Focal plane instrumentation for the Wide-Field X-ray Telescope

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
ABSTRACT

The three X-ray imaging focal planes of the Wide-Field X-ray Telescope (WFXT) Mission will each have a field of view up to 1 degree square, pixel pitch smaller than 1 arcsec, excellent X-ray detection efficiency and spectral resolving power near the theoretical limit for silicon over the 0.2 - 6 keV spectral band. We describe the baseline concept for the WFXT focal planes. The detectors are derived from MIT Lincoln Laboratory CCDs currently operating in orbit on Chandra and Suzaku. Here we describe the baseline WFXT focal plane instrumentation and briefly consider options for alternative detector technologies.

Keywords: X-ray telescopes, X-ray surveys, X-ray CCDs

1. THE WFXT MISSION

The Wide Field X-ray Telescope (WFXT) will explore the high-redshift Universe to the era of galaxy and cluster formation, providing sensitive, extensive X-ray surveys that complement current and planned deep, high-resolution, wide-field surveys in the optical, radio, and infrared bands. This cost-effective, medium-class PI mission will obtain a unique astrophysical data set that will support contemporaneous and planned ground-based giant telescopes and ALMA, and on-orbit facilities, including planned and proposed flagship missions such as JWST and IXO.1

WFXT will address a wide variety of cosmological and astrophysical topics, including the formation and evolution of clusters of galaxies2 and associated implications for cosmology and fundamental physics3 (e.g., the nature of dark matter, Dark Energy and gravity); black-hole formation and evolution4; AGN interaction with ICM and ISM in clusters and galaxies; and the high-energy stellar component and hot–phase interstellar medium of galaxies, including the Milky Way5.

WFXT will execute a set of complementary surveys of varying sensitivity and area. The expected survey depth, as a function of solid angle observed, is compared with other X-ray surveys in Figure 1.

WFXT’s design is straightforward, and is described in detail elsewhere1,6. The optical prescription for the grazing incidence mirrors7 is optimized for high resolution over a broad field of view rather than for the best possible performance on-axis. This produces the maximum grasp (product of effective area and field of view) at a given angular resolution, and thus maximizes survey efficiency. Prototype mirrors have demonstrated a half energy width of 10” over field nearly 1 degree in diameter which is fully adequate to meet WFXT science requirements1. Continuing technology development is underway with a goal of achieving a half-energy width as low as 5” over a similar field.

To minimize fabrication costs, WFXT will feature three identical telescope modules, each with its own focal plane. Requirements for the WFXT focal plane can be met using existing, high-performance X-ray CCD designs derived directly from those used for the Chandra and Suzaku missions. In this paper we discuss the detector and focal plane configuration for WFXT in greater detail.
2. MISSION, SYSTEM AND FOCAL PLANE REQUIREMENTS

2.1 Mission and System Requirements

Selected WFXT performance requirements are summarized in Table 1, and selected mission system requirements are listed in Table 2. As described elsewhere\(^1\) several implementations of the X-ray mirrors are under consideration; all of these have a focal length of 5.5m.

Table 1. WFXT Performance Requirements (Murray et al., 2009)\(^1\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective Area at:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 keV</td>
<td>6,000 cm(^2)</td>
<td>10,000 cm(^2)</td>
</tr>
<tr>
<td>4 keV</td>
<td>2,000 cm(^2)</td>
<td>3,000 cm(^2)</td>
</tr>
<tr>
<td>Field of View (diameter)</td>
<td>1(^\circ)</td>
<td>1.25(^\circ)</td>
</tr>
<tr>
<td>Angular Resolution (HEW)</td>
<td>< 10('')</td>
<td>≤ 5('')</td>
</tr>
<tr>
<td>Passband (keV)</td>
<td>0.2 - 4</td>
<td>0.1 - 6</td>
</tr>
<tr>
<td>Spectral Resolving Power (E/(\Delta E) at 1.0 keV)</td>
<td>>10</td>
<td>>20</td>
</tr>
<tr>
<td>Time Resolution (s)</td>
<td>< 3</td>
<td>< 1</td>
</tr>
</tbody>
</table>
Table 2. WFXT Mission System Requirements (Murray et al., 2009)1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mission Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit</td>
<td></td>
</tr>
<tr>
<td>altitude (km)</td>
<td>500, circular</td>
</tr>
<tr>
<td>inclination (°)</td>
<td>< 6</td>
</tr>
<tr>
<td>Mission duration (yr)</td>
<td>5</td>
</tr>
<tr>
<td>Payload Mass (kg)</td>
<td>1440</td>
</tr>
<tr>
<td>Payload Power (W)</td>
<td>375</td>
</tr>
<tr>
<td>Pointing Stability ("/3 s)</td>
<td>< 2</td>
</tr>
<tr>
<td>Slew rate (°/s)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

2.2 Detector Requirements

Key requirements for the WFXT focal plane, derived from the top-level mission and system requirements and mirror characteristics, are summarized in Table 3.

Table 3. Selected WFXT focal plane requirements.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm x mm)</td>
<td>96 x 96</td>
<td>96 x 96</td>
</tr>
<tr>
<td>Spatial resolution ("/μm)</td>
<td>4"/100</td>
<td>2"/50</td>
</tr>
<tr>
<td>Frame readout time (s)</td>
<td>< 3</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Read noise (electrons, RMS)</td>
<td>< 10</td>
<td>< 2</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 keV</td>
<td>>75%</td>
<td>>75%</td>
</tr>
<tr>
<td>4 keV</td>
<td>>85%</td>
<td>>85%</td>
</tr>
</tbody>
</table>

3. WFXT FOCAL PLANE

3.1 Baseline configuration

Each of the three WFXT Telescope-Detector Modules will be equipped with a dedicated CCD Detector Assembly (DA) in its focal plane. Each DA contains a 2x2 array of X-ray photon counting CCD detectors and associated electronics. This baseline instrument configuration uses flight-proven technology to provide the high-resolution imaging and moderate resolution spectroscopy over a wide field required by the WFXT science objectives.

As shown in Figure 2, the three DA’s function independently of one another; each DA communicates directly with the spacecraft’s power, thermal and data systems. Each DA consists of a camera and an electronics box. We briefly describe each of these DA subsystems in turn.

DA Camera: The camera focal plane contains the 2x2 array of CCD detectors. The WFXT CCD detectors are direct descendents of the MIT Lincoln Laboratory CCID17 (flown on Chandra) and CCID41 (flown on Suzaku). The only changes from these earlier detectors are a doubling in the detector linear size to 2048x2048 pixels (and doubling of the number of output ports) and direct deposition of the UV/optical blocking filters. The back-illuminated detectors are
processed with a modern back-surface treatment methods to provide near-Fano limited spectral resolution at low (E < 1 keV) energies. Key characteristics of the DA are listed in Table 4.

To maximize the angular resolution across the field of view, the detectors are slightly tilted with respect to the telescope’s Gaussian focal plane. We followed this practice on the Chandra ACIS focal plane. The detectors are three-side abuttable, and, as on ACIS, chip-to-chip gaps will be smaller than 0.5 mm.

The DA focal plane is thermoelectrically cooled, nominally to -60°C, to minimize dark current and effects of radiation damage. We note that the radiation dose rate encountered in WFXT’s low-inclination orbit is much lower than that experienced by CCD instruments in many previous missions (e.g., ASCA, Chandra, XMM-Newton, Swift and Suzaku). The lower dose rate will enable a reduction in the mass needed for radiation shielding, and we expect that this in turn will permit lower charged-particle-induced background. The DA focal plane is housed in an enclosure containing a (non-hermetic) aperture door and a calibration source.

DA Electronics: Each DA includes a dedicated electronics box illustrated schematically in Figure 3. The electronics box controls the instrument, generates CCD clocking waveforms, processes and digitizes CCD video output, detects X-ray events in the digital data stream and formats the data for telemetry. The baseline electronics subsystem incorporates a Spacecube digital processor. The electronics box supplies power to the thermo-electric coolers (TEC), controls focal plane temperature and camera mechanisms, and features internal power conditioning. Redundant boards are provided for digital processing, mechanism control, and power conditioning.

WFXT science requirements can be met with a relatively modest pixel read rate of 100 kHz (as is currently used in Chandra ACIS, for example), together with 2x2 on-chip binning. We expect that our goal of 500 kHz read rate, which would enable operation without on-chip binning (and possibly better background rejection) can be achieved by application of already-demonstrated detector enhancements (e.g., metalized bus- straps on the back-illuminated CCD clock electrodes; high-responsivity output nodes), together with modest technology developments in readout electronics (e.g., application-specific integrated circuits for analog signal processing).

![Figure 2. Block diagram of the three independent WFXT detector assemblies, each comprised of a camera and associated electronics.](image)
Table 4: Key WFXT focal plane parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of View/Size</td>
<td>1.02 x 1.02 deg²/ 99 x 99 mm²</td>
<td>0.5mm inter-chip gap</td>
</tr>
<tr>
<td>Number of CCDs per DA</td>
<td>4</td>
<td>CCDs are 3-side abuttable</td>
</tr>
<tr>
<td>CCD Architecture</td>
<td>2048x2048 frame-transfer; back-illuminated; 8 parallel outputs</td>
<td>MIT Lincoln Laboratory</td>
</tr>
<tr>
<td>Detector Pixel Size</td>
<td>24 μm = 0.90”</td>
<td></td>
</tr>
<tr>
<td>Nominal Spatial resolution</td>
<td>48 μm = 1.8”</td>
<td></td>
</tr>
<tr>
<td>UV/Optical Blocking Filter</td>
<td>100nm Al+10nm Al₂O₃</td>
<td>Deposited on CCD</td>
</tr>
<tr>
<td>Integration time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2.6 s</td>
<td>100 kHz, 2x2 binning</td>
</tr>
<tr>
<td>Goal</td>
<td>1.1 s</td>
<td>500 kHz, no binning</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-60 °C</td>
<td></td>
</tr>
<tr>
<td>Cooling</td>
<td>active (Peltier)</td>
<td></td>
</tr>
<tr>
<td>Readout Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>< 3 electrons, RMS</td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>< 2 electrons, RMS</td>
<td></td>
</tr>
<tr>
<td>Quantum Efficiency:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5 keV</td>
<td>>75%</td>
<td></td>
</tr>
<tr>
<td>4.0 keV</td>
<td>>85%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Detector Assembly electronics board functions.
3.2 Alternative detector technologies

The baseline WFXT focal plane incorporates proven X-ray CCD detector technology that is ready now to proceed immediately through mission development to flight. We note that X-ray active pixel sensors, though not yet flight-proven, may soon be capable of meeting WFXT focal plane requirements 9,10,11. These technologies offer a number of advantages over CCDs. Foremost among these for WFXT are higher detector operating temperature and faster frame readout times. The higher operating temperature would simplify cooling system design, and perhaps even allow for a passive cooling solution, with reduced power and mass requirements. The faster readout would not only allow for greater flexibility in the WFXT survey design, but might even lead to better low-energy quantum efficiency by reducing the attenuation required in the optical blocking filter.

REFERENCES