there exists a nonsingular H and a symmetry operation S such that $M = S^{-1}$. Then, from (22), $S^{-1} = S^{-1} H^{-1} S H$. Thus, $H = S H$, which implies that either S is the identity matrix or H is singular, in contradiction to the assumptions.

The next theorem gives tighter characterization of M.

Theorem 2. Let L_H denote the image obtained from the symmetrical image L by applying a planar projective transformation H. Let $\hat{L}_H = L_H(S x) \equiv L_H \circ S$ denote the symmetrical counterpart of L_H with respect to a symmetry operation S. The image \hat{L}_H can be obtained from its symmetrical counterpart \hat{L}_H by applying a transformation represented by a 3×3 matrix of the form:

\[
M = S^{-1} H^{-1} S H.
\]

Proof. We need to prove that $L_H(x) = \hat{L}_H(M x)$, where $M = S^{-1} H^{-1} S H$.

The image L_H is invariant to S_H; thus, $L_H(x) = L_H(S_H x)$. By definition, $\hat{L}_H(x) = L_H(S x)$. From the above equations and Theorem 1, defining $y = S^{-1} S_H x$, we get

\[
L_H(x) = L_H(S_H x) = L_H(S S^{-1} S_H x) = L_H(S y) = \hat{L}_H(y) = \hat{L}_H(S^{-1} S_H x) = \hat{L}_H(S^{-1} H^{-1} S H x) = \hat{L}_H(M x).
\]

The image L_H can be generated from its symmetrical counterpart \hat{L}_H either by applying the inverse of the symmetry operation S or by a projective transformation M which is different from S^{-1}.

Let M_{INV} denote a 3×3 nonsingular matrix such that $M_{\text{INV}} = H^{-1} S^{-1} H S$. M_{INV} is a projective transformation since $HM_{\text{INV}} = S^{-1} HS$ is a projective transformation according to

\[
S^{-1} HS = S^{-1} \begin{bmatrix} A & t \\ v^T & 1 \end{bmatrix} S = \begin{bmatrix} A' & t' \\ v'^T & v \end{bmatrix} = H',
\]

where H is scaled such that $v = 1$.

Thus, $M = M_{\text{INV}}$ represents a projective transformation. It is easy to prove that $M \neq S^{-1}$ when S is not the identity matrix. Assume to the contrary that there exists a nonsingular H and a symmetry operation S such that $M = S^{-1}$. Then, from (22), $S^{-1} = S^{-1} H^{-1} S H$. Thus, $H = S H$, which implies that either S is the identity matrix or H is singular, in contradiction to the assumptions.

The reader is referred to Appendix B of the supplemental material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.160, which demonstrates Theorems 1-4 by three toy examples.
is not trivial. We approach this difficulty relying on the results presented in Theorems 1 and 2.

Recall that a symmetrical binary image distorted by projective transformation is invariant to the operator S_H as defined in (21). This is the basis of the first definition.

Definition 5 (symmetry imperfection (1)). The image L^c is e-symmetrical with respect to the symmetry operator S if $D(L', L' \circ S) \leq e$, where D is a dissimilarity measure (distance function) and e is a small and positive scalar. The measure $D(L', L' \circ S)$ quantifies the symmetry imperfection of L'. Let L_H denote the image obtained from L' by applying a planar projective transformation H. The measure for the symmetry imperfection of the perspective distorted image L_H is defined by $D(L'_H, L_H \circ S_H)$, where $S_H = H^{-1}SH$.

Although this definition is natural, it is not always applicable since usually the projective transformation H is unknown. We therefore use an alternative equivalent definition of symmetry imperfection. This alternative measure involves the concept of the symmetrical counterpart image (see Definition 2) and the homography M that aligns symmetrical counterpart images.

Definition 6 (symmetry imperfection (2)). Let L'_H be the e-symmetrical image distorted by planar projective homography H. Let $L_H^c = L'_H \circ S$ denote the symmetrical counterpart of L'_H. The distance function $D(L'_H, L'_H \circ M)$ measures the symmetry imperfection of L'_H.

Lemma 2. The two definitions are equivalent.

Proof. Direct consequence of the identity $L'_H \circ M = L'_H \circ S_H$. □

In the following sections, we show how M can be recovered during the segmentation process by minimizing the term $D_M = D(L'_H, L'_H \circ M)$ with respect to M. The recovery of M is easier when H is either euclidean or affine transformation, following the result of Theorem 3. In that case, only four or six entries of M should be recovered. The matrix H can be recovered from M up to a symmetry preserving transformation (Theorem 4).

4.2 Symmetry Constraint

In the previous section, the symmetrical counterparts were either images or object indicator functions. Using the level-set formulation, we will now refer to level-sets and their Heaviside functions $H(\phi)$. Recall that $H(\phi(t))$ is an indicator function of the estimated object regions in the image at time t.

Let $\phi : \Omega \rightarrow \mathbb{R}$ denote the symmetrical counterpart of ϕ with respect to a symmetry operation S. Specifically, $\phi(x) = \phi(Sx)$, where S is either a reflection or a rotation matrix. We assume for now that S is known. This assumption will be relaxed in Section 5.6. Note however that H is unknown. Let M denote the planar projective transformation that aligns $H(\phi) \rightarrow H(\phi)$, i.e., $H(\phi) \circ M = H(\phi(Mx)) = H(\phi_M)$. The matrix M is recovered by a registration process held concurrently with the segmentation, detailed in Section 4.4.

Let $D = D(H(\phi), H(\phi_M))$ denote a dissimilarity measure between the evolving shape representation and its symmetrical counterpart. Note that if M is correctly recovered and ϕ captures a perfectly symmetrical object (up to projectivity), then D should be zero. As shown in the previous section, D is a measure for symmetry imperfection and therefore defines a shape symmetry constraint. The next section considers possible definitions of D.

4.3 Biased Shape Dissimilarity Measure

Consider, for example, the approximately symmetrical (up to projectivity) images shown in Figs. 4a and 4d. The object’s symmetry is distorted by either deficiencies or excess parts. A straightforward definition of a symmetry shape constraint which measures the distance between the evolving segmentation and the aligned symmetrical counterpart takes the form:

$$D(\phi, \phi_M) = \int_\Omega \left| H(\phi(x)) - H(\phi_M) \right|^2 dx.$$ \hspace{1cm} (27)

However, incorporating this, the unbiased shape constraint in the cost functional for segmentation, results in the undesired segmentation shown in Figs. 4b and 4e. This is due to the fact that the evolving level-set function ϕ is as imperfect as its symmetrical counterpart ϕ. To support a correct evolution of ϕ by ϕ, one has to account for the cause of the imperfection.

Refer again to (27). This dissimilarity measure integrates the nonoverlapping object-background regions in both images indicated by $H(\phi)$ and $H(\phi_M)$. This is equivalent to a pointwise exclusive-or (xor) operation integrated over the image domain. We may thus rewrite the functional as follows:

$$D(\phi, \phi_M) = \int_\Omega \left[H(\phi) \left(1 - H(\phi_M) \right) + (1 - H(\phi))H(\phi_M) \right] dx.$$ \hspace{1cm} (28)

Note that expressions (27) and (28) are identical since $H(\phi) = (H(\phi))^2$. There are two types of “disagreement” between the labeling of $H(\phi)$ and $H(\phi_M)$. The first additive term in the right-hand side of (28) is not zero for image regions labeled as object by ϕ and labeled as background by its symmetrical counterpart ϕ_M. The second additive term of (28) is not zero for image regions labeled as background by ϕ and...
labeled as object by \(\hat{\phi} \). We can change the relative contribution of each term by a relative weight parameter \(\mu > 0 \):

\[
E_{\text{SYM}} = \int_{\Omega} \left[\mu H(\phi) \left(1 - H(\hat{\phi}_M) \right) + (1 - H(\phi)) H(\hat{\phi}_M) \right] dx.
\]

The associated gradient equation for \(\phi \) is then

\[
\phi_{t}^{\text{SYM}} = \delta(\phi) \left[H(\hat{\phi}_M) - \mu \left(1 - H(\hat{\phi}_M) \right) \right].
\]

Now, if excess parts are assumed, the left penalty term should be dominant, setting \(\mu > 1 \). Otherwise, if deficiencies are assumed, the right penalty term should be dominant, setting \(\mu < 1 \). Figs. 4c and 4f show segmentation of symmetrical objects with either deficiencies or excess parts, incorporating the symmetry term (29) within the segmentation functional. We used \(\mu = 0.8 \) and \(\mu = 2 \) for the segmentation of Figs. 4c and 4f, respectively. A similar dissimilarity measure was proposed in [40], [39] to quantify the “distance” between the alternately evolving level-set functions of two different object views.

4.4 Recovery of the Transformation

In the previous section, we defined a biased symmetry imperfection measure \(E_{\text{SYM}} \) (29) that measures the mismatch between \(H(\hat{\phi}) \) and its aligned symmetrical counterpart \(H(\hat{\phi}_M) \). We now look for the optimal alignment matrix \(M \) that minimizes \(E_{\text{SYM}} \).

Using the notation defined in Section 2.5, we define the coordinate transformation \(M \) of \(\hat{\phi}(x) \) as follows:

\[
MH(\hat{\phi}(x)) = H(\hat{\phi}(x)) \circ M = H(\hat{\phi}(Mx)) = H(\hat{\phi}_M). \]

We assume that the matrix \(M \) is a planar projective homography, as defined in (20). The eight unknown parameters of its entries \(m_{ik} = m_{ij}/\beta_{33}, \{i, j\} = \{1,1\}, \{1,2\}, \ldots \{3,2\} \) are recovered through the segmentation process, alternately with the evolution of the level-set function \(\phi \). The equations for \(m_{ik} \) are obtained by minimizing (30) with respect to each

\[
\frac{\partial m_{ik}}{\partial r} = \int_{\Omega} \delta(\hat{\phi}_M)[(1 - H(\phi)) - \mu H(\phi)] \frac{\partial M(\hat{\phi})}{\partial m_{ik}} dx,
\]

where

\[
\frac{\partial M(\hat{\phi})}{\partial m_{ik}} = \frac{\partial M(\hat{\phi})}{\partial x} \left(\frac{\partial x}{\partial m_{ik}} + \frac{\partial x}{\partial y} \frac{\partial y}{\partial m_{ik}} \right) + \frac{\partial M(\hat{\phi})}{\partial y} \left(\frac{\partial y}{\partial m_{ik}} + \frac{\partial y}{\partial m_{ik}} \right).
\]

Refer to [38], [36], [35] for detailed derivation of (33).

4.5 Unified Segmentation Functional

Symmetry-based, edge-based, RB, and smoothness constraints can be integrated to establish a comprehensive cost functional for segmentation:

\[
E(\phi) = W_{\text{RB}} E_{\text{RB}}(\phi) + W_{\text{GAC}} E_{\text{GAC}}(\phi) + W_{\text{EA}} E_{\text{EA}}(\phi) + W_{\text{SYM}} E_{\text{SYM}}(\phi),
\]

with (4), (9), (12), (29). Note that the smoothness (length) term (11) is included in the GAC term \(E_{\text{GAC}} \) (9). This can be shown by splitting \(g(\nabla I(x)) \) (8) as follows:

\[
g(\nabla I(x)) = \gamma / (\gamma + |\nabla I|^2) = 1 - |\nabla I|^2 / (\gamma + |\nabla I|^2),
\]

where the \(\gamma \) in the numerator of the left-hand side of the equation can be absorbed in the weight of the GAC term (see also [39]). The associated gradient descent equation \(\phi_t \) is

\[
\phi_t = W_{\text{RB}}^{\phi_t} + W_{\text{GAC}}^{\phi_t} + W_{\text{EA}}^{\phi_t} + W_{\text{SYM}}^{\phi_t}.
\]

The terms \(\phi_t^{\text{TERM}} \) are obtained by slight modification of the gradient descent terms \(\phi_t^{\text{TERM}} \) determined by (5), (10), (33), (30). This issue and the determination of the weights \(W_{\text{TERM}}^{\phi_t} \) for the different terms in (35) are discussed in Section 5.3.

Refinement of the segmentation results can be obtained for images with multiple channels, \(I: \Omega \to \mathbb{R}^n \), e.g., color images. The RB term \(\phi_t^{\text{RB}} \) and the alignment term \(\phi_t^{\text{EA}} \) are thus the sum of the contributions of each channel \(I_i \). Multichannel segmentation is particularly suitable when the object boundaries are apparent in some of the channels while the piecewise homogeneity is preserved in others. Fig. 8 demonstrates segmentation of a color image.

5 Implementation and Further Implications

Segmentation is obtained by minimizing a cost functional that incorporates symmetry as well as RB, edge-based, and smoothness terms. The minimizing level-set function is evolved concurrently with the registration of its instantaneous symmetrical counterpart to it. The symmetrical counterpart is generated by a flip or rotation of the coordinate system of the propagating level-set function. The evolution of the level-set function is controlled by the constraints imposed by the data of the associated image and by its aligned symmetrical counterpart. The planar projective transformation between the evolving level-set function and its symmetrical counterpart is updated at each iteration.

5.1 Algorithm

We summarize the proposed algorithm for segmentation of a symmetric object distorted by projectivity:

1. Choose an initial level-set function \(\phi_{t=0} \) that determines the initial segmentation contour.
2. Set initial values for the transformation parameters \(m_{ik} \). For example, set \(M \) to the identity matrix.
3. Compute \(u_+ \) and \(u_- \) according to (6), based on the current contour interior and exterior, defined by \(\phi(t) \).
4. Generate the symmetrical counterpart of \(\phi(x) \), \(\phi(x) = \phi(Sx) \), when the symmetry operator \(S \) is known.
5. Update the matrix \(M \) by recovering the transformation parameters \(m_{ik} \) according to (32).
6. Update \(\phi \) using the gradient descent equation (35).
7. Repeat steps 3-6 until convergence.

5.2 Initialization

The algorithm is quite robust to the selection of initial level-set function \(\phi_{t=0}(x) \). The only limitation is that image

4. When \(S \) is unknown, use \(\phi(x) = \phi(Tx) \), where \(T \) is of the same type as \(S \). Refer to Section 5.6 for further details.
regions labeled as foreground at the first iteration, i.e., \(\omega_0 = \{ x | \phi(x) \geq 0 \} \), should contain a significant portion of the object to be segmented such that the calculated image features will approximately characterize the object region. Formally, we assume that \(G^+(I(\omega_0)) \approx G^+(I(\omega)) \), where \(\omega \) is the actual object region in the image. When there exists an estimate of the average gray levels of either the foreground or the background image regions, this restriction can be eliminated.

We run the algorithm until the following stopping condition is met:

\[
\sum_{x \in \Omega} | H(\phi^{t+\Delta t}(x)) - H(\phi^t(x)) | < s,
\]

where \(s \) is a predefined threshold and \(\phi^{t+\Delta t}(x) \) is the level-set function, at time \(t + \Delta t \).

5.3 Setting the Weights of the Energy Terms

When the solution to an image analysis problem is obtained by minimizing a cost functional, a “correct” setting of the weights of the energy terms is of fundamental importance. Following our suggestion in [39], the weights of the terms in the functional presented in (35) are adaptively set. The automatic and dynamic weight setting is carried out in two stages. First, we apply a thresholding operation to bound the dynamic range of \(\phi(x) \). The threshold is determined by the standard deviation of \(\phi(x) \) over \(\Omega \):

\[
\phi^\text{TERM}(x) = \begin{cases}
U_B & \text{if } \phi^\text{TERM}(x) > U_B \\
L_B & \text{if } \phi^\text{TERM}(x) < L_B \\
\phi^\text{TERM}(x) & \text{otherwise},
\end{cases}
\]

where

\[
U_B = \text{std}(\phi^\text{TERM}(x)), \quad L_B = -U_B.
\]

Here, \(\text{std}(\phi(x)) \) stands for the standard deviation of \(\phi(x) \) over \(\Omega \). The functional \(B(\cdot) \) operates on \(\phi^\text{TERM} \) to bound its dynamic range. Next, the range of \(|\phi^\text{TERM}| \) is normalized:

\[
W^\text{TERM} = 1/\max_x |\phi^\text{TERM}(x)|.
\]

Note that the clipping (36) affects only extreme values of \(\phi^\text{TERM} \), that is, \(\phi^\text{TERM}(x) = \phi^\text{TERM}(x) \) for most \(x \in \Omega \). Since \(W \) is recalculated at each iteration, it is time dependent. This formulation enables an automatic and adaptive determination of the weights of the energy terms.

5.4 Recovery of the Transformation Parameters

Minimizing the symmetry term (29) with respect to the eight unknown ratios of the homography matrix entries is a complicated computational task. As in [39], we perform a rough search in the 8D parameter space working on a coarse to fine set of grids before applying the gradient-based Quasi-Newton method. The former search, done only once, significantly reduces the search space. The gradient-based algorithm, applied in every iteration, refines the search result based on the updated level-set function.

It is worth noting that unlike other registration algorithms, obtaining a global minimum is undesired. This “surprising” claim can be understood when observing that a global minimum of the registration process is obtained when \(M = S^{-1} \), where \(S \) is the transformation used to generate the symmetrical counterpart. In this case, the segmented object and its symmetrical counterpart would have a perfect match and the symmetry property is actually not used to facilitate the segmentation. To obtain a local minimum which is not a global one in the case of rotational symmetry, we deliberately exclude the rotation that generates the symmetrical counterpart from the multigrid one-time search performed prior to the steepest descent registration process. Note that such global minima will not be obtained in the cases of bilateral symmetry since \(S \) is a reflecting transformation while the homography matrix \(M \) does not reverse orientation by definition [15].

Fig. 10c demonstrates the main point of the claim made above. The figure shows the evolving contour (red) together with the registered symmetrical counterpart (white) that was generated by a clockwise rotation of 90°. If the transformation parameters found by the registration process were equivalent to counterclockwise rotation by 90°, the “defects” in both the segmented wheel and the registered symmetrical counterpart would be located at the same place. Thus, the “missing parts” could not be recovered.

5.5 Multiple Symmetrical Counterparts

Consider the segmentation of an object with rotational symmetry. Let \(\phi(t) \) denote its corresponding level-set function at time \(t \), and \(L_H = H(\phi(t)) \) denote the respective object indicator function. If \(L_H \) is invariant to rotation by \(\alpha \) degrees, where \(\alpha \leq 2\pi/3 \), then more than one symmetrical counterpart level-set functions can be used to support the segmentation. Specifically, the number of supportive symmetrical-counterpart level-set functions is \(N = [2\pi/\alpha] - 1 \) since the object is invariant to rotations by \(n\alpha \) degree, where \(n = 1 \ldots N \). We denote this rotation by \(R_{na} \). In that case, the symmetry constraint takes the following form:

\[
E_{\text{SYM}} = \sum_{n=1}^{N} \int_{\Omega} \left[\mu H(\phi) \left(1 - H(\phi_n \circ M_n) \right) \right. \\
\left. + (1 - H(\phi))H(\phi_n \circ M_n) \right] dx,
\]

where \(\phi_n = \phi(R_{na}x) = \phi \circ R_{na} \) and \(M_n \) is the homography that aligns \(\phi_n \) to \(\phi \). The computational cost using this symmetry constraint is higher since \(N \) homographies \(M_n \) should be recovered. However, the eventual segmentation results are better, as shown in Fig. 11.

5.6 Segmentation with Partial Symmetry Information

In most practical applications, \(S \) is not available. In this section, we generalize the suggested framework, assuming that only the type of symmetry (i.e., rotation or translation) is known. For example, we know that the object is rotationally symmetrical yet the precise rotation degree is not known. Alternatively, the object is known to have a bilateral symmetry, however, we do not know if the bilateral symmetry is horizontal or vertical. Let \(L = H(\phi) \) be the symmetry operator \(S = R_{na} \), where \(R_{na} \) is a planar clockwise rotation by \(\alpha \) degree. Let \(L_H \) be a perspective
distortion of L by \mathcal{H}. Consider the case where the symmetrical counterpart of $L_{\mathcal{H}}$ is generated by a planar clockwise rotation β degree, where $\beta \neq \alpha$, thus $\bar{L}_{\mathcal{H}}^\beta = L_{\mathcal{H}}(R_{\beta}x) \equiv L_{\mathcal{H}} \circ R_{\beta}$. We define a modified symmetry imperfection measure of the following form: $D(L_{\mathcal{H}}, \bar{L}_{\mathcal{H}}^\beta \circ \bar{M})$. The matrix \bar{M} aligns $\bar{L}_{\mathcal{H}}^\beta$ to $L_{\mathcal{H}}$. The next theorem relates M and \bar{M}.

Theorem 5. Let $L = L \circ S$, where $S = R_\alpha$. Let M be a planar projective homography such that $L_{\mathcal{H}}(x) = L_{\mathcal{H}}(Mx)$, where $L_{\mathcal{H}} = L_{\mathcal{H}}(R_{\alpha}x)$. We call $\bar{L}_{\mathcal{H}}$ the standard symmetrical counterpart. Suppose that $\bar{L}_{\mathcal{H}}^\beta = L_{\mathcal{H}}(R_{\beta}x)$ is generated from $L_{\mathcal{H}}$ by an arbitrary rotation β, where $\beta \neq \alpha$. We claim that $L_{\mathcal{H}} = \bar{L}_{\mathcal{H}}^\beta(\bar{M}x)$, where $\bar{M} = MR_{\alpha-\beta}$.

Proof. By definition, $\bar{L}_{\mathcal{H}}(x) = L_{\mathcal{H}}(R_{\alpha}x)$ and $\bar{L}_{\mathcal{H}}^\beta(x) = L_{\mathcal{H}}(R_{\beta}x)$. This implies that

$$
\bar{L}_{\mathcal{H}}(x) = \bar{L}_{\mathcal{H}}^\beta(R_{\alpha-\beta}x).
$$

(39)

Using Theorem 2 for the special case of $S = R_\alpha$ and the above definition of $L_{\mathcal{H}}$, we get

$$
\bar{L}_{\mathcal{H}}(x) = L_{\mathcal{H}}(M^{-1}x).
$$

(40)

From (39) and (40), we get $L_{\mathcal{H}}(M^{-1}x) = \bar{L}_{\mathcal{H}}^\beta(R_{\alpha-\beta}x)$. The latter equation implies that

$$
L_{\mathcal{H}}(x) = \bar{L}_{\mathcal{H}}^\beta(MR_{\alpha-\beta}x) = \bar{L}_{\mathcal{H}}^\beta(\bar{M}x),
$$

defining $\bar{M} = MR_{\alpha-\beta}$.

The homography \bar{M} is equivalent to M up to a rotation by $\alpha - \beta$ degrees.

Theorem 5 implies that, when the symmetry operator is an unknown rotation, the symmetrical counterpart level-set function can be generated by an arbitrary rotation (e.g., $\pi/2$). In this case, the recovered homography is equivalent to the homography of the standard symmetrical counterpart up to a planar rotation. The distorting projective transformation \mathcal{H} can be recovered up to a similarity transformation.

The result presented in Theorem 5 is also applicable to an object with bilateral symmetry. An image (or any function defined on \mathbb{R}^2) reflected along its vertical axis can be aligned to its reflection along its horizontal axis by a rotation of π. Thus, $S_{LR} = R(\pi)S_{UD}$, where S_{LR} is an horizontal reflection and S_{UD} is a vertical reflection. Similarly, $S_{UD} = R(\pi)S_{LR}$.

6 Experiments

We demonstrate the proposed algorithm for the segmentation of approximately symmetrical objects in the presence of projective distortion. The images are displayed with the initial and final segmenting contours. Segmentation results are compared to those obtained using the functional (34) without the symmetry term. The contribution of each term in the gradient descent equation (35) is bounded to $[-1, 1]$, as explained in Section 5.3. We used $\mu = 0.8$ for the segmentation of Figs. 6, 8, and 10, assuming occlusions and $\mu = 2$ for the segmentation of Figs. 5, 7, 9, and 11, where the symmetrical object has to be extracted from background image regions with the same gray levels. In Fig. 5, the approximately symmetrical object (man’s shadow) is extracted based on the bilateral symmetry of the object. In this example, the initial level-set function ϕ_0 has been set to an all-zero function—which implies no initial contour. Instead, the initial mean intensities have been set as follows: $u^+ = 0$; $u^- = 1$ assuming that the average intensity of the background is brighter than the foreground. We use this form of initialization to demonstrate the independence of the proposed algorithm with respect to the size, shape, or orientation of the initial contour. In Fig. 6, the upper part of the guitar is used to extract its lower part correctly. In the butterfly image shown in Fig. 7, a left-right reflection of the evolving level-set function is used to support accurate segmentation of the left wing of the butterfly. Since in this example the transformation \mathcal{H} is
euclidean, the orientation of the butterfly’s symmetry axis can be easily recovered from M.

In the swan example shown in Fig. 8, we used both color and symmetry cues for correct extraction of the swan and its reflection. Based on the image intensities alone, the vulture and the tree in Fig. 9 are inseparable. Adding the symmetry constraint, the vulture is extracted as shown in Fig. 9b. In this example, the segmentation is not precise because of the incorrect registration of the symmetrical counterpart to the evolving level-set function. The undesired local minimum obtained in the registration is probably due to the dominance of none-symmetric tree region.

The example shown in Fig. 10 demonstrates segmentation in the presence of rotational symmetry. The original image (not shown) is invariant to rotation by $60^\circ n$, where $n = 1, 2, \ldots, 5$. Figs. 10a and 10e show the images to segment which are noisy, corrupted, and transformed versions of the original image. Fig. 10b shows the symmetrical counterpart of the image in Fig. 10a obtained by a clockwise rotation of 90°. Practically, only the symmetrical counterpart of the
evolving level-set function is used. The symmetrical counterpart image is shown here for demonstration. The segmenting contour (red) of the corrupted object in Fig. 10a is shown in Fig. 10c together with the registered symmetrical counterpart. Note that the symmetrical counterpart is not registered to (a) by a counterclockwise rotation of 90° but by a different transformation. Otherwise, there would have been a perfect match between the "defects" in the image to segment and its registered symmetrical counterpart. (d) Successful segmentation (red) of the image in (a) using the proposed symmetry-based algorithm. (e) Noisier version of the image in (a) together with the initial contour (red). (f) Successful segmentation (red) of the image in (e) using the proposed symmetry-based algorithm. (g) and (h) Unsuccessful segmentation (red) of the image in (e) using the Chan-Vese algorithm [3]. In (h), the contribution of the smoothness term was four times bigger than in (g).

Note that, using the symmetrical counterpart, we successfully overcome the noise.

In the last example (Fig. 11), segmentation of an object with approximate rotational symmetry is demonstrated. In this example, we could theoretically use four symmetrical counterparts to support the segmentation. However, as shown in Fig. 11d, two symmetrical counterparts are sufficient. We used the symmetry constraint for multiple symmetrical counterpart level-set functions according to (38).

7 SUMMARY

This paper contains two fundamental, related contributions. The first is a variational framework for the segmentation of symmetrical objects distorted by perspectivity. The proposed segmentation method relies on theoretical results related to symmetry and perspectivity which are the essence of the second contribution.

Unlike most of the previous approaches to symmetry, the symmetrical object is considered as a single entity and not as a collection of landmarks or feature points. This is accomplished by using the level-set formulation and assigning, for example, the positive levels of the level-set function to the object domain and the negative levels to the background. An object, in the proposed framework, is represented by the support of its respective labeling function. As the level-set function evolves, the corresponding labeling function and, thus, the represented object change accordingly.

A key concept in the suggested study is the symmetrical counterpart of the evolving level-set function, obtained by either rotation or reflection of the level-set function domain. We assume that the object to segment underwent a planar transformation...
projective transformation, thus the source level-set function and its symmetrical counterpart are not identical. We show that these two level-set functions are related by planar projective homography.

Due to noise, occlusion, shadowing, or assimilation with the background, the propagating object contour is only approximately symmetrical. We define a symmetry imperfection measure which is actually the “distance” between the evolving level-set function and its aligned symmetrical counterpart. A symmetry constraint based on the symmetry imperfection measure is incorporated within the level-set based functional for segmentation. The homography matrix that aligns the symmetrical counterpart level-set functions is recovered concurrently with the segmentation.

We show in Theorem 2 that the recovered homography is determined by the projective transformation that distorts the image symmetry. This implies that the homography obtained by the alignment process of the symmetrical counterpart functions (or images) can be used for partial recovery of the 3D structure of the imaged symmetrical object. As implied from Theorem 4, full recovery is not possible if the projection of the 3D object on the image plane preserves its symmetry.

The algorithm suggested is demonstrated on various images of objects with either bilateral or rotational symmetry, distorted by projectivity. Promising segmentation results are shown. In this manuscript, only shape symmetry is considered. The proposed framework can be extended considering symmetry in terms of gray levels or color. The notion of symmetrical counterpart can be thus applied to the image itself and not to binary (or level-set) functions. Possible applications are de-noising, super-resolution from a single symmetrical image, and inpainting. All are subjects for future research.

ACKNOWLEDGMENTS
This research was supported by the A.M.N. Foundation and by MUSCLE: Multimedia Understanding through Semantics, Computation and Learning, a European Network of Excellence funded by the EC Sixth Framework IST Programme. Tammy Riklin-Raviv was also supported by the Yizhak and Chaya Weinstein Research Institute for Signal Processing.

REFERENCES

Tammy Riklin-Raviv received the BSc degree in physics and the MSc degree in computer science from the Hebrew University of Jerusalem, Israel, in 1993 and 1999, respectively, and the PhD degree from Tel Aviv University, Israel, in 2008. She is currently a postdoctoral associate in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts Institute of Technology. Her research interests include computer vision and medical image analysis. She is a member of the IEEE.

Nir Sochen received the BSc degree in physics and the MSc degree in theoretical physics from the University of Tel-Aviv in 1986 and 1988, respectively, and the PhD degree in theoretical physics from the Université de Paris-Sud in 1992, while conducting his research at the Service de Physique Théorique at the Centre d’Etude Nucléaire at Saclay, France. He continued with a one-year research at the Ecole Normale Superieure in Paris on the Haute Etude Scientifique fellowship and a three-year US National Science Foundation fellowship in the Department of Physics at the University of California, Berkeley. It is at Berkeley that his interests shifted from quantum field theories and integrable models, related to high-energy physics and string theory, to computer vision and image processing. He spent one year in the Department of Physics at the University of Tel-Aviv and two years on the Faculty of Electrical Engineering at the Technion-Israel Institute of Technology. He is currently an associate professor in the Department of Applied Mathematics at the University of Tel-Aviv. His main research interests include the applications of differential geometry and statistical physics in image processing, computer vision, and medical imaging. He has authored more than 100 refereed papers in journals and conferences. He is a member of the IEEE.

Nahum Kiryati received the BSc degree in electrical engineering and the post-BA degree in the humanities from Tel Aviv University, Israel, in 1980 and 1986, respectively, and the MSc degree in electrical engineering and the DSc degree from the Technion-Israel Institute of Technology, Haifa, Israel, in 1988 and 1991, respectively. He was with the Image Science Laboratory, ETH-Zurich, Switzerland, and with the Department of Electrical Engineering of the Technion. He is currently a professor of electrical engineering at Tel Aviv University. His research interests include image analysis and computer vision. He is a senior member of the IEEE.

For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.