Optimal quantization of random measurements in compressed sensing

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1109/ISIT.2009.5205695</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/61623</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Optimal Quantization of Random Measurements in Compressed Sensing

John Z. Sun
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
Email: johnsun@mit.edu

Vivek K Goyal
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139, USA
Email: vgoyal@mit.edu

Abstract—Quantization is an important but often ignored consideration in discussions about compressed sensing. This paper studies the design of quantizers for random measurements of sparse signals that are optimal with respect to mean-squared error of the lasso reconstruction. We utilize recent results in high-resolution functional scalar quantization and homotopy continuation to approximate the optimal quantizer. Experimental results compare this quantizer to other practical designs and show a noticeable improvement in the operational distortion-rate performance.

I. INTRODUCTION

In practical systems where information is stored or transmitted, data must be discretized using a quantization scheme. The design of the optimal quantizer for a stochastic source has been well studied and is surveyed in [1]. Here, optimal means the quantizer minimizes the error relative to some distortion metric (e.g. mean-squared error). In this paper, we explore optimal quantization for an emerging non-adaptive compression paradigm called compressed sensing (CS) [2], [3]. Several authors have studied the asymptotic reconstruction performance of quantized random measurements assuming a mean-squared error (MSE) distortion metric [4], [5], [6]. Other previous work presented modifications to existing reconstruction algorithms to mitigate distortion resulting from standard fixed-rate quantizers [7], [6], [8] or modified quantization that can be viewed as the binning of quantizer output indexes [9].

Our contribution is to reduce distortion from quantization through design of the quantizer itself. The key observation is that the random measurements are used as arguments in a nonlinear reconstruction function. Thus, minimizing the MSE of the measurements is not equivalent to minimizing the MSE of the reconstruction. We use the theory for high-resolution distributed functional scalar quantization (DFSQ) recently developed in [10] to design quantizers for random measurements that minimize distortion effects in the reconstruction. To obtain concrete results, we choose a particular reconstruction function (lasso [11]) and distributions for the source data and sensing matrix. However, the process of obtaining improvements through DFSQ holds more generally, and we address the conditions that must be satisfied for sensing and reconstruction. To concentrate on the central ideas, we choose signal and sensing models that obviate discussion of quantizer overload. Also, rather than develop results for fixed and variable rate in parallel, we present only fixed rate.

The paper begins with background on DFSQ and CS, including lasso and the homotopy continuation method for lasso, in Section II. Section III presents the sensing model we adopt, and Section IV describes quantizer design under this model. Numerical verification is presented in Section V, and Section VI gives closing observations.

II. BACKGROUND

We will now present some previous work related to functional scalar quantization and compressed sensing.

In our notation, a random vector is always lowercase and in bold. A subscript then indicates an element of the vector. Also, an unbolded vector \(y \) corresponds to a realization of the random vector \(\mathbf{y} \). We introduce this to clarify that derivatives that we compute are of deterministic functions.

A. Distributed functional scalar quantization

In standard fixed-rate scalar quantization [1], one is asked to design a quantizer \(Q \) that operates separably over its components and minimizes MSE between a probabilistic source vector \(\mathbf{y} \in \mathbb{R}^M \) and its quantized representation \(\hat{\mathbf{y}} = Q(\mathbf{y}) \). The minimum distortion is found using the optimization

\[
\min_Q \mathbb{E} \left[\| \mathbf{y} - Q(\mathbf{y}) \|^2 \right],
\]

subject to the constraint that the maximum number of quantization levels for each \(y_i \) is less than \(2^{R_i} \). In the high-resolution case when \(L \) is large, we define the (normalized) quantizer point density function to be \(\lambda_i(t) \), such that \(\lambda_i(t)\delta \) is the approximate fraction of quantizer reproduction points for \(y_i \) in an interval centered at \(t \) with width \(\delta \). The optimal point density for a given source distribution \(f_{Y_i}(\cdot) \) is

\[
\lambda_i(t) = \frac{f_{Y_i}^{1/3}(t)}{\int f_{Y_i}^{1/3}(t')dt'}. \tag{1}
\]

In DFSQ [10], the goal is to create a quantizer that minimizes distortion for some scalar function \(g(y) \) of the source...
vector y rather than the vector itself. Hence, the optimization is now

$$
\min_{Q} E \left[(g(y) - g(Qy))^2 \right]
$$

such that the maximum number of quantization levels representing each y_i is less than $2R_i$. To apply the following model, we need $g(\cdot)$ and $f_y(\cdot)$ to satisfy certain conditions:

C1. $g(y)$ is (piecewise) smooth and monotonically increasing for each y_i.

C2. The partial derivative $g_i(y) = \partial g(y)/\partial y_i$ is (piecewise) defined and bounded for each i.

C3. The joint pdf of the source variables $f_{y_j}(y)$ is smooth and supported in a compact subset of \mathbb{R}^M.

For valid $g(\cdot)$ and $f_y(\cdot)$ pairs, we define a set of functions

$$
\gamma_i(t) = \left(E \left[|g_i(y)|^2 \mid y_1 = t \right] \right)^{1/2}.
$$

We call $\gamma_i(t)$ the sensitivity of $g(y)$ with respect to the source variable y_1. The optimal point density is then

$$
\lambda_i(t) = C \left(\gamma_i^2(t) f_y(t) \right)^{1/3},
$$

for some normalization constant C. This leads to a total operational distortion-rate

$$
D(\{R_i\}) \approx \sum_{i=1}^M 2^{-2R_i} E \left[\frac{\gamma^2_i(y_1)}{12\lambda^2_i(y_1)} \right].
$$

The sensitivity $\gamma_i(t)$ serves to reshape the quantizer, giving better resolution to regions of y_1 that have more impact on $g(y)$, thereby reducing MSE. The theory of DFSQ can be extended to a vector of functions, where $X_j = g^{(j)}(y)$ for $1 \leq j \leq N$. Since the cost function is additive in its components, we can show that the overall sensitivity for each component y_j is

$$
\gamma_j(t) = \frac{1}{N} \sum_{i=1}^N \gamma_j^{(i)}(t),
$$

where $\gamma_j^{(i)}(t)$ is the sensitivity of the function $g^{(j)}(y)$ with respect to y_j.

Similar results for variable-rate quantizers are also presented in [10]. However, we will only consider the fixed-rate case in this paper.

B. Compressed Sensing

CS refers to estimation of a signal at a resolution higher than the number of data samples, taking advantage of sparsity or compressibility of the signal and randomization in the measurement process [2], [3], [12]. We will consider the following formulation. The input signal $x \in \mathbb{R}^N$ is K-sparse in some orthonormal basis Ψ, meaning the transformed signal $u = \Psi^{-1}x \in \mathbb{R}^M$ contains only K nonzero elements. Consider a length-M measurement vector $y = \Phi x$, where $\Phi \in \mathbb{R}^{M \times N}$ with $K < M < N$ is a realization of Φ. The major innovation in CS (for the case of sparse u considered here) is that recovery of x from y via some computationally-tractable reconstruction method can be guaranteed asymptotically almost surely.

Figure 1 presents a CS model with quantization. Assume without loss of generality that $\Psi = I_N$ and hence the random signal $x = \Phi u$ is K-sparse. Also assume a random matrix Φ is used to take measurements, and additive Gaussian noise perturbs the resulting signal, meaning the continuous-valued measurement vector is $y = \Phi x + \eta$. The sampler wants to transmit the measurements with total rate R and encodes y into a transmitable bitstream b_y using encoder Q. Next, a decoder \hat{Q} produces a quantized signal \hat{y} from b_y. Finally, a reconstruction algorithm \hat{G} outputs an estimate \hat{x}. The function \hat{G} is a black box that may represent lasso, OMP or another CS reconstruction algorithm.

We now present a probabilistic model for the input source and sensing matrix. It is chosen to guarantee finite support on

$$
\hat{x} = \arg \min_x \left(\|y - \Phi x\|_2^2 + \mu \|\Phi^{-1} x\|_1 \right).
$$

As one sample result, lasso leads to perfect sparsity pattern recovery with high probability if $M \sim 2K \log(N - K) + K$ under certain conditions on Φ, μ, and the scaling of the smallest entry of u [16]. Unlike in [5], our concern in this paper is not how the scaling of M affects performance, but rather how the accuracy of the lasso computation (6) is affected by quantization of y.

A method for understanding the set of solutions to (6) is the homotopy continuation (HC) method [17]. HC considers the regularization parameter μ at an extreme point (e.g., very large μ so the reconstruction is all zero) and slowly varies μ so that all sparsities and the resulting reconstructions are obtained. It is shown that there are N values of μ where the lasso solution changes sparsity, or equivalently $N + 1$ intervals over which the sparsity does not change. For μ in the interior of one of these intervals, the reconstruction is determined uniquely by the solution of a linear system of equations involving a submatrix of Φ. In particular, for a specific choice μ^* and observed random measurements y,

$$
2\Phi^T_{\mu^*} \Phi_{\mu^*} \hat{x} + \mu^* v = 2\Phi^T_{\mu^*} y,
$$

where $v = \text{sgn}(\hat{x})$ and Φ_{μ^*} is the submatrix of Φ with columns corresponding to the nonzero elements $J_{\mu^*} \subset \{1, 2, \ldots, N\}$ of \hat{x}.

III. Problem Model

Many reconstruction methods have been proposed including a linear program called basis pursuit [13] and greedy algorithms like orthogonal matching pursuit (OMP) [14], [15]. In this paper, we focus on a convex optimization called lasso [11], which takes the form

$$
\hat{x} = \arg \min_x \left(\|y - \Phi x\|_2^2 + \mu \|\Phi^{-1} x\|_1 \right).
$$

As one sample result, lasso leads to perfect sparsity pattern recovery with high probability if $M \sim 2K \log(N - K) + K$ under certain conditions on Φ, μ, and the scaling of the smallest entry of u [16]. Unlike in [5], our concern in this paper is not how the scaling of M affects performance, but rather how the accuracy of the lasso computation (6) is affected by quantization of y.
both the input and measurement vectors, and prevent overload errors for quantizers with small R.

Assume the K-sparse vector \mathbf{x} has random sparsity \mathbf{J} chosen uniformly from all possibilities, and each nonzero component x_i is distributed iid $\mathcal{U}(-1, 1)$. This corresponds to the least-informative prior for bounded and sparse random vectors. Also assume the additive noise vector η is distributed iid Gaussian with zero mean and variance σ^2. Finally, let Φ correspond to random projections such that each column $\phi_j \in \mathbb{R}^M$ has unit energy ($\|\phi_j\|^2 = 1$). The columns of Φ thus form a set of N random vectors chosen uniformly on the unit $(M - 1)$-hypersphere. The cumulative distribution function (cdf) of each matrix element Φ_{ij} is described in the following lemma:

Lemma 1. Assume $\phi_j \in \mathbb{R}^M$ is a random vector uniformly chosen on a unit $(M - 1)$-hypersphere for $M \geq 2$. Then the cdf of each element Φ_{ij} is

$$F_{\Phi_{ij}}(v, M) = \begin{cases} 1 - T(v, M), & 0 \leq v \leq 1; \\ T(-v, M), & -1 \leq v < 0; \\ 0, & \text{otherwise}, \end{cases}$$

where

$$T(v, M) = \frac{\Gamma\left(\frac{M}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{M-1}{2}\right)} \int_0^{\arccos(v)} (\sin \theta)^{M-2} d\theta$$

and $\Gamma(\cdot)$ is the Gamma function.

We find the pdf of Φ_{ij} by differentiating the cdf or use a tractable computational approximation. Since $y = \Phi x$,

$$y_1 = \sum_{j=1}^N \Phi_{ij} x_j = \sum_{j \in J} \Phi_{ij} x_j.$$

The distribution of each z_{ij} is found using derived distributions. The resulting pdfs can be shown to be iid $f_\mathbf{z}(z)$, where z is a scalar random variable that is identical in distribution to each z_{ij}. The distribution of y_1 is then the $K - 1$ convolution cascade of $f_\mathbf{z}(z)$ with itself. Thus, $f_{y_1}(y)$ is smooth and supported for $\{|y_1| \leq K\}$, satisfying condition C3 for DFSQ. Figure 2 illustrates the distribution of y_1 for a particular choice of parameters.

The reconstruction algorithm G is a function of the measurement vector y and sampling matrix Φ. We will show that if $G(y, \Phi)$ is lasso with a proper relaxation variable μ, then conditions C1 and C2 are met. Using HC, we see $G(y, \Phi)$ is a piecewise smooth function that is also piecewise monotonic with every y_1 for a fixed μ. Moreover, for every μ the reconstruction is an affine function of the measurements through (7), so the partial derivative with respect to any element y_{i} is piecewise defined and smooth (constant in this case). Conditions C1 and C2 are therefore satisfied.

IV. OPTIMAL QUANTIZER DESIGN

We now pose the optimal fixed-rate quantizer design as a DFSQ problem. For a given noise variance σ^2, choose an appropriate μ^* to form the best reconstruction \hat{x} from the unquantized random measurements y. We produce M quantizers to transmit the elements of y such that the quantized measurements \hat{y} will minimize the distortion between $\hat{x} = G(\hat{y}, \Phi)$ and $\hat{x} = G(y, \Phi)$ for a total rate R. Note G can be visualized as a set of N scalar functions $\hat{x}_j = G(j)(\hat{y}, \Phi)$ that are identical in distribution due to the randomness in Φ. Since the sparse input signal is assumed to have uniformly distributed sparsity and Φ distributes energy equally to all measurements y_j in expectation, we argue by symmetry that each measurement is allotted the same number of bits and that every measurement’s quantizer is the same. Moreover, again by symmetry in Φ, the functions representing the reconstruction are identical in expectation and we argue using (5) that the overall sensitivity $\gamma_{cs}(\cdot)$ is the same as the sensitivity of any $G(j)(\hat{y}, \Phi)$. Computing (3) yields the point density $\lambda_{cs}(\cdot)$.

This is when the homotopy continuation method becomes useful. For a given realization of Φ and η, we can use HC to determine how many elements in the reconstruction are nonzero for μ^*, denoted J_{μ^*}. Equation (7) is then used to find $\partial G(j)(y, \Phi)/\partial y_{i}$, which is needed to compute $\gamma_{cs}(\cdot)$. The resulting differentials can be defined as

$$G_{i}^{(j)}(y, \Phi) = \frac{\partial G(j)(y, \Phi)}{\partial y_{i}}$$

and

$$= \left(\Phi^{T}_{j,\mu^*} \Phi_{j,\mu^*}\right)^{-1} \Phi^{T}_{j,\mu^*} y_i.$$

We now present the sensitivity through the following theorem.

Theorem 1. Let the noise variance be σ^2 and choose an appropriate μ^*. Define $y_{i \setminus i}$ to be all the elements of a vector y except y_i. The sensitivity of each element y_i, which is denoted $\gamma_{i}(t)$, can be written as

$$\left(E_{\Phi} \left[\frac{f_{y_{i \setminus i}}(\Phi)}{f_{y_i}(\Phi)} E_{y_{i \setminus i}} \left[\left|G_{i}^{(j)}(y, \Phi)\right|^2 \mid y_i = t, \Phi\right]\right]\right)^{\frac{1}{2}}.$$
For any Φ and its corresponding J found through HC, $f_{Y_1}(t|\Phi)$ is the convolution cascade of $\{z_{ij} \sim U(-\Phi_{ij}, \Phi_{ij})\}$ for $j \in J$. By symmetry arguments, \(\gamma_{cs}(t) = \gamma_{cs}(t)^{(j)}(t) \) for any i and j.

Proof: By symmetry arguments, we can consider any j for the partial derivative in the sensitivity equation without loss of generality. Noting (8), we define

\[
\Gamma_{i}^{(j)}(t, \Phi) = E_{y_i} \left[\left| G_{i}^{(j)}(y, \Phi) \right|^2 \right|_{y_i = t} ,
\]

and then modify (2) in the following steps:

\[
\begin{align*}
\gamma_{i}^{(j)}(t) & = \left(E \left[\left| G_{i}^{(j)}(y, \Phi) \right|^2 \right|_{y_i = t} \right)^{1/2} \\
& = \left(E_{\Phi} \left[\Gamma_{i}^{(j)}(t, \Phi) \right]_{y_i = t} \right)^{1/2} \\
& = \left(\int f_{y_i}(\Phi(t)) \Gamma_{i}^{(j)}(t, \Phi) d\Phi \right)^{1/2} \\
& = \left(E_{\Phi} \left[\frac{f_{y_i}(\Phi(t))}{f_{y_i}(t)} \Gamma_{i}^{(j)}(t, \Phi) \right] \right)^{1/2}.
\end{align*}
\]

Plugging in (9) will give us the final form of the theorem. Given a realization Φ, $y_i = \sum_{j \in J} \Phi_{ij} x_j = \sum_{j \in J} z_{ij}$, meaning $z_{ij} \sim U(-\Phi_{ij}, \Phi_{ij})$. The conditional probability $f_{y_i}(y_i|\Phi)$ can be found by taking the $K-1$ convolution chain of the set of density functions representing the K nonzero z_{ij}’s.

The expectation in Theorem 1 is difficult to calculate but can be approached through L Monte Carlo trials on Φ, η, and x. For each trial, we can compute the partial derivative using (9). We denote the Monte Carlo approximation to that function to be $\gamma_{cs}^{(L)}(\cdot)$. Its form is

\[
\gamma_{cs}^{(L)}(t) = \frac{1}{L} \sum_{k=1}^{L} \left(\frac{f_{y_i}(t|\Phi_k)}{f_{y_i}(t)} \right) \left[G_{i}^{(j)}(y_k, \Phi_k) \right]^2, \quad (10)
\]

with i and j arbitrarily chosen. By the weak law of large numbers, the empirical mean of L realizations of the random parameters should approach the true expectation for L large.

We now substitute (10) into (3) to find the Monte Carlo approximation to the optimal quantizer for compressed sensing. It becomes

\[
\lambda_{cs}^{(L)}(t) = C \left(\gamma_{cs}^{(L)}(t) f_{y_i}(t) \right)^{1/3}, \quad (11)
\]

for some normalization constant C. Again by the weak law of large numbers, $\lambda_{cs}^{(L)}(t) \rightarrow \lambda_{cs}(t)$ for L large.

V. EXPERIMENTAL RESULTS

We compare the CS-optimized quantizer, called the “sensitive” quantizer, to a uniform quantizer and “ordinary” quantizer which is optimized for the distribution of y through (1). This means the ordinary quantizer would be best if we want to minimize distortion between y and \tilde{y}, and hence has a flat sensitivity curve over the support of y. The sensitive quantizer $\lambda_{cs}(t)$ is found using (11) and the uniform quantizer $\lambda_{uni}(t)$ is constant and normalized to integrate to 1.

If we restrict ourselves to fixed-rate scalar quantizers, the high-resolution approximation for quantization distortion (4) can be used. The distortion for an arbitrary quantizer $\lambda_q(t)$ with rate R is

\[
D(R) \approx 2^{-2R} \left[\frac{\gamma_{cs}^{(L)}(y_1)}{12\lambda_{uni}^2(y_1)} \right] \approx 2^{-2R} \int \frac{\gamma_{cs}^{(L)}(t f_{y_i}(t))}{12\lambda_{uni}^2(t)} dt. \quad (12)
\]

Using 1000 Monte Carlo trials, we estimate $\gamma_{cs}(t)$ in Figure 3. Note that the estimate is found through importance sampling since there is low probability of getting samples for large y_1 in Monte Carlo simulations. The sensitivity is symmetric and has peaks away from zero because of the structure in (9). The resulting point density functions for the three quantizers are illustrated in Figure 4.
from the cdf of the normalized point densities. In the approximation, the ith codeword is the point t such that
\[
\int_{-\infty}^{t} \lambda_{cs}(t') dt' = \frac{i - 1/2}{2R_i},
\]
where R_i is the rate for each measurement. The partition points are then chosen to be the midpoints between codewords.

We compare the sensitive quantizer to uniform and ordinary quantizers using the parameters $\sigma^2 = 0.3$ and $\mu = 0.1$. Results are shown in Figure 5.

We find the sensitive quantizer performs best in experimental trials for this combination of σ^2 and μ at sufficiently high rates. This makes sense because $\lambda_{cs}(t)$ is a high-resolution approximation and should not necessarily perform well at very low rates. Numerical comparisons between experimental data and the estimated quantization distortion in (12) are similar.

VI. FINAL THOUGHTS AND FUTURE WORK

We present a high-resolution approximation to an optimal quantizer for the storage or transmission of random measurements in a compressed sensing system. We integrate ideas from functional scalar quantization and the homotopy continuation view of lasso to find a sensitivity function $\gamma_{cs}(\cdot)$ that determines the optimal point density function $\lambda_{cs}(\cdot)$ of such a quantizer. Experimental results show that the operational distortion-rate is best when using this so called “sensitive” quantizer.

Our main finding is that proper quantization in compressed sensing is not simply a function of the distribution of random measurements (using either high-resolution approximation or practical algorithms like Lloyd-Max). Rather, quantization adds a non-constant effect, called functional sensitivity, on the distortion between the lasso reconstructions of random measurements and its quantized version. In the case of lasso reconstruction, the homotopy continuation method allows us to find the sensitivity analytically or through Monte Carlo simulations.

A significant amount of work can still be done in this area. Parallel developments could be made for variable-rate quantizers. Also, this theory can be extended to other probabilistic signal and sensing models, and CS reconstruction methods that satisfy DFSQ conditions.

ACKNOWLEDGMENT

The authors thank Lav Varshney and Vinith Misra for help in extending the DFSQ theory. We also acknowledge Joel Goodman, Keith Forsythe and Andrew Bolstad for their input.

REFERENCES