Measurements of Charged Current Lepton Universality and $|V_{us}|$ Using Tau Lepton Decays to $e^-\overline{\nu}_e\nu_\tau$, $\mu^-\overline{\nu}_\mu\nu_\tau$, $\pi^-\overline{\nu}_\tau$, and $K^-\overline{\nu}_\tau$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Measurements of Charged Current Lepton Universality and $|V_{us}|$ Using Tau Lepton Decays to $e^{-}\bar{\nu}_e \nu_\tau$, $\mu^{-}\bar{\nu}_\mu \nu_\tau$, $\pi^{-}\bar{\nu}_\pi \nu_\tau$, and $K^{-}\bar{\nu}_K$
Decays of the τ lepton to a single charged particle and neutrino(s) probe the standard model (SM) predictions of charged current lepton universality and the unitarity relation of the first row of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [1]. Previous measurements of universality [2,3], expressible in terms of the coupling strength (g_ℓ) of lepton of flavor ℓ to the charged gauge boson of the electroweak interaction are in agreement with the SM where $g_\ell/g_\mu=g_\mu/g_\tau=1$. Similarly, kaon decay measurements [3,4] sensitive to $|V_{us}|$, the relative weak coupling between up and strange quarks, yield a value consistent with unitarity ($(|V_{ud}|^2+|V_{us}|^2+|V_{ub}|^2)=1$), where nuclear beta decays provide $|V_{ud}|$ [5] and $|V_{ub}|$ is negligible [3]. However, new physics that couples primarily to the third generation could be revealed through deviations from the SM in precision universality and $|V_{us}|$ measurements involving the τ. Significant deviations of this nature are unambiguous signatures of new physics that provide crucial but complimentary information to the direct searches for Higgs bosons [6] and other new physics models with, e.g., lepto-quarks [7], heavy gauge W' or Z' bosons, heavy quarks or leptons, compositeness or extra dimensions [8].

Recent measurements of the sum of strange τ branching fractions interpreted in the framework of the operator product expansion (OPE) and finite energy sum rules yield a value of $|V_{us}|$ that is approximately 3 standard deviations (σ) lower than expectations from CKM unitarity [9]. This Letter addresses both experimental and theoretical aspects of this question by providing the first precision measurements of $R_K\equiv\frac{B(\tau\to K^-\nu_\tau)}{B(\tau\to e^-\nu_e\bar{\nu}_\tau)}$ [10] and $R_K/\pi\equiv\frac{B(\tau\to K^-\nu_\tau)}{B(\tau\to \pi^-\nu_\tau)}$ enabled by the unique combination of a very large τ sample with particle momenta amenable to particle identification using Cherenkov radiation. By using values of the meson decay constants from lattice QCD [11], we provide two precision determinations of $|V_{us}|$ from τ decays independent of the OPE framework. We also report on new measurements of $R_\pi\equiv\frac{B(\tau\to \pi^-\nu_\tau)}{B(\tau\to e^-\nu_e\bar{\nu}_\tau)}$ and $R_\mu\equiv\frac{B(\tau\to \mu^-\nu_\tau)}{B(\tau\to e^-\nu_e\bar{\nu}_\tau)}$, R_μ provides an improved measurement of g_μ/g_τ, whereas R_π and R_K, when compared to the muonic branching fractions of the pion and kaon, yield improved measurements of g_ℓ/g_μ involving pseudoscalar mesons.

The data sample corresponds to an integrated luminosity of $L=467$ fb$^{-1}$ recorded at an e^+e^- center-of-mass (CM) energy (\sqrt{s}) near 10.58 GeV and was collected with the BABAR detector at the SLAC PEP-II e^+e^- storage rings. With a luminosity-weighted average cross section of $\sigma_{e^+e^-\to\tau^+\tau^-}=(0.919\pm0.003)$ nb [12,13], this corresponds to the production of $4.29\times10^8 \tau$-pair events. The BABAR detector [14] is composed of a silicon vertex tracker, drift chamber (DCH), ring-imaging Cherenkov detector (DIRC), and electromagnetic calorimeter (EMC), all contained in a 1.5-T solenoid. The iron flux return for the solenoid is instrumented (IFR) to identify muons.

Tau-pair events are simulated with the KK Monte Carlo (MC) generator [13], which includes higher-order radiative corrections. We simulate τ decays with TAUOLA [15] and PHOTOS [16] using measured branching fractions [3]. The detector response is simulated with GEANT4 [17]. Simulated events for signal as well as background processes [13,15,16,18,19] are reconstructed in the same manner as data. The MC samples are used for selection optimization, control sample studies, and systematic error studies. The number of simulated nonsignal events is comparable to the number expected in the data, with the exception of Bhabha and two-photon events, which are not simulated but which data studies show to be negligible.

We study $e^+e^-\to\tau^+\tau^-$ events with the τ^- decaying via $\tau^-\to e^-\bar{\nu}_e\nu_\tau$, $\tau^-\to \mu^-\bar{\nu}_\mu\nu_\tau$, $\tau^-\to \pi^-\nu_\tau$ or $\tau^-\to K^-\nu_\tau$ modes and the τ^+ decaying via a $\tau^+\to \pi^+\pi^-\nu_\tau$ tagging channel with the selection criteria optimized to minimize the combined statistical and systematic uncertainties [20]. The number of signal events for decay modes $i=\{e,\mu,\pi,K\}=$ $\{e^-\bar{\nu}_e\nu_\tau,\mu^-\bar{\nu}_\mu\nu_\tau,\pi^-\nu_\tau,K^-\nu_\tau\}$ are $N^i=N^i_0-\epsilon N^i_0$, where ϵ is the efficiency (including $B(\tau^-\to \pi^-\pi^-\nu_\tau) = (8.85\pm0.13)\%$ [3]), N^0_0 the number of selected data events, and N^i_0 the estimated number of background events for the ith mode.

We measure the ratios $R_i=N^i_0/N^0_0$ which normalizes to the most precisely known relevant SM process available, and in which several common sources of systematic uncertainty cancel. N^0_0 is multiplied with reproducible random numbers until all efficiency and uncertainty estimates are finalized. Once unblinded, we use the values of the three branching ratios to update world averages of the branching fractions, which we then use to recalculate the backgrounds for our final results.

Events with a net charge of zero and with four well-reconstructed tracks not originating from the conversion of
a photon in the detector material are selected. For good particle identification, each track is required to be within the acceptance of the DIRC and EMC, and have a transverse momentum greater than 0.25 GeV to ensure that it reaches the DIRC. The plane normal to the thrust axis divides the event into hemispheres in the CM frame. The “signal” hemisphere contains a single track and the “tag” hemisphere the other three tracks.

Each tag hemisphere track is required to be consistent with being a pion and the energy deposited in the EMC unassociated with any tracks in this hemisphere is required to be less than 0.20 GeV. Also, events that contain track pairs consistent with coming from a pair of muons. The angle between the missing momentum and the thrust, and two-photon events by adjusting the requirements on the track. The statistical errors in the more limited cross-check control samples dominate these errors. Because we use control samples to correct charge conjugate particles separately, charge-dependent detector responses are accounted for by construction.

To remove two-photon and Bhabha backgrounds, the event must have a missing CM momentum less than 80% of \(\sqrt{s}/2c \). The angle between the missing momentum and the transverse momentum of the event is required to be less than 0.85. A pion track also passing a loose muon selection is rejected. A similar veto is applied for a kaon track passing the loose muon selection if its measured momentum exceeds 3 GeV/c. Also, events with an EMC energy \(>1.0, 0.5, 0.2, 0.2 \) GeV in the signal hemisphere unassociated with the \(e, \mu, \pi, K \) track are removed.

Pion and kaon control samples from \(D^{+} \to \pi^{+}D^{0}, D^{0} \to \pi^{+}K^{-} \) decays are used to study and correct for small differences between MC and data. We cross-check these with independent \(\pi^{-} (K^{-}) \) control samples from \(\tau^{-} \to \pi^{-}\pi^{-}\pi^{+}\nu_{\tau}, (\tau^{-} \to K^{-}\pi^{-}K^{+}\nu_{\tau}) \) decays using particle identification of two of the oppositely charged particles and the fact that the wrong sign \(\tau^{-} \to \pi^{-}\pi^{-}\pi^{+}\nu_{\tau} \) decays are heavily suppressed. Samples of radiative Bhabha and radiative \(\mu \)-pair events provide control samples of electrons and muons. The systematic uncertainty associated with charged particle identification is assessed from the control sample statistical errors, consistency between control samples, and the sensitivity of the control sample corrections to the number of particles near the track. The statistical errors in the more limited cross-check control samples dominate these errors. Because we use control samples to correct charge conjugate particles separately, charge-dependent detector responses are accounted for by construction.

Table I.

<table>
<thead>
<tr>
<th></th>
<th>(\mu)</th>
<th>(\pi)</th>
<th>(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N^{D})</td>
<td>731 102</td>
<td>369 091</td>
<td>25 123</td>
</tr>
<tr>
<td>Purity</td>
<td>97.3%</td>
<td>78.7%</td>
<td>76.6%</td>
</tr>
<tr>
<td>Total efficiency</td>
<td>0.485%</td>
<td>0.324%</td>
<td>0.330%</td>
</tr>
<tr>
<td>Particle ID efficiency</td>
<td>74.5%</td>
<td>74.6%</td>
<td>84.6%</td>
</tr>
<tr>
<td>Systematic uncertainties:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle ID</td>
<td>0.32</td>
<td>0.51</td>
<td>0.94</td>
</tr>
<tr>
<td>Detector response</td>
<td>0.08</td>
<td>0.64</td>
<td>0.54</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>0.08</td>
<td>0.44</td>
<td>0.85</td>
</tr>
<tr>
<td>Trigger</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>(\pi^{+}\pi^{-}\pi^{+}) modeling</td>
<td>0.01</td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>Radiation</td>
<td>0.04</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>(B(\tau^{-} \to \pi^{-}\pi^{-}\pi^{+}\nu_{\tau}))</td>
<td>0.05</td>
<td>0.15</td>
<td>0.40</td>
</tr>
<tr>
<td>(\mathcal{L} \sigma_{\nu_{\tau} \to \tau^{+}\tau^{-}})</td>
<td>0.02</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>Total [%]</td>
<td>0.36</td>
<td>1.0</td>
<td>1.5</td>
</tr>
</tbody>
</table>
To suppress backgrounds in the $\tau^- \rightarrow \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \nu_\tau$ channels from τ decays with undetected neutral particles other than the ν_τ (e.g., K^0_L mesons, u), we reconstruct the direction of the back-to-back $\tau^+\tau^-$ system in the CM frame. The polar angle of the τ momentum with respect to the tagside hadronic system is calculated assuming that the CM energy of the τ is $\sqrt{s}/2$, and the azimuthal angle of the τ momentum is fixed to a value that has been optimized to minimize the total error on the polar angle of the τ. With this estimator for the τ momentum, we require the missing mass in the signal hemisphere to be less than 0.56 GeV/c2.

For the selected $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$ events, the dominant backgrounds are $\tau^- \rightarrow \pi^- \nu_\tau$ (1.46 ± 0.01)% and $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ (0.85 ± 0.01)%). For the $\tau^- \rightarrow \pi^- \nu_\tau$ channel, the dominant backgrounds are $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$ (12.90 ± 0.07)%), $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ (5.87 ± 0.04)%), and non-τ backgrounds (0.34 ± 0.05)%). The major backgrounds in the $\tau^- \rightarrow K^- \nu_\tau$ channel are from $\tau^- \rightarrow \pi^- \nu_\tau$ decays (10.06 ± 0.13)%, $\tau^- \rightarrow K^- K^0_L \nu_\tau$ (3.87 ± 0.41)%), $\tau^- \rightarrow K^- \pi^0 \nu_\tau$ (1.97 ± 0.14)%), $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ (1.07 ± 0.06)%), and non-τ backgrounds (2.58 ± 0.38)%). The uncertainties are from MC statistics, branching fractions and, for non-τ backgrounds, the systematic uncertainty on background rates. Figure 1 shows the momentum distributions in the CM frame for each of the four decay modes for data, along with the background MC contributions.

For the $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$ channel, 884426 events are selected with an efficiency and purity of (0.589 ± 0.010)% and (99.69 ± 0.06)% respectively. The number of selected events, efficiency, purity, and systematic uncertainties on R_τ of the $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \tau, \tau^- \rightarrow \pi^- \nu_\tau$, and $\tau^- \rightarrow K^- \nu_\tau$ selections are presented in Table I. These uncertainties include contributions from the particle identification, the sensitivity to detector response including the impact of changing the MC momentum scale and DCH resolution, and the systematic uncertainties on R_μ and R_K measurements. These measurements have additional dominant contributions from the backgrounds, due to stronger cuts on the EMC energy necessary to reduce non-τ backgrounds. Presence of the ~20% backgrounds in these channels render them more sensitive to the modelling of the tagside decays. The dominant background uncertainty in the R_{π} measurement arises from the $e^+ e^-$ background modes is 0.58%, which is dominated by the uncertainty of the $\tau^- \rightarrow K^0_L K^- \nu_\tau$ fraction. There is also a 0.49% uncertainty assigned for $q\bar{q}$ backgrounds, which are studied using events with an invariant mass of the tracks in the tag hemisphere above the τ mass and cross-checked in regions of thrust and $cos(\theta_{CM}^{miss})$ enriched with these backgrounds.

The measured branching ratios and fractions are

$$R_\mu = (0.9796 \pm 0.0016 \pm 0.0036),$$
$$R_\pi = (0.5945 \pm 0.0014 \pm 0.0061),$$
$$R_K = (0.03882 \pm 0.00032 \pm 0.00057),$$
$$R_b = R_\pi + R_K = (0.6333 \pm 0.0014 \pm 0.0061),$$
$$B(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau) = (17.46 \pm 0.03 \pm 0.08)%$$
$$B(\tau^- \rightarrow \pi^- \nu_\tau) = (10.59 \pm 0.03 \pm 0.11)%$$
$$B(\tau^- \rightarrow K^- \nu_\tau) = (0.692 \pm 0.006 \pm 0.010)%,$$ (1)

where $h = \pi$ or K and we use $B(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau) = (17.82 \pm 0.05)%$ [3]. The off-diagonal elements of the correlation matrix for the measured ratios (branching fractions) are $\rho_{h\pi} = 0.25$ (0.34), $\rho_{hK} = 0.12$ (0.20), and $\rho_{\pi K} = 0.33$ (0.36). The μ and π measurements are con-

![FIG. 1 (color online). Data (points) and MC (histograms) distributions of CM momentum for (a) $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$, (b) $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$, (c) $\tau^- \rightarrow \pi^- \nu_\tau$, and (d) $\tau^- \rightarrow K^- \nu_\tau$ modes. The small differences between MC and data are accounted for in the systematic errors.](image)
sistent with and of comparable precision as the world averages [3], whereas the K measurement is consistent with but twice as precise as the world average [3].

Tests of $\mu - e$ universality can be expressed as

$$\frac{g_\mu}{g_\tau} = \frac{B(\tau \rightarrow \mu \bar{\nu}_\mu \nu_\tau)}{B(\tau \rightarrow h \bar{\nu}_\tau \nu_\tau)} \frac{f(m_\mu^2/m_\tau^2)}{f(m_\mu^2/m_\tau^2)},$$

where $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \log x$, assuming that the neutrino masses are negligible [21]. This gives $(\frac{g_\mu}{g_\tau})_{\text{SM}} = 1.0036 \pm 0.0020$, yielding a new world average of 1.0018 ± 0.0014, which is consistent with the SM and the value of 1.0021 ± 0.0015 from pion decays [3,22].

Tau-muon universality is tested with

$$\frac{g_\mu}{g_\tau} = \frac{B(\tau \rightarrow h \nu_\tau)}{B(\tau \rightarrow h \bar{\nu}_\tau \nu_\tau)} \left(1 + \delta_h\right) \frac{m_\tau^2}{m_\tau^2},$$

where the radiative corrections are $\delta_\pi = (0.16 \pm 0.14)\%$ and $\delta_K = (0.90 \pm 0.22)\%$ [23]. Using the world averaged mass and lifetime values and meson decay rates [3], we determine $(\frac{g_\mu}{g_\tau})_{\pi(K)} = 0.9856 \pm 0.0057 (0.9827 \pm 0.0086)$ and $(\frac{g_\mu}{g_\tau})_h = 0.9850 \pm 0.0054$ when combining these results; this is 2.8σ below the SM expectation and within 2σ of the world average.

We use the kaon decay constant $f_K = 157 \pm 2$ MeV [11], and our value of

$$B(\tau \rightarrow K^- \nu_\tau) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^2}{16\pi^2} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 S_{\text{EW}},$$

where $S_{\text{EW}} = 1.0201 \pm 0.0003$ [24], to determine $|V_{us}| = 0.2193 \pm 0.0032$. This measurement is within 2σ of the value of 0.2255 \pm 0.0010 predicted by CKM unitarity and is also consistent with the value of $|V_{us}| = 0.2165 \pm 0.0027$ derived from the inclusive sum of strange τ decays [9].

Both of our measured $|V_{us}|$ values depend on absolute strange decay rates. Our value of $R_{K/\pi} = (0.06531 \pm 0.00056 \pm 0.00093)$, however, provides a $|V_{us}|$ value driven by the ratio between strange and nonstrange decays. We use $f_K/f_\pi = 1.189 \pm 0.007$ [11], $|V_{us}|$ [5], and the long-distance correction $\delta_{\text{LD}} = (0.03 \pm 0.44)\%$ estimated [25] using corrections to $\tau \rightarrow h \nu$ and $h \rightarrow \mu \nu$ [23,26] in

$$R_{K/\pi} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{us}|^2} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 (1 + \delta_{\text{LD}}),$$

to obtain $|V_{us}| = 0.2255 \pm 0.0024$ where short-distance electro-weak corrections cancel in this ratio. This value is consistent with CKM unitarity [5] and 2.5σ higher than $|V_{us}|$ from the inclusive sum of strange τ decays.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Deceased.
‡Present address: Temple University, Philadelphia, Pennsylvania 19122, USA.
§Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
\SAlso with Università di Roma La Sapienza, I-00185 Roma, Italy.
\[Present address: University of South AL, Mobile, AL 36688, USA.
\[Also with Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France.
\[Also with Università di Sassari, Sassari, Italy.

10. Charge conjugate τ decays are implied throughout.