
Meep: A �exible free-software package
for electromagnetic simulations by the FDTD method

Ardavan F. Oskooi�,a,c, David Roundyb, Mihai Ibanescua,c,d, Peter Bermelc,
J. D. Joannopoulosa,c,d, Steven G. Johnson��,a,c,e

aCenter for Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge MA 02139
bDepartment of Physics, Oregon State University, Corvallis OR 97331

cResearch Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA 02139
dDepartment of Physics, Massachusetts Institute of Technology, Cambridge MA 02139

eDepartment of Mathematics, Massachusetts Institute of Technology, Cambridge MA 02139

Abstract

This paper describes Meep, a popular free implementation of the �nite-di �erence time-domain
(FDTD) method for simulating electromagnetism. In particular, we focus on aspects of imple-
menting a full-featured FDTD package that go beyond standard textbook descriptions of the
algorithm, or ways in which Meep di�ers from typical FDTD implementations. These include
pervasive interpolation and accurate modeling of subpixel features, advanced signal processing,
support for nonlinear materials via Pad·e approximants, and �exible scripting capabilities.

PACS: 02.70.Bf; 82.20.Wt; 03.50.De; 87.64.Aa.

Key words: computational electromagnetism; FDTD; Maxwell solver.

Program Summary
Program title: Meep
Program summary URL: http://ab-initio.mit.edu/meep
Licensing provisions: GNU GPL
No. of lines in distributed program, including test data, etc: 58000
No. of bytes in distributed program, including test data, etc: 734K
Distribution format: tar.gz
Programming language: C++

Computer: any computer with a Unix-like system and a C++ compiler; optionally exploits additional free
software packages: GNU Guile [1], libctl interface library [2], HDF5 [3], MPI message-passing interface
[4], and Harminv �lter-diagonalization [5]. Developed on 2 .8 GHz Intel Core 2 Duo.
Operating system: any Unix-like system; developed under Debian GNU/Linux 5.0.2
RAM: problem dependent (roughly 100 bytes per pixel/voxel)
Classi�cation: 10 Electrostatics and Electromagnetics

�Corresponding author
��Principal corresponding author

Email addresses: ardavan@mit.edu (Ardavan F. Oskooi), roundyd@physics.oregonstate.edu (David
Roundy), michel@alum.mit.edu (Mihai Ibanescu), bermel@mit.edu (Peter Bermel), joannop@mit.edu
(J. D. Joannopoulos), stevenj@math.mit.edu (Steven G. Johnson)

Preprint submitted to Elsevier January 8, 2010

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

External routines/libraries: optionally exploits additional free software packages: GNU Guile [1], libctl
interface library [2], HDF5 [3], MPI message-passing interface [4], and Harminv �lter-diagonalization [5]
(which requires LAPACK and BLAS linear-algebra software [6]).
Nature of problem: classical electrodynamics
Solution method: �nite-di �erence time-domain (FDTD) method
Running time: problem dependent (typically about 10 ns per pixel per timestep)

References:

1. GNU Guile, http://www.gnu.org/software/guile
2. Libctl, http://ab-initio.mit.edu/libctl
3. M. Folk, R.E. McGrath, N. Yeager, HDF: An update and future directions, in: Proc. 1999 Geoscience

and Remote Sensing Symposium (IGARSS), Hamburg, Germany, vol. 1, IEEE Press, 273�275,
1999.

4. T.M. Forum, MPI: A Message Passing Interface, in: Supercomputing ’93, Portland, OR, 878�883,
1993.

5. Harminv, http://ab-initio.mit.edu/harminv
6. LAPACK, http://www.netlib.org/lapack/lug

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

1. Introduction

One of the most common computational tools in classical electromagnetism is the �nite-
di�erence time-domain (FDTD) algorithm, which divides space and time into a regular grid and
simulates the time evolution of Maxwell’s equations [1, 2, 3, 4, 5]. This paper describes our free,
open-source implementation of the FDTD algorithm: Meep (an acronym for MIT Electromag-
netic Equation Propagation), available online at http://ab-initio.mit.edu/meep. Meep
is full-featured, including, for example: arbitrary anisotropic, nonlinear, and dispersive elec-
tric and magnetic media; a variety of boundary conditions including symmetries and perfectly
matched layers (PML); distributed-memory parallelism; Cartesian (1d/2d/3d) and cylindrical co-
ordinates; and �exible output and �eld computations. It als o includes some unusual features,
such as advanced signal processing to analyze resonant modes, accurate subpixel averaging, a
frequency-domain solver that exploits the time-domain code, complete scriptability, and inte-
grated optimization facilities. Here, rather than review the well-known FDTD algorithm itself
(which is thoroughly covered elsewhere), we focus on the particular design decisions that went
into the development of Meep whose motivation may not be apparent from textbook FDTD de-
scriptions, the tension between abstraction and performance in FDTD implementations, and the
unique or unusual features of our software.

Why implement yet another FDTD program? Literally dozens of commercial FDTD soft-
ware packages are available for purchase, but the needs of research often demand the �exibility
provided by access to the source code (and relaxed licensing constraints to speed porting to new
clusters and supercomputers). Our interactions with other photonics researchers suggest that
many groups end up developing their own FDTD code to serve their needs (our own groups have
used at least three distinct in-house FDTD implementations over the past 15 years), a duplication
of e�ort that seems wasteful. Most of these are not released to the public, and the handful of
other free-software FDTD programs that could be downloaded when Meep was �rst released in
2006 were not nearly full-featured enough for our purposes. Since then, Meep has been cited
in over 100 journal publications and has been downloaded over 10,000 times, rea�rming the
demand for such a package.

FDTD algorithms are, of course, only one of many numerical tools that have been devel-
oped in computational electromagnetism, and may perhaps seem primitive in light of other so-
phisticated techniques, such as �nite-element methods (FE Ms) with high-order accuracy and/or
adaptive unstructured meshes [6, 7, 8], or even radically di�erent approaches such as boundary-
element methods (BEMs) that discretize only interfaces between homogeneous materials rather
than volumes [9, 10, 11, 12]. Each tool, of course, has its strengths and weaknesses, and we
do not believe that any single one is a panacea. The nonuniform unstructured grids of FEMs,
for example, have compelling advantages for metallic structures where micrometer wavelengths
may be paired with nanometer skin depths. On the other hand, this �exibility comes at a price of
substantial software complexity, which may not be worthwhile for dielectric devices at infrared
wavelengths (such as in integrated optics or �bers) where th e refractive index (and hence the
typical resolution required) varies by less than a factor of four between materials, while small
features such as surface roughness can be accurately handled by perturbative techniques [13].
BEMs, based on integral-equation formulations of electromagnetism, are especially powerful
for scattering problems involving small objects in a large volume, since the volume need not
be discretized and no arti�cial �absorbing boundaries� are needed. On the other hand, BEMs
have a number of limitations: they may still require arti�ci al absorbers for interfaces extending
to in�nity (such as input /output waveguides) [14]; any change to the Green’s function (such as

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

introduction of anisotropic materials, imposition of periodic or symmetry boundary conditions,
or a switch from three to two dimensions) requires re-implementation of large portions of the
software (e.g. singular panel integrations and fast solvers) rather than purely local changes as
in FDTD or FEM; continuously varying (as opposed to piecewise-constant) materials are in-
e�cient; and solution in the time domain (rather than frequency domain, which is inadequate
for nonlinear or active systems in which frequency is not conserved) with BEM requires an ex-
pensive solver that is nonlocal in time as well as in space [11]. And then, of course, there are
specialized tools that solve only a particular type of electromagnetic problem, such as our own
MPB software that only computes eigenmodes (e.g. waveguide modes) [15], which are powerful
and robust within their domain but are not a substitute for a general-purpose Maxwell simula-
tion. FDTD has the advantages of simplicity, generality, and robustness: it is straightforward to
implement the full time-dependent Maxwell equations for nearly arbitrary materials (including
nonlinear, anisotropic, dispersive, and time-varying materials) and a wide variety of boundary
conditions, one can quickly experiment with new physics coupled to Maxwell’s equations (such
as populations of excited atoms for lasing [16, 17, 18, 19, 20]), and the algorithm is easily
parallelized to run on clusters or supercomputers. This simplicity is especially attractive to re-
searchers whose primary concern is investigating new interactions of physical processes, and for
whom programmer time and the training of new students is far more expensive than computer
time.

The starting point for any FDTD solver is the time-derivative parts of Maxwell’s equations,
which in their simplest form can be written:

@B
@t

= �r � E � JB (1)

@D
@t

= +r � H � J; (2)

where (respectively) E and H are the macroscopic electric and magnetic �elds, D and B are the
electric displacement and magnetic induction �elds [21], J is the electric-charge current density,
and JB is a �ctitious magnetic-charge current density (sometimes convenient in calculations,
e.g. for magnetic-dipole sources). In time-domain calculations, one typically solves the initial-
value problem where the �elds and currents are zero for t < 0, and then nonzero values evolve in
response to some currents J(x; t) and/or JB(x; t). (In contrast, a frequency-domain solver assumes
a time dependence of e�i!t for all currents and �elds, and solves the resulting linear e quations
for the steady-state response or eigenmodes [22, app. D].) We prefer to use dimensionless units
"0 = �0 = c = 1. From our perspective, this choice emphasizes both the scale invariance
of Maxwell’s equations [22, chap. 2] and also the fact that the most meaningful quantities to
calculate are almost always dimensionless ratios (such as scattered power over incident power, or
wavelength over some characteristic lengthscale). The user can pick any desired unit of distance
a (either an SI unit such as a = 1 �m or some typical lengthscale of a given problem), and all
distances are given in units of a, all times in units of a=c, and all frequencies in units of c=a. In
a linear dispersionless medium, the constituent relations are D = "E and B = �H, where " and
� are the relative permittivity and permeability (possibly tensors); the case of nonlinear and/or
dispersive media (including conductivities) is discussed further in Sec. 4.

The remaining paper is organized as follows. In Sec. 2, we discuss the discretization and
coordinate system; in addition to the standard Yee discretization [1], this raises the question of
how exactly the grid is described and divided into �chunks� f or parallelization, PML, and other

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

purposes. Section 3 describes a central principle of Meep’s design, pervasive interpolation pro-
viding (as much as possible) the illusion of continuity in the speci�cation of sources, materials,
outputs, and so on. This led to the development of several techniques unique to Meep, such
as a scheme for subpixel material averaging designed to eliminate the �rst-order error usually
associated with averaging techniques or stairstepping of interfaces. In Sec. 4, we describe and
motivate our techniques for implementing nonlinear and dispersive materials, including a slightly
unusual method to implement nonlinear materials using a Pad·e approximant that eliminates the
need to solve cubic equations for every pixel. Section 5 describes how typical computations
are performed in Meep, such as memory-e�cient transmission spectra or sophisticated analysis
of resonant modes via harmonic inversion. This section also describes how we have adapted the
time-domain code, almost without modi�cation, to solve fre quency-domain problems with much
faster convergence to the steady-state response than merely time-stepping. The user interface of
Meep is discussed in Sec. 6, explaining the considerations that led us to a scripting interface
(rather than a GUI or CAD interface). Section 7 describes some of the tradeo�s between perfor-
mance and generality in this type of code and the speci�c comp romises chosen in Meep. Finally,
we make some concluding remarks in Sec. 8.

2. Grids and Boundary Conditions

The starting point for the FDTD algorithm is the discretization of space and time into a
grid. In particular, Meep uses the standard Yee grid discretization which staggers the electric
and magnetic �elds in time and in space, with each �eld compon ent sampled at di�erent spa-
tial locations o�set by half a pixel, allowing the time and space derivatives to be formulated as
center-di�erence approximations [23]. This much is common to nearly every FDTD implemen-
tation and is described in detail elsewhere [1]. In order to parallelize Meep, e�ciently support
simulations with symmetries, and to e�ciently store auxiliary �elds only in certain regions (for
PML absorbing layers), Meep further divides the grid into chunks that are joined together into an
arbitrary topology via boundary conditions. (In the future, di�erent chunks may have di�erent
resolutions to implement a nonuniform grid [24, 25, 26, 27]). Furthermore, we distinguish two
coordinate systems: one consisting of integer coordinates on the Yee grid, and one of continuous
coordinates in �physical� space that are interpolated as ne cessary onto the grid (see Sec. 3). This
section describes those concepts as they are implemented in Meep, as they form a foundation for
the remaining sections and the overall design of the Meep software.

2.1. Coordinates and grids

The two spatial coordinate systems in Meep are described by the vec, a continuous vector
in R

d (in d dimensions), and the ivec, an integer-valued vector in Z
d describing locations on

the Yee grid. If n is an ivec, the corresponding vec is given by 0:5�xn, where �x is the spatial
resolution (the same along x, y, and z)�that is, the integer coordinates in an ivec correspond
to half -pixels, as shown in the right panel of Fig. 1. This is to represent locations on the spatial
Yee grid, which o�sets di�erent �eld components in space by half a pixel as shown (in 2d) in the
right panel of Fig. 1. In 3d, the Ex and Dx components are sampled at ivecs (2‘ + 1; 2m; 2n),
Ey and Dy are sampled at ivecs (2‘; 2m + 1; 2n), and so on; Hx and Bx are sampled at ivecs
(2‘; 2m + 1; 2n + 1), Hy and By are sampled at ivecs (2‘ + 1; 2m; 2n + 1), and so on. In addition
to these grids for the di�erent �eld components, we also occasionally refer to the centered grid,
at odd ivecs (2‘ + 1; 2m + 1; 2n + 1) corresponding to the �center� of each pixel. (The origin o f

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

x

y

ownednot owned

chunk chunk

chunk chunk

1 2

3 4

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

5

6

7

8

9

10

11

Figure 1: The computational cell is divided into chunks (left) that have a one-pixel overlap (gray regions). Each chunk
(right) represents a portion of the Yee grid, partitioned into owned points (chunk interior) and not-owned points (gray
regions around the chunk edges) that are determined from other chunks and/or via boundary conditions. Every point in
the interior of the computational cell is owned by exactly one chunk, the chunk responsible for timestepping that point.

the coordinate systems is an arbitrary ivec that can be set by the user, but is typically the center
of the computational volume.) The philosophy of Meep, as described in Sec. 3, is that as much
as possible the user should be concerned only with continuous physical coordinates (vecs), and
the interpolation/discretization onto ivecs occurs internally as transparently as possible.

2.2. Grid chunks and owned points

An FDTD simulation must occur within a �nite volume of space, the computational cell,
terminated with some boundary conditions and possibly by absorbing PML regions as described
below. This (rectilinear) computational cell, however, is further subdivided into convex recti-
linear chunks. On a parallel computer, for example, di�erent chunks may be stored at di�erent
processors. In order to simplify the calculations for each chunk, we employ the common tech-
nique of padding each chunk with extra �boundary� pixels tha t store the boundary values [28]
(shown as gray regions in Fig. 1)�this means that the chunks a re overlapping in the interior of
the computational cell, where the overlaps require communication to synchronize the values.

More precisely, the grid points in each chunk are partitioned into owned and not-owned
points. The not-owned points are determined by communication with other chunks and/or by
boundary conditions. The owned points are time-stepped within the chunk, independently of
the other chunks (and possibly in parallel), and every grid point inside the computational cell is
owned by exactly one chunk.

The question then arises: how do we decide which points within the chunk are owned? In
order for a grid point to be owned, the chunk must contain all the information necessary for
timestepping that point (once the not-owned points have been communicated). For example, for
a Dy point (2‘; 2m + 1; 2n) to be owned, the Hz points at (2‘ � 1; 2m + 1; 2n) must both be in the
chunk in order to compute r � H for timestepping D at that point. This means that the Dy points
along the left (minimum-x) edge of the chunk (as shown in the right panel of Fig. 1) cannot be

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

owned: there is no Hz point to the left of it. An additional dependency is imposed by the case
of anisotropic media: if there is an "xy coupling Ex to Dy, then updating Ex at (2‘ + 1; 2m; 2n)
requires the four Dy values at (2‘+1�1; 2m�1; 2n) (these are the surrounding Dy values, as seen
in the right panel of Fig. 1). This means that the Ex (and Dx) points along the right (maximum-x)
edge of the chunk (as shown in the right panel of Fig. 1) cannot be owned either: there is no Dy

point to the right of it. Similarly for r � D and anisotropic �.
All of these considerations result in the shaded-gray region of Fig. 1(right) being not-owned.

That is, if the chunk intersects k + 1 pixels along a given direction starting at an ivec coordinate
of 0 (e.g. k = 5 in Fig. 1), the endpoint ivec coordinates 0 and 2k + 1 are not-owned and the
interior coordinates from 1 to 2k (inclusive) are owned.

2.3. Boundary conditions and symmetries
All of the not-owned points in a chunk must be determined by boundary conditions of some

sort. The simplest boundary conditions are when the not-owned points are owned by some
other chunk, in which case the values are simply copied from that chunk (possibly requiring
communication on a multiprocessor system) each time they are updated. In order to minimize
communications overhead, all communications between two chunks are batched into a single
message (by copying the relevant not-owned points to/from a contiguous bu�er) rather than
sending one message per point to be copied.

At the edges of the computational cell, some user-selected boundary condition must be im-
posed. For example, one can use perfect electric or magnetic conductors where the relevant
electric/magnetic-�eld components are set to zero at the boundaries. One can also use Bloch-
periodic boundary conditions, where the �elds on one side of the computational cell are copied
from the other side of the computational cell, optionally multiplied by a complex phase factor
eiki�i where ki is the propagation constant in the ith direction, and �i is the length of the computa-
tional cell in the same direction. Meep does not implement any absorbing boundary conditions�
absorbing boundaries are, instead, handled by an arti�cial material, perfectly matched layers
(PML), placed adjacent to the boundaries [1].

Bloch-periodic boundary conditions are useful in periodic systems [22], but this is only one
example of a useful symmetry that may be exploited via boundary conditions. One may also
have mirror and rotational symmetries. For example, if the materials and the �eld sources have
a mirror symmetry, one can cut the computational costs in two by storing chunks only in half
the computational cell and applying mirror boundary conditions to obtain the not-owned pixels
adjacent to the mirror plane. As a more unusual example, consider an S-shaped structure as in
Fig. 2, which has no mirror symmetry but is symmetric under 180-degree rotation, called C2

symmetry [29]. Meep can exploit this case as well (assuming the current sources have the same
symmetry), storing only half of the computational cell as in Fig. 2 and inferring the not-owned
values along the dashed line by a 180-degree rotation. (In the simple case where the stored region
is a single chunk, this means that the not-owned points are determined by owned points in the
same chunk, requiring copies, possibly with sign �ips.) Dep ending on the sources, of course,
the �elds can be even or odd under mirror �ips or C2 rotations [22], so the user can specify an
additional sign �ip for the transformation of the vector �el ds (and pseudovector H and B �elds,
which incur an additional sign �ip under mirror re�ections [21, 22]). Meep also supports fourfold
rotation symmetry (C4), where the �eld can be multiplied by factors of 1, i, �1, or �i under each
90-degree rotation [29]. (Other rotations, such as threefold or sixfold, are not supported because
they do not preserve the Cartesian Yee grid.) In 2d, the xy plane is itself a mirror plane (unless
in the presence of anisotropic materials) and the symmetry decouples TE modes (with �elds E x,

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

+ C2 stored

not stored

Figure 2: Meep can exploit mirror and rotational symmetries, such as the 180-degree (C2) rotational symmetry of the
S-shaped structure in this schematic example. Although Meep maintains the illusion that the entire structure is stored
and simulated, internally only half of the structure is stored (as shown at right), and the other half is inferred by rotation.
The rotation gives a boundary condition for the not-owned grid points along the dashed line.

Ey, and Hz) from TM modes (Hx, Hy, and Ez) [22]; in this case Meep only allocates those �elds
for which the corresponding sources are present.

A central principle of Meep is that symmetry optimizations be transparent to the user once
the desired symmetries are speci�ed. Meep maintains the ill usion that the entire computational
cell is computed�for example, the �elds in the entire comput ational cell can still be queried
or exported to a �le, �ux planes and similar computations can still extend anywhere within
the computational cell, and so on. The �elds in the non-store d regions are simply computed
behind the scenes (without ever allocating memory for them) by transforming the stored chunks
as needed. A key enabling factor for maintaining this illusion e�ciently is the loop-in-chunks
abstraction employed by the Meep code, described in Sec. 7.

Meep also supports continuous rotational symmetry around a given axis, where the structure
is invariant under rotations and the �elds transform as eim� for some m [22], but this is imple-
mented separately by providing the option to simulate Maxwell’s equations in the (r; z) plane
with cylindrical coordinates, for which operators like r � change form.

3. Interpolation and the illusion of continuity

A core design philosophy of Meep is to provide the illusion of continuous space and time,
masking the underlying discretization from the user as much as possible. There are two com-
ponents to this approach: the input and the outputs. Continuously varying inputs, such as the
geometry, materials, and the source currents, lead to continuously varying outputs, as in the ex-
ample of Fig. 3. Similarly, the value of any �eld (or any funct ion of the �elds) can be output
at any point in space or integrated over any region. Furthermore, the e�ects of these inputs and
the resulting outputs must converge as quickly as possible to the exact solution as the resolution
increases. In this section, we discuss how this illusion of continuity is implemented for �eld
outputs, current inputs, and geometry/materials.

Any �eld component (or any combinations such as �ux, energy, and user-de�ned functions)
can be evaluated at any point in space. In general, this requires interpolation from the Yee grid.
Since the underlying FDTD center-di�erence algorithm has second-order accuracy, we linearly
interpolate �elds as needed (which also has second-order ac curacy for smooth functions). Sim-
ilarly, we provide an interface to integrate any function of the �elds over any convex rectilinear

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

0.38

0.385

0.39

0.395

0.4

0.405

0.41

0.415

s1 size parameter (units of a)

fr
e

q
u

e
n

c
y
 (

2
π c

/a
)

s
1

no smoothing

subpixel smoothing

exact

a

Figure 3: A key principle of Meep is that continuously varying inputs yield continuously varying outputs. Here, an eigen-
frequency of a photonic crystal varies continuously with the eccentricity of a dielectric rod, accomplished by subpixel
smoothing of the material parameters, whereas the nonsmoothed result is �stairstepped.� Speci�cally, the plot shows a
TE eigenfrequency of 2d square lattice (period a) of dielectric ellipses ("=12) in air versus one semi-axis diameter of
the ellipse (in gradations of 0:005a) for no smoothing (red squares, resolution of 20 pixels/a), subpixel smoothing (blue
circles, resolution of 20 pixels/a) and �exact� results (black line, no smoothing at resolutio n of 200 pixels/a)

.

region (boxes, planes, or lines), and the integral is computed by integrating the linear interpola-
tion of the �elds within the integration region. This is stra ightforward, but there are two subtleties
due to the staggered Yee grid. First, computation of quantities like E � H that mix di�erent �eld
components requires an additional interpolation: �rst, th e �elds are interpolated onto the centered
grid (Sec. 2), then the integrand is computed, and then the linear interpolation of the integrand
is integrated over the speci�ed region. Second, the computa tion of quantities like E � H mixes
two �elds that are stored at di �erent times: H is stored at times (n � 0:5)�t, while E is stored
at times n�t [1]. Simply using these time-o�set �elds together is only �rst-order accurate. If
second-order accuracy is desired, Meep provides the option to temporarily synchronize the elec-
tric and magnetic �elds: the magnetic �elds are saved to a bac kup array, stepped by �t, and they
are averaged with the backup array to obtain the magnetic �el ds at n�t with O(�t2) accuracy.
(The �elds are restored from backup before resuming timeste pping.) This restores second-order
accuracy at the expense of an extra half a timestep’s computation, which is usually negligible
because such �eld computations are rarely required at every timestep of a simulation�see Sec. 5
for how Meep performs typical transmission simulations and other calculations e�ciently.

The conceptually reversed process is required for specifying sources: the current density is
speci�ed at some point (for dipole sources) or in some region (for distributed current sources)
in continuous space, and then must be restricted to a corresponding current source on the Yee
grid. Meep performs this restriction using exactly the same code (the loop-in-chunks abstrac-
tion of Sec. 7) and the same weights as the interpolation procedure above. Mathematically, we

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

f
1

f
2

f
3

f
4

J1 J2

J3 J4

=0.32 =0.48

=0.08 =0.12

J

∆x

∆x

∆x

∆x

J J

JJ

f =0.32 f1

+0.48 f2

+0.08 f3

+0.12 f4

Figure 4: Left: a bilinear interpolation of values f1;2;3;4 on the grid (red) to the value f at an arbitrary point. Right: the
reverse process is restriction, taking a value J at an arbitrary point (e.g. a current source) and converting into values on
the grid. Restriction can be viewed as the transpose of interpolation and uses the same coe�cients.

.

are exploiting a well-known concept (originating in multigrid methods) that restriction can be
de�ned as the transpose of interpolation [30]. This is illustrated by a 2d example in Fig. 4. Sup-
pose that the bilinear interpolation f (blue) of four grid points (red) is f = 0:32 f1 + 0:48 f2 +

0:08 f3 + 0:12 f4, which can be viewed as multiplying a vector of those �elds by the row-vector
[0:32; 0:48; 0:08; 0:12]. Conversely, if we place a point-dipole current source J (blue) at the
same point, it is restricted on the grid (red) to values J1 = 0:32J, J2 = 0:48J, J3 = 0:08J,
and J4 = 0:12J as shown in Fig. 4, corresponding to multiplying J by the column vector
[0:32; 0:48; 0:08; 0:12]T.1 Such a restriction has the property of preserving the sum (integral)
of the currents, and typically leads to second-order convergence of the resulting �elds as the
resolution increases (see below). An example of the utility of this continuous restriction process
is shown in Fig. 5 via the phenomenon of Cerenkov radiation [31]: a point charge q moving at
a constant velocity v with a magnitude 1:05c=n exceeding the phase velocity c=n in the medium
emits a shockwave-like radiation pattern, and this can be directly modelled in Meep by a con-
tinuously moving current source J = �vq�(x � vt) [32]. In contrast, pixelizing the motion into
discrete jumps to the nearest grid point leads to visible numerical artifacts in the radiation, as
seen in the right panel of Fig. 5.

All of the second-order accuracy of FDTD and the above interpolations is generally spoiled to
only �rst-order, however, if one directly discretizes a dis continuous material boundary [33, 35].
Moreover, directly discretizing a discontinuity in " or � leads to �stairstepped� interfaces that
can only be varied in discrete jumps of one pixel at a time. Both of these problems are solved
in Meep by using an appropriate subpixel smoothing of " and �: before discretizing, discontinu-
ities are smoothed into continuous transitions over a distance of one pixel �x, using a carefully
designed averaging procedure. Any subpixel smoothing technique will achieve the goal of con-
tinuously varying results as the geometry is continuously varied. In the case of Meep this is
illustrated by Fig. 3: in a 2d photonic crystal (square lattice of dielectric rods), the lowest TE-
polarization eigenfrequency (computed as in Sec. 5) varies continuously with the eccentricity
of the elliptical rods for subpixel averaging, whereas the nonaveraged discontinuous discretiza-
tion produces a stairstepped discontinuous eigenfrequency. On the other hand, most subpixel

1Technically, for a dipole-current source given by a delta function with amplitude I, the corresponding current density
is J = I=�xd in d dimensions.

published in Computer Physics Communications, vol. 181, pp. 687-702 (2010)

smooth motion pixelized motion

v=1.05 c/n (0.35 pixels/Dt)

v

Figure 5: Cerenkov radiation emitted by a point charge moving at a speedv = 1:05c=n exceeding the phase velocity of
light in a homogeneous medium of indexn=1.5. Thanks to Meep's interpolation (or technicallyrestriction), the smooth
motion of the source current (left panel) can be expressed ascontinuously varying currents on the grid, whereas the non-
smooth pixelized motion (no interpolation) (right panel) reveals high-frequency numerical artifacts of the discretization
(counter-propagating wavefronts behind the moving charge).

smoothing techniques will not increase the accuracy of FDTD—on the contrary, smoothing dis-
continuous interfaces changes the structure, and generally introducesadditional error into the
simulation [33]. In order to design an accurate smoothing technique, we exploited recent results
in perturbation theory that show how a particular subpixel smoothing can be chosen to yield zero
�rst-order error [13, 33, 34, 36]. The results are shown in Fig. 6 and Fig. 7: for both computa-
tion of the eigenfrequencies (of an anisotropic photonic crystal) in Fig. 6 and the scattering loss
from a bump on a strip waveguide in Fig. 7, the errors in Meep'sresults decrease quadratically
[O(� x2)], whereas doing no averaging leads to erratic linear convergence [O(� x)]. Furthermore,
Fig. 6 compares to other subpixel-averaging schemes, including the obvious strategy of simply
averaging" within each pixel [37], and shows that they lead to �rst-order convergence no better
than no averaging at all.

The subpixel averaging is discussed in more detail elsewhere [33, 34, 36], so we only brie�y
summarize it here. In order for the smoothing to yield zero �rst-order perturbation, the smooth-
ing scheme must be anisotropic. Even if the initial interface is between isotropic materials, one
obtains a tensor" (or �) which uses the mean" for �elds parallel to the interface and the har-
monic mean (inverse of mean of" � 1) for �elds perpendicular to the interface—this was initially
proposed heuristically [38] and later shown to be justi�ed via perturbation theory [13, 33]. (If the
initial materials are anisotropic, a more complicated formula is needed [34, 36].) The key point
is that, even if the physical structure consists entirely ofisotropic materials, the discretized struc-
ture will use anisotropic materials. Stable simulation of anisotropic media requires an FDTD
variant recently proposed in Ref. 39.

There are a few limitations to this subpixel averaging. First, the case of perfect metals re-
quires a di� erent approach [40, 41] that is not yet implemented in Meep. Although Meep does
not yet implement subpixel averaging for dispersive materials, there is numerical evidence that

