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Multistream Articulatory Feature-Based
Models for Visual Speech Recognition

Kate Saenko, Karen Livescu,
James Glass, and Trevor Darrell

Abstract—We study the problem of automatic visual speech recognition (VSR)

using dynamic Bayesian network (DBN)-based models consisting of multiple

sequences of hidden states, each corresponding to an articulatory feature (AF)

such as lip opening (LO) or lip rounding (LR). A bank of discriminative articulatory

feature classifiers provides input to the DBN, in the form of either virtual evidence

(VE) (scaled likelihoods) or raw classifier margin outputs. We present experiments

on two tasks, a medium-vocabulary word-ranking task and a small-vocabulary

phrase recognition task. We show that articulatory feature-based models

outperform baseline models, and we study several aspects of the models, such as

the effects of allowing articulatory asynchrony, of using dictionary-based versus

whole-word models, and of incorporating classifier outputs via virtual evidence

versus alternative observation models.

Index Terms—Visual speech recognition, articulatory features, dynamic Bayesian

networks, support vector machines.

Ç

1 INTRODUCTION

VISUAL speech recognition (VSR), also sometimes referred to as
automatic lipreading, is the task of transcribing the words uttered
by a speaker, given a silent video of the speaker’s mouth or face.
Human speech perception makes significant use of both the
acoustic and visual signals [22], and automatic speech recognition
can also benefit from the addition of visual observations [32]. VSR
may also be useful as a stand-alone task, when the audio is
extremely noisy or not available. Previous work on VSR has largely
used hidden Markov model (HMM)-based methods [32], analo-
gously to standard approaches for acoustic speech recognition [14].
In these approaches, a separate HMM is used to model each basic
linguistic unit and the HMMs are connected to form a finite-state
graph of all possible utterances. The basic linguistic unit is
typically either a word or a viseme, the visual correlate of an
acoustic phoneme, or basic speech sound.

In HMM-based methods, each state can be thought of as a
configuration of the vocal tract, or of the visible portion of the vocal
tract in the case of visual speech recognition. Each configuration,
however, corresponds to a combination of states of multiple speech
articulators: the degree of lip opening, lip rounding, the position of

the tongue, and so on. Articulatory parameterizations are often

used in linguistics to describe phonological structure. For example,

Fig. 1 shows one parameterization similar to the one used in

articulatory phonology [4]. The parameters are often referred to as

articulatory features (AFs). The AFs have been used in a number of

models for acoustic speech recognition (e.g., [9], [17], [21]) and a

benefit has been found in certain conditions for using separate

classifiers of articulatory features rather than a single classifier of

phoneme states [17].
In this paper, we explore the use of articulatory feature-based

models for visual speech recognition. We use dynamic Bayesian

network (DBN) models based in part on those of Livescu and Glass

[20], but use discriminative classifiers of feature values to provide

either observations or virtual evidence (VE) to the DBNs. In a

previous work [34], we described an approach in which each visual

frame is independently labeled with a set of classifiers, and showed

a benefit of AF classifiers over viseme classifiers at various levels of

visual noise. In this paper, we show the benefit of AF-based models

in a medium-vocabulary word ranking task and in a small-

vocabulary isolated phrase recognition task. Preliminary versions

of some of the experiments in this paper have been reported

previously [35], [36]. In this paper, we propose a class of models

that unify those of [35], [36] and present additional experiments

with improved results. Furthermore, we explore the use of

dictionary-based models, in which words are broken into pre-

defined subword units, versus whole-word (or, in our case, whole-

phrase) models. We also explore the choice of observation model,

i.e., the distribution of the visual signal given the hidden state.

2 BACKGROUND

2.1 Visual Speech Recognition

Automatic visual speech recognition has been studied for over

20 years, both as a stand-alone task and as part of audiovisual

systems. The main research issues are visual observation design,

the choice of speech units, and decoding, i.e., mapping the

sequence of observation vectors to speech units. A comprehen-

sive review can be found in [32].
Visual observations can be categorized as either appearance-

based, model-based, or a combination of the two (for an overview,

see [32]). Appearance-based observations are based on the

intensity and color information in a region of interest (usually

the mouth and chin area). The dimensionality of the raw

observation vector is often reduced using a linear transform. In

contrast, model-based methods assume a top-down model of what

is relevant for recognition, such as the lip contours. The parameters

of the model fitted to the image are used as visual observations.
The most common decoding model for VSR is the HMM.

Several multistream models have been applied to speech proces-

sing in recent years [11], [27], [28]. To our knowledge, we are the

first to develop multistream DBNs for visual-only data streams.
Although most HMMs/DBNs use a Gaussian mixture model

for the state-dependent distributions, several discriminative

classification methods have been used, including distance in

feature space [30], neural networks [23], and support vector

machines (SVMs) [10]. In [10], one SVM was trained to recognize

each viseme, and its output was converted to a posterior

probability using a sigmoidal mapping [31]. In this work, we use

SVMs to classify articulatory features in the video stream and use

their outputs as observations in the DBN.
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2.2 Articulatory Feature-Based Models in Speech
Recognition

Articulatory models are an active area of work in automatic speech

recognition (a survey can be found in [15]). Most of the work

focuses on classifying articulatory feature values from the acoustic

signal (e.g., [16], [17]). In this work, the classifier outputs are

typically combined into either a phonetic likelihood (e.g., [17]) or a

feature vector to be modeled with a Gaussian mixture distribution

(e.g., [5]). These likelihoods or feature vectors are then used in a

model in which each word or sub-word unit (e.g., a phoneme) is

modeled as a hidden Markov model, identical to the standard

(nonarticulatory) approach to speech recognition.
A smaller number of research efforts have been aimed at

explicitly modeling the states of articulators, allowing them to

stray from their target values or desynchronize [9], [20], [33]. More

recently, the use of articulatory knowledge has also been proposed

(though not implemented) for visual speech recognition [26]. This

is not a straightforward application of acoustic speech recognition

techniques because, unlike the acoustic signal, the visual signal

provides direct evidence for certain articulatory gestures (e.g., lip

closing) that are ambiguous in the acoustic signal.

2.3 Dynamic Bayesian Networks for Speech Recognition

All of our models are represented as dynamic Bayesian networks

[7], [24]. To fix notation, Fig. 3 shows two frames of the DBN

representing an HMM. Square and circular nodes denote discrete

and continuous variables, respectively. Shaded nodes denote

observed variables and unshaded ones denote hidden variables.
DBNs have been increasingly becoming popular in recent

speech recognition research [3], [25], [38]. The HMM of Fig. 3 is a

standard model for recognizing isolated words, consisting of a

separate HMM for each word, which we refer to as a “whole-

word” model. The variable s is the subword state; for a word with

n phonemes, a typical choice is to allocate 3n states. HMMs for

speech recognition are typically left-to-right, that is, it is assumed

that there is a sequence of states that must be traversed from first to

last. The variable o is typically a vector of acoustic observations,

and its distribution is most frequently modeled as a mixture of

Gaussians. This serves as our baseline for whole-word recognition

experiments. For recognition of continuous word strings, addi-

tional variables would be needed to represent the language model

(distribution over word strings).
The model in Fig. 3 is useful for small-vocabulary recognition,

where it is feasible to collect sufficient statistics for each word. For

larger vocabularies, each word is typically broken into subword

units such as phonemes, or visemes in the case of VSR, and each

unit is represented with an HMM (typically with three states per

phoneme/viseme). Observation models are shared among words

with identical subword states. Fig. 4 shows such a model, which

we refer to as a “dictionary-based” model. Here, p refers to the

state within the phoneme-specific HMM, which is typically

deterministic given the subword state s (unless the word has

multiple pronunciations). Nodes with thick outlines denote

variables that are deterministic given their parents. Now, s at time

tþ 1 depends on p at time t since the transition probabilities are

phoneme-dependent. The subword state s still encodes sequencing

information (e.g., “first phone state in the word Bob”), while p

encodes the actual phonetic unit (e.g., [b]).
Instead of a generative observation model, a discriminative

phoneme or viseme classifier may be used. In this case, the DBN is

identical except that the observation variable is replaced with a

“virtual evidence” (or “soft evidence”) node [1], [29], correspond-

ing to a scaled likelihood estimate derived from postprocessed

classifier outputs. For acoustic speech recognition, this is most

often done using multilayer perceptron classifiers [23] (here we use

support vector machines).
Thus far, we have described several single-stream models—

whole-word, dictionary-based, and dictionary-based with virtual

evidence—that serve as baseline, viseme-based recognizers. We

next describe the proposed articulatory models. Both the baseline

and proposed models can be trained via expectation-maximization

(EM) [8], as is standard in speech recognition, and decoding

(testing) can be done using standard DBN inference algorithms [3].

3 PROPOSED APPROACH

In the multistream models we propose, each articulatory feature

is associated with a separate sequence of hidden states. We allow

for possible differences between the target and actual positions of

the articulators, as well as for possible asynchrony between the

state sequences. The proposed class of models is an extension of

the approach of [20], which introduced a general model of

pronunciation variation using articulatory variables. We extend
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Fig. 3. A hidden Markov model represented as a DBN, which serves as our

baseline single-stream whole-word model.

Fig. 4. A baseline single-stream dictionary model.

Fig. 1. A midsagittal diagram of the vocal tract, showing articulatory features in

human speech production.

Fig. 2. Average feature appearance (lip opening: closed, narrow, mid, and wide; lip
rounding and labiodental: no, yes; see Section 5.1): (a) lip opening, (b) lip
rounding, and (c) labiodental.



these models to the task of lipreading, including lipreading-
specific articulatory features and observation models based on the
outputs of articulatory classifiers.

We consider two ways of incorporating the outputs of
articulatory feature classifiers. Classifier outputs may not match
the values in the dictionary, for example, the target articulation
may involve closed lips, but in the actual production, the lips
may only be narrowed. We experiment with two ways to handle
this discrepancy: 1) by explicitly modeling the distribution of
actual given target articulation, treating the (postprocessed)
classifier outputs as “virtual evidence” (see below) and 2) by
modeling the distribution of classifier outputs conditioned
directly on the state (a generative model). We also consider both
“dictionary-based” and “whole-word” models, as described in
Section 2.3. In dictionary-based models, we explicitly map the
current subword state to the intended articulation and share
observation models among words with identical subword states.
Dictionary-based models may use either the generative or VE-
based observation models described above. For whole-word
models, only generative observation models can be used since
we do not have classifiers for each possible subword state.

In the following sections, we present: the sets of articulatory
features we use for visual recognition, support vector machine-
based classifiers of these features, and a more formal description of
our models in terms of dynamic Bayesian networks.

3.1 Articulatory Feature Sets

Various articulatory feature sets have been proposed for acoustic
speech recognition. In dealing with the visual modality, we limit
ourselves to modeling the visible articulators. As a start, we choose
a feature set based on the one in [20]. Specifically, we use features
associated with the lips, since they are always visible in the image.
The features are: lip opening (LO, with values closed, narrow,

medium, and wide), lip rounding (LR, with values yes, no), and the
labiodental feature, corresponding to an /f/ or /v/ articulation
(LD, with values yes, no). This ignores other articulators that might
be discernible from the video, such as the tongue and teeth. We
will later show that adding a fourth feature associated with the
teeth can improve the three-feature model.

We do not, in general, have access to ground-truth articulatory
feature labels for training data; obtaining them would require
tracking the state of the vocal tract, which is very challenging. In
the experimental section, we compare two ways of obtaining
labels: manually, using a human labeler, and automatically, by
mapping phoneme labels to feature values. (Phoneme labels, in
turn, can be obtained automatically through forced alignment with
the known transcription.) Some combinations of feature values can
occur with manual labeling but not with automatic labeling, e.g.,
fLO ¼ narrow;LR ¼ yes, and LD ¼ yesg, if a speaker strays from
the target articulation. Manual labels tend to be more consistent
and, as we will show, produce better classifiers.

3.2 Articulatory Feature Classifiers

We convert the images to a sequence of appearance-based
observation vectors, and classify each feature separately in each
frame of the sequence using an SVM classifier. The DBN models
require an estimate of the distribution of observations given each
possible state of each articulatory feature, i.e., the likelihood.

We propose two ways of estimating the observation distribu-
tions. The first is to convert the output of each SVM to a
probability. Given an observation vector x 2 IRn and the unthre-
sholded, raw decision value of a binary SVM fðxÞ, Platt [31]
proposed to fit a sigmoidal function that maps from fðxÞ to an
estimate of the posterior probability of the positive class:
P ðY ¼ 1jX ¼ xÞ ¼ ð1þ eðafðxÞþbÞÞ�1

, where a; b are the estimates
using maximum likelihood. We use the multiclass extension of

Platt’s method described in [6] to produce posterior probabilities

over all values of a feature F; P ðF ¼ f jX ¼ xÞ and map the

posteriors to (scaled) likelihoods using P ðX ¼ xjF ¼ fÞ /
P ðF ¼ f jX ¼ xÞ=P ðF ¼ fÞ. The scaled likelihoods are used as

virtual evidence in the DBN (see Section 3.3).
The second method we consider is to use the decision value

fðxÞ directly as an observation. This can also be viewed as a

nonlinear transform method for extracting visual observations.
We next describe the DBN-based models used to recognize

words or phrases given the outputs of the articulatory classifiers.

3.3 Dictionary Models

Fig. 5 shows the DBN for one word in a dictionary-based

articulatory model, using an observation model based on virtual

evidence from AF classifiers. This model uses the three

articulatory features described previously: LR, LO, and LD.

However, the structure can be straightforwardly generalized to

an arbitrary set of articulators. The variables in the model are as

follows:

. sLR; sLO; sLD: The subword state corresponding to each
articulatory feature, analogously to s in Fig. 4.

. pLR; pLO; pLD: The phonetic state corresponding to the
current subword state for each articulator, analogously to p
in Fig. 4.

. fLR; fLO; fLD: The value of each feature, with distribution
given by pðfF jpF Þ.

. vLR; vLO; vLD: Virtual evidence provided by classifiers for
LR, LO, and LD. The distribution pðvF jfF Þ is the
postprocessed output of the classifier for feature F (see
Section 3.2).

. aF1�F2
: These variables encode the asynchrony constraints.

We define the degree of asynchrony between any two
features F1 and F2 as jsF1

� sF2
j. The variable aF1�F2

takes
on values in f0; 1; 2; . . . ; mg, where m is the maximum state
index in the current word. The distribution pðaF1�F2

Þ is the
probability of the two features F1 and F2 desynchronizing
by aF1�F2

states.
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Fig. 5. Articulatory dictionary-based model with virtual evidence provided by

articulatory classifiers. The variables are described in the text.



. cF1�F2
: These binary variables, always observed with value

1, enforce the asynchrony constraints. The observed value
is allowed only if jsF1

� sF2
j ¼ aF1�F2

.1

We note that the virtual evidence variables in this model can
also be replaced with observation vectors modeled with a Gaussian
mixture distribution, analogously to the single-stream model of
Fig. 4. We compare these variants in Section 5.3.

3.4 Dictionary Models Using Viseme Classifiers

The previous section described an articulatory feature-based
dictionary model in which the evidence is provided by AF
classifiers. It is also possible to combine an AF-based pronuncia-
tion model with viseme classifiers, by replacing the multiple
variables vLR; vLO; vLD with a single-viseme virtual evidence
variable vV IS , whose parents are fLR; fLO; fLD. In such a model,
the viseme classifier output is converted to virtual evidence
pðvV IS jfLR; fLO; fLDÞ using a (many-to-one) mapping from features
to visemes. If the streams in this model are constrained to be
synchronous (P ðaF1�F2 ¼ nÞ ¼ 0 for all n > 0), then it is equivalent
to a baseline single-stream model, except that it has multiple
(identical) transition probabilities.

3.5 Whole-Word/Small-Vocabulary Models

Analogously to the single-stream case, articulatory models may be
dictionary-based or whole-word. Fig. 6 shows the DBN for a word
in a whole-word recognizer. The structure is similar to that of the
dictionary-based model of Section 3.3, but there are no explicit
variables for the phonetic or articulatory state. For this reason, the
outputs of the articulatory classifiers cannot be used directly as
virtual evidence in this model. Instead, the classifier outputs are
used as observations, oF for each feature F , and the observation
distribution pðoF jsF Þ is modeled as a mixture of Gaussians. The
advantage of a whole-word model is that it is not necessary to craft
a good dictionary. In addition, no matter how good the dictionary,
the same subword units may appear different in different words.
For this reason, whole-word models are typically preferred for
small-vocabulary tasks.

4 EXPERIMENTAL DETAILS

We perform two sets of experiments using two audiovisual data
sets of American English speech. The first set of experiments
(Sections 5.1 and 5.2) is a medium-vocabulary word ranking task
(with 1,793 words) and uses a subset of an existing corpus of read
sentences. We refer to this data set as MED-V (for MEDIUM
Vocabulary). The second set of experiments (see Section 5.3) is
based on a small-vocabulary phrase recognition task (with 20 short
phrases), and uses a corpus that we refer to as SMALL-V (for
SMALL Vocabulary). This task is intended to simulate a more
realistic stand-alone application.

The MED-V data set consists of words excised from continu-
ously spoken sentences in the AVTIMIT corpus. AVTIMIT [13]
consists of audiovisual recordings of phonetically balanced
sentences from the TIMIT corpus [37] recorded in an office with
controlled lighting and background. We use a subset consisting of
10 speakers reading the same sentences (“Set 02”). We use forced
transcriptions of the audio to obtain word and phone boundaries,
with the latter converted to canonic AF labels.

For the second set of experiments, we collected the new data set
SMALL-V, consisting of two parts: 1) a first part similar to MED-V,
containing about 2.5 minutes of video of two male native English
speakers reading TIMIT sentences, used only to train AF classifiers

and 2) a second part consisting of the 20 isolated short phrases, read

by the same two speakers, with each phrase repeated three times.

The phrases are shown in the Appendix, which can be found in the

Computer Society Digital Library at http://doi.ieeecomputer

society.org/10.1109/TPAMI.2008.303, and are sample commands

that can be used to control an audio system (e.g., “mute the

volume”). The resulting 120 phrase recordings were used to test

the AF classifiers and DBNs.

The front end of our system extracts the visual observations

from the input video. Given a sequence of grayscale images, we

first perform face detection and tracking, followed by lip detection

and tracking, extraction of a region of interest (ROI) around the

lips, and, finally, extraction of observations from the pixels inside

the ROI [36]. The lip detection was initialized manually in the first

frame of each video sequence.

We use a set of appearance features similar to ones that

achieved state-of-the-art performance in prior work [32]. The

extracted ROIs are resized to height by width pixels, and a discrete

cosine transform (DCT) is applied to each image to obtain NDCT

coefficients. Finally, the dimensionality is further reduced using

principal components analysis (PCA), with the top NPCA coeffi-

cients retained. For the MED-V data set, height ¼ 16; width ¼ 32;

NDCT ¼ 512, and NPCA ¼ 75. For SMALL-V, height ¼ 37; width ¼
54; NDCT ¼ 900, and NPCA ¼ 100. The dimensionalities were

chosen to give the best classification performance, using cross-

validation on the training sets.

We use the LIBSVM [6] toolkit to implement the SVM

classifiers, and the Graphical Models Toolkit (GMTK) [2] to

implement the DBNs. We use a radial basis function (RBF) kernel

in all SVMs, with the kernel width parameter and the error penalty

parameter optimized by cross-validation on the training set. The

sigmoidal function mapping SVM decision values to probabilities

is also trained by cross-validation.

A final experimental detail concerns the relative weighting of

different variables in the DBN. As is common in speech

recognition, we use an exponential weight � on the observation

models. For example, in the model of Fig. 5, we use pðvF jfF Þ�

instead of pðvF jfF Þ for each feature F . In the experiments, � is

tuned only for the baseline models, and the remaining models use

the same �; this gives an advantage to the baselines, but the AF-

based models still outperform them. We also note that the results

were roughly constant over a large range of � in each experiment.

5 EXPERIMENTS

We present two sets of experiments: The first (Sections 5.1 and 5.2)

evaluates dictionary models on the medium-vocabulary word

ranking task (using MED-V), while the second (Section 5.3) applies

dictionary and whole-word models to the more practical scenario

of short-phrase recognition (using SMALL-V). All of the experi-

ments follow the outline given in Algorithm 1.

The main goals of the experiments are: 1) to compare the effects

of using AF-based versus viseme-based observation models (classifiers)

and 2) to compare the effects of using synchronous versus

asynchronous pronunciation models (DBNs), independent of which

classifiers are used. A synchronous pronunciation model is the

special case of our models in which the features are constrained to

be completely synchronous (i.e., aF1�F2
¼ 0). Using viseme classi-

fiers with a synchronous pronunciation model results in a model

almost identical to the conventional viseme-based HMM that has

been used previously for VSR (e.g., [10]) and we consider this our

baseline model.
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1. We note that the structure could be simplified somewhat, as in [19],
replacing aF1�F2

and cF1�F2
with a single variable; however, this simpler

structure does not allow learning of the asynchrony probabilities via a
straightforward application of expectation-maximization.



Algorithm 1. Overview of experimental approach

Input : A video stream of a speaker’s face

Output : Probability of each word or phrase in the vocabulary

1 Initialization: estimate parameters of SVM AF classifiers and DBN

models on training data.

2 Detect the face and track the mouth region.

3 Extract visual observations from each frame.

4 Classify AFs in each frame using a bank of SVMs.

5 Postprocess SVM outputs for use as observations in DBN.

6 For each word or phrase w, compute posterior probability of w

using inference on corresponding DBN.

5.1 Single-Speaker Experiments on MED-V

To investigate how sensitive our models are to the quality of the

training labels, we have manually labeled the 21 utterances read by

one speaker (Speaker “03”). We compare models using manual

labels to models using a mapping from phonemes to canonic

feature values (see Section 3.1). The mapping used for canonic

labels is shown in the Appendix. Fig. 2 shows the mean image for

each feature value, reconstructed from its PCA coefficients.

5.1.1 Classifiers

We first compare the behavior of classifiers (of both features and

visemes) trained on automatic and manual labels. The data is split

into a training set of 10 utterances and a test set of 11 utterances.

For the viseme classifier, there are six classes, consisting of those

combinations of feature values that occur in the automatically

labeled training set. When mapping manual AF labels to viseme

labels, we use the same set of visemes as in the canonic labels, even

though there are some combinations that are not allowed in the

canonic mapping.2

We note that classifier accuracy measures are of limited utility;

the true test is recognition performance using each set of

classifiers, which we discuss in the next section. It is nevertheless

useful to understand the behavior of the classifiers. Table 1 shows

the raw classifier accuracies, (the percentage of frames classified

correctly), as well as the average per-class accuracies (the

percentage of correctly classified frames for each class, averaged

over the N classes). Chance performance is given in parentheses

(100
N for per-class accuracy: the percentage of training frames

corresponding to the most frequent label for raw accuracy). In

these results, the correct labels are taken to be manual labels for the

manual-train classifiers and automatic labels for the automatic-

train classifiers. What we are testing is, therefore, the “learnability”

of each labeling by this type of classifier.3

We hypothesize that the canonic labels are less consistent or

“noisier” and, therefore, expect lower accuracies from the

automatic-train classifiers. This is, indeed, what we find: The

manual-train classifiers have higher accuracies than the corre-

sponding automatic-train ones, in most cases, by a wide margin.

The two cases in which the manual-train classifiers have lower

accuracies—the raw accuracies of the LO and viseme classifiers

—correspond to much lower chance performance (and therefore,

a more difficult task) for the manual labels. The LD classifier’s

per-class accuracy almost doubles, when manual labels are used,

from chance to 93 percent. The poor performance of the

automatic-train LD classifier is most likely due to the noisiness

of the canonic labels, which often miss the appearance of

labiodental closure. Note that the raw accuracies are not very

informative in this case since the more frequent label, no, occurs

99 percent of the time.
Overall, the classifier performance results demonstrate that, as

expected, the manual labels are more easily learned by the SVM

classifiers. In the following section, we show that there are also

large differences in recognizer performance.

5.1.2 Word Ranking Results

Here, the task is to recognize isolated words excised from

continuous speech, an extremely difficult lipreading task even

for humans. The overall error rate is, therefore, not a meaningful

performance metric. Instead, we perform a word-ranking experi-

ment. For each sequence in the test set, we compute the probability

of each word in the vocabulary and rank the words based on their

relative probabilities. Our goal is to obtain as high a rank as

possible for the correct word (where the highest rank is 1 and the

lowest 1,793). We evaluate performance by the mean rank of the

correct word (see [35] for distributions of correct word ranks).

Since the vocabulary is too large to learn a separate model for each

word, we use dictionary-based models for this task (Fig. 5).
We compare the effects of the following on the word ranking

results: viseme versus AF classifiers, synchronous versus
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TABLE 1
Raw and Per-Class Classifier Accuracies (in Percent) for the Feature

and Viseme SVMs on the MED-V Test Set

2. We could add these combinations as extra viseme classes; however,
they occur extremely rarely and would have insufficient training data. (This
is, of course, one of the motivations for using articulatory features.)

3. We note that it is arguable what the ground-truth labels should be: If
manual labels are used, it may not be a fair test of the automatic-label
classifiers, and vice versa. The use of both labelings does not test true
correctness, but does test the consistency of the labels.

Fig. 6. Articulatory whole-word model.



asynchronous pronunciation models, automatic versus manual
labels, and “oracle” virtual evidence versus classifier outputs.
The last of these is intended to test how well the recognizers
could perform with “perfect” classifiers; this is explained further
below. For this pilot experiment with a single speaker, the DBN
parameters (the asynchrony and transition probabilities) are set
by hand. (See Section 5.2 for multispeaker experiments in which
all parameters are learned.) In the models with asynchrony, LR
and LO are allowed to desynchronize by up to one state (one
phoneme-sized unit), as are LO and LD.

Table 2 summarizes the mean rank of the correct word in a
number of experimental conditions.4 We make several observa-
tions. First, for the same pronunciation model and labels, using
feature classifiers always improves the word ranks over using
viseme classifiers (for example, from 232.6 to 135.8 using the
synchronous model with manual labels). The advantage of
articulatory features may stem from the fact that they each have
fewer values and, therefore, more training data per class, than do
visemes on the same training set. The second observation is that
asynchronous pronunciation models consistently outperform
synchronous ones, regardless of classifier choice, although this
difference is not statistically significant in any one test.

Next, the automatic versus manual labels comparison suggests
that we could expect a sizable improvement in performance if we
had more accurate training labels. While, it may not be feasible to
manually transcribe a large training set, we may be able to improve
the accuracy of the training labels using an iterative training
procedure, in which we alternate training the model and using it to
retranscribe the training set.

To show how well the system could be expected to perform if
we had ideal classifiers, we replaced the SVM virtual evidence
with “likelihoods” derived from the manual transcriptions. In this
“oracle” test, we assigned a very high likelihood (�0:95) to feature
values matching the transcriptions and the remaining likelihood to
the incorrect feature values. We see that systems using the best
classifiers (trained with manual labels) do not quite reach oracle
performance, but are much closer to it than systems using the
automatic labels for classifier training.

Table 2 also gives the significance (p-value) of the mean rank
differences between each model and the baseline (according to a
one-tailed paired t-test). The differences between each synchro-
nous model and the corresponding asynchronous model are not
significant (p � 0:1 on this test set), but most feature-based models
are significantly better than the baseline.

5.2 Multiple-Speaker Experiments on MED-V

Since we can easily produce automatic feature labels for more than
one speaker, in this section, we perform canonic-label experiments

on multiple speakers from MED-V. The experimental setup is
identical to the canonic-label experiments in Section 5.1, except that
the classifiers are trained on multiple speakers and the DBN
parameters are learned from data. We experiment with a group of
ten speakers, all of which read the same set of sentences.

5.2.1 Classifiers

For each speaker, we use the even-numbered utterances for training
and the odd-numbered utterances for testing. Fig. 7 shows the per-
class accuracies for the LO, LR, LF, and VIS classifiers. It is clear
that, for speakers 00, 01, 02, 03, and 07, the classifiers perform very
poorly, sometimes at chance levels. For the other five speakers,
accuracy is quite good. Speakers in the former group have some
tracking problems, especially 01 and 07, for which classification
rates are the lowest and near chance. We exclude these two speakers
from the following experiments, using the remaining eight. Sample
tracking results for all 10 speakers are shown in the Appendix,
which can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.303.

5.2.2 Word Ranking Results

We performed word ranking experiments on the eight speakers
00, 02, 03, 04, 05, 06, 08, and 09, using the same procedure as in
Section 5.1.2. We find small but not statistically significant
improvements for the proposed models. Over all words in the
test set, the mean rank of the correct word is 123.3 using the
baseline model (synchronous pronunciation model, viseme-based
observation model). Switching to an asynchronous pronunciation
model produces a mean rank of 121.5, a synchronous model with
a feature-based observation model gives 119.0, and an asynchro-
nous model with a feature-based observation model gives 118.5.

The three speakers with poorer classifier performance (00, 02,
and 03) also have significantly worse ranking performance. If we
consider only the speakers with average classification accuracy
> 50 percent (speakers 04, 05, 06, 08, and 09), there is a statistically
significant improvement in mean rank from using feature-based
over viseme-based models (from 64.6 to 52.1, p-value 0.02), but not
from using asynchronous models (from 64.6 to 66.2 for viseme-
based models, 52.1 to 52.5 for feature-based models). On the
speakers with poor classifiers (00, 02, and 03), feature classifiers do
not help over viseme classifiers (from 210.5 to 218.4); asynchronous
models improve over synchronous ones ð210:5! 203:7; 218:4
! 216:7Þ, but not significantly so. We conclude that allowing
asynchrony on this task does not make a statistically significant
difference overall, perhaps because the labels were mapped from
inherently synchronous phoneme labels. However, when the
classifiers perform reasonably, AF-based models significantly
outperform viseme-based ones.
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4. The mean ranks are better than in earlier work [35] due to
improvements to the classifiers.

TABLE 2
Mean Rank of the Correct Word for Several Recognizers

on Speaker 03 from the MED-V Corpus

Numbers in parentheses are p-values relative to viseme baselines (marked �).

Fig. 7. Classifier per-class accuracy for each speaker in MED-V. The dashed lines

show chance performance.



5.3 Phrase Recognition Experiments on SMALL-V

The word ranking experiments have shown that articulatory

feature-based models have an advantage over conventional

viseme-based ones, at least when the classifiers perform reason-

ably. Next, we investigate whether this advantage applies in the

more practical setting of the small-vocabulary command-and-

control recognition task of the SMALL-V data set. Since the

vocabulary is small, we consider both dictionary and whole-word

models. We also compare Gaussian observation models with the

VE-based models used thus far. In addition, we experiment with

adding a fourth articulatory feature (which is, in principle, not

needed to distinguish the phrases). Finally, we compare our

models against another baseline, which uses linear transform

image features directly as observations.

5.3.1 Classifiers

In these experiments, we use only manual AF and viseme labels. A

subset of the frames in the classifier training set was labeled

manually with AF values. We train AF and viseme SVM classifiers,

now using a one-versus-all strategy for multiclass SVMs, with six

SVMs trained for the three AFs (four for LO, one for LR, and one

for LD) and six SVMs for the six visemes. The average per-class

accuracies of the classifiers on the test set are 79 percent for LO,

78 percent for LR, 57 percent for LD, and 63 percent for visemes.

5.3.2 Adding a New Feature

The feature set so far has included three features associated with the

lips. Although these are sufficient to differentiate between the test

phrases, we now add a fourth AF describing the position of the teeth

(TP), with three values: open (used when there is a space between the

teeth), neutral (used when there is no visible space), and unknown

(used when the teeth are not visible). To determine whether using

more features than the minimum needed to distinguish the

vocabulary improves performance, we conduct experiments with

both the original three-feature set and the new four-feature set. To

make for a fair comparison between AF-based and viseme-based

models, we also expand the viseme set to eight, corresponding to

those combinations of AF values that occur in the training data.

5.3.3 Recognition Results

Table 3 summarizes the phrase recognition accuracies. Recall that

each phrase was recorded three times; each recognition experiment

is conducted three times, training on two repetitions of each phrase

and testing on the remaining repetition. The table shows the

average accuracies over the three trials.
The first column under “dictionary-based” in Table 3 corre-

sponds to a viseme dictionary baseline model using a Gaussian

distribution over SVM margin outputs for each viseme state. This

model correctly recognizes only 30 percent of test phrases. The

feature-based model with the three original AFs improves

performance to 43 percent. The same model using a virtual evidence

observation model (second column) has worse performance than

the Gaussian one; we use the latter exclusively for the remaining

experiments. Still, the accuracy is quite low; as we discuss next, we
obtain much better results with whole-word models.

The right side of the table, under “whole-word,” gives results for
three baseline models: “6V,” the viseme baseline corresponding to
the 3-AF model; “8V,” the viseme baseline for the 4-AF model; and
“PCA,” an HMM-based model with Gaussian observation distribu-
tions over raw PCA visual features (with the number of PCA
coefficients set at 5 by cross-validation on the training data). Of
these, the “PCA” baseline has the best performance. Comparing the
3-AF synchronous model to its 6-viseme equivalent, and the 4-AF
synchronous model to its 8-viseme equivalent, we again find that
feature-based models outperform viseme-based ones.

The “3-AF” and “asyncþ3AF” columns show that AF-based
models with the original 3-feature set outperform either viseme-
based baseline, but not the PCA baseline. This is not surprising
since the three lip features presumably carry less information than
the full image on which the PCA coefficients are based. However,
the “4-AF” column shows that, with four features, the AF-based
model outperforms the PCA baseline. Finally, the last column
gives the performance of an asynchronous 4-AF model, in which
three pairs of streams were allowed to desynchronize by up to one
state—LO and LR, LO and LD, and LO and TP. This model
achieves the best overall performance, although the difference
between it and the synchronous version is not statistically
significant on this data set. Adding the fourth feature (TP)
improved the accuracy of the synchronous DBN from 64 percent
to 78 percent, and of the asynchronous DBN from 66 percent to
79 percent. Note that the four AFs arguably still do not capture all
of the relevant information in the image; for example, some aspects
of tongue motion may be visible and independently informative.

6 CONCLUSION

We have presented a class of models that use multiple streams of
articulatory features to model visual speech. This paper unifies
previously presented work [35], [36] and includes additional
model and experimental variants. In our approach, dynamic
Bayesian networks are used to represent streams of hidden
articulator states and to allow for asynchrony between them. A
bank of support vector machine classifiers provides input to the
DBN, in the form of either virtual evidence (probabilities) or raw
margin outputs. We have presented experiments conducted on
two visual speech tasks, a medium-vocabulary word-ranking task
and a small-vocabulary phrase recognition task. The main findings
are: 1) AF-based models outperform conventional single-stream
viseme-based models on both tasks and 2) models allowing for
asynchrony between streams usually outperform synchronous
models, but not at a statistically significant level on our data. One
reason for the improved performance with AF-based models may
be that some visemes occur infrequently and, thus, have too little
training data, while AF classifiers can utilize training data more
efficiently. It is also possible that there are too many classes in the
viseme-based multiclass SVMs, suggesting that investigations with
alternative, inherently multiclass, classifiers may be useful.

A few additional aspects of the results are noteworthy and
suggest possible directions for future work. We have found that,
although not always visible in the image, articulators other than
the lips can provide important information and help to improve
performance (Section 5.3.3). Additional features, such as tongue
position, may improve performance even further. We have also
found (in Section 5.2) that classifier (and, therefore, recognition)
performance varies widely across speakers; one area for future
work is, therefore, the investigation of the causes of this variability.
The word-ranking experiments with manual labels for a single
speaker (Section 5.1.2) have underscored the importance of
accurate training labels. Manually labeling large data sets may
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with Various Models in the SMALL-V Task



not be feasible, but future work may include an iterative procedure

to refine the automatic labels.
Finally, two important directions for future work are the

application of the proposed models to more casual (conversational)

speech styles and the addition of acoustic modality. The degree of

asynchrony between articulators may be more pronounced in

conversational speech and the types of models we have used were

originally motivated by conversational speech phenomena [19]. In

the case where we include the acoustic modality, our models allow

the combination of audio and visual speech to be done at the

articulatory feature level, as opposed to the phoneme/viseme

level. Preliminary work in this direction has recently begun [12],

[21]. We believe this may be a more appropriate model for audio-

video fusion, since it accounts for the apparent asynchrony among

the acoustic and visual signals [11] naturally via the mechanism of

asynchronous AF streams.
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