Basic running test of the cylindrical tracked vehicle with sideways mobility

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/IROS.2009.5354064</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 05 02:56:13 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/60873</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Basic Running Test of the Cylindrical Tracked Vehicle with Sideways Mobility

Kenjiro Tadakuma1, Riichiro Tadakuma2, Keiji Nagatani3, Kazuya Yoshida3, Aigo Ming1, Makoto Shimojo1, Karl Iagnemma4

Abstract—
In this paper, the basic running performance of the cylindrical tracked vehicle with sideways mobility is presented. The crawler mechanism is of circular cross-section and has active rolling axes at the center of the circles. Conventional crawler mechanisms can support massive loads, but cannot produce sideways motion. Additionally, previous crawler edges sink undesirably on soft ground, particularly when the vehicle body is subject to a sideways tilt. The proposed design solves these drawbacks by adopting a circular cross-section crawler. A prototype. Basic motion experiments with confirm the novel properties of this mechanism: sideways motion and robustness against edge-sink.

Keywords: Tracked Vehicle, Sideways Motion, Circular Cross-Section, Crawler, Pipe Inspection

I. Introduction
Conventional crawlers cannot move sideways. Therefore they usually (i) lack enough maneuverability to move in narrow spaces such as in Fig. 1(a). For example, it is not so easy to set the position of the crawler vehicle to trajectory number 5 in Fig. 1(a). In addition, when a conventional crawler tilts sideways on soft ground, (ii) the edge of the crawler unit might sink undesirably as shown in Fig. 1(b). In this paper we present a mechanism that solves these two issues. A crawler mechanism that realizes sideling motion is presented and the application of a pipe inspection robot is examined.

In order to realize holonomic omni-directional motion, there exist many commercial wheels which are based on small passive rotational wheels[1]-[8]. Some of them are similar to a crawler-like mechanism. A particularly accomplished example of this is the VUTON[9] developed by Hirose, or the vehicle developed by M. West et al.[10] and the mechanism developed by Chen et al[11]. However, these crawler-like mechanisms have many numbers of small passive rotational rollers, and are not generally capable of overcoming steps or ground discontinuities typical in environments such as houses, offices or hospitals (e.g. the gap at an elevator opening). This limitation stems from the fact that the diameter of the passive wheel is much smaller than the diameter of the whole wheel.

University of Electro-Communications1, University of Tokyo2, Tohoku University3, Massachusetts Institute of Technology4, tadakuma@gmail.com, 1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 JAPAN

II. Tracked Vehicle with Circular Cross-Section
The overview of the proposed crawler with a circular cross-section is shown in Fig.1. The crawler module has an active rotational axis; which allows it to realize the required sideways motion.

Additionally, this configuration has another distinctive feature, shown in Fig. 2.

When a conventional crawler moves inside a pipe (or on its outer surface), the edge of the crawler belt contacts the surface with a small area: an edge line. Or conventional one should change their inclining angle in roll axis adopting to the surface of the pipe [18]. On the other hand, when the proposed crawler with a circular cross-section moves on the inside (or outside) of a pipe, the contact area is significantly increased due to the shape and elasticity of the circular...
crawler belt. In addition, the circular cross-section reduces
the problem of the crawler unit sinking into the pipe surface.
Robots mounted with the proposed mechanism move in a
direction perpendicular to the passive wheel axis, as shown in
Fig. 2. The maximum step which the mobile robots can
overcome is significantly small relative to the size of the
whole wheel because of the small diameter of the passive
wheels.

III. Experiments of Basic Running
In this section, we describe a set of experiments conducted to
confirm the performance of a prototype of this crawler
vehicle with the omni-crawler drive mechanism.

A. Step Climbing Motion

A-1 Forward-Backward Direction
As one of the basic mobility criteria of this robot, the ability
to produce step-climbing motion should be confirmed. One
example of such a motion is shown in Fig. 6. The height of the
step is 36mm. When the crawler vehicle needs much higher
ability to climb steps, the configuration can be set the joint
mechanism like connected crawler vehicle “Soryu[15]” by
removing the front supporter.

Fig.3: Step-Climbing Motion (Forward-Backward)

A-2 Sideways

The height of the step is 33.5mm in Fig. 4. It was observed
that a prototype with the Omni-Crawler mechanism can climb
step not only longitudinally, but also laterally.

Fig.4: Step-Climbing Motion (Sideways)

B. Gap Traversing
The ability of the vehicle to gap traversing was also
confirmed as shown in Fig.8. The distance of the gap is
205mm. It was observed that a prototype with the
Omni-Track mechanism can traverse the gaps only
longitudinally, but also laterally as shown in Fig.8 and Fig.9
respectively. In Fig. 9, the length of the gap is 77.5mm.

In order to compare the ability of the step climbing and that of
gap traversing in sideways, it is set the diameter of the roller
of the previous tracked mechanism is half size of that of the
Omni-Track mechanism as shown in Fig. 7. By defined
like this, the ability to climb the step and gap is as shown in
Fig. 8. As shown in this graph, each ability of the
Omni-Track mechanism is higher than that of the previous
model defined here.
C. Moving on Pipe

(c-1) Geometric Conditions

The vehicle’s mobility on the outside edge of a pipe was also confirmed. It was observed that the prototype with the Omni-Crawler mechanism can traverse along small and large pipes without any adjustments as show in Fig. 17. Similarly, motion along the inside of a pipe was also observed, and it was confirmed the vehicle could maintain smooth motion without requiring any kind of adjustment. See Fig. 18. The diameter of the outer pipe is 513mm and inner diameter of the pipe is 490mm.

\[
\begin{align*}
W/2 - \rho_{oc} &< R_{p \leq \infty} \\
\rho_{oc} + W/2 &< R_{p \leq \infty}
\end{align*}
\]

Please see the video attached this paper.

In addition, the stability of the cylindrical tracked vehicle is considered with the comparison with that of previous crawler as shown in Fig. 10.

As a result, the cylindrical tracked vehicle has higher stability than normal tracked vehicle.

(c-2) Moving on the surface of the pipes

The ability to move on the outside surface of the pipes was confirmed. The vehicle can keep moving even if the diameter of the pipe like field changed as shown in Fig. 11. The diameter of the small pipe is 155mm, while that of the large pipe is 513mm. They meet the values based on the equations shown in the previous section.

(c-3) Moving on the surface inside the pipes

The ability to move on the surface inside the pipes was also confirmed. The vehicle can keep moving even if the diameter of the pipe like field changed. For example from pipe like field to the totally flat area, the diameter is shift from the one to the infinity, the prototype model can move through that connection point as shown in Fig. 11. The diameter of the small pipe is 349mm, while that of the large pipe is 490mm. They meet the values based on the equations shown in the previous section. Even if there is an obstacle inside the pipe, this tracked vehicle can avoid that by making use of the sideways motion within the stable range.
D. Moving on Soft Grounds

(D-1) Toyoura-Sand

The vehicle’s ability to move on soft ground was also confirmed, as shown in Fig. 15. We used “Toyoura” sand as the soft ground. The average diameter of this sand particle is about 0.2mm, and the density of this sand is 2700kg/m3. It was observed that this prototype with the Omni-Crawler mechanism can move on soft ground smoothly with a low level of sink. Please see the video attached this paper.

In order to see the effect of prevention of sinking on the inclining posture as explained in Fig. 1, the running experiment on the sand with step is observed as shown in Fig. 13. One of the tracked unit is on the step and the height of the step is 115mm. The rut of the cylindrical track is shown in Fig. 14(a). On the other hand, the rut of the normal track is shown in Fig. 14(b). The height and the width of the normal tracked vehicle were set the same size of the diameter of the cylindrical tracked vehicle. The weight of each tracked vehicle was set the same.

The depth of the rut of the cylindrical track is the 8.5mm, while that of the normal track is the 15.5. It was observed that the cylindrical tracked vehicle has better performance of the prevention of the edge sinking on the inclining posture in soft ground.
In addition, as shown in Fig. 16, when the tracked vehicle with conventional crawler belt was rotating on the spot, it happened that the sand infiltrated into side of the crawler belt. Comparing this conventional crawler belt, the belt of the Omni-Crawler protects the infiltration of sand from the side when the vehicle is rotating of the spot. This is another advantages of the proposed crawler mechanism with circular cross-section.

(D-2) Moving on Snow
The vehicle’s ability to move on another soft ground was also confirmed. We have done outdoor running test of this vehicle on the snow as shown in Fig. 16. The thickness of the snow was about 35mm. It was observed that this prototype with the Omni-Tracked mechanism can move on soft ground smoothly not only in forward-backward direction, but also sideways, turn on the spot with a low level of a sink. Please see the video attached this paper. The water proofing is still one of the problems for the mechanism but we can see from even if the vehicle gets stuck, it can recover by using the sideways motion from the hole on the soft ground.

IV. Another Applications
In this section, another applications of the cylindrical tracked unit are shown.
4-1. Wheel–Tracked Legged Mobile Robot
The wheel-track-leg hybrid mobile robot is shown in Fig. 17. This robot changes its mobile mode depends on the fields to realize the effective and efficient movement.

4-2. Pipe Inspection Robot in Vertical Pipes
The robot to inspect the inner or outer pipe which set vertical is shown in Fig. 18. It can grasp the pipes by using 3-crawler units and climb the pipes.

4-3. Snake like Robot
As shown in Fig. 19, by connecting plural numbers of the omni-crawler units, the snake-like robot(e.g. [19]) with the sideways mobility can be realized. This configuration is effective to move sideways in narrow spaces.

V. Conclusion
In this paper, we showed the basic running experiments of Cylindrical Tracked Vehicle with Sideways Mobility. The step climbing motion in forward-backward direction and also sideways are shown and compared with the previous tracked mechanism with conventional crawler belt. The motion test on the softground and snow were also conducted with the omni-tracked vehicle.
In future works, we plan to optimize the configuration of the body of the tracked vehicle including the suspension mechanism.
Acknowledgment

The authors would like to thank Prof. Shigeo Hirose for his contribution and abundant advice. And we would like to thank Mr. Hiroaki Kinoshita and the staff of Ono-denki Corp. for their contribution.

References

