A 0.16mm² completely on-chip switched-capacitor DC-DC converter using digital capacitance modulation for LDO replacement in 45nm CMOS

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1109/ISSCC.2010.5433984

Publisher
Institute of Electrical and Electronic Engineers

Version
Final published version

Accessed
Thu Apr 11 16:34:16 EDT 2019

Citable Link
http://hdl.handle.net/1721.1/61742

Terms of Use
Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
10.7 A 0.16mm² Completely On-Chip Switched-Capacitor DC-DC Converter Using Digital Capacitance Modulation for LDO Replacement in 45nm CMOS

Yogesh Ramadas1, Ayman Fayed2, Baher Haroun1, Anantha Chandrakasan1

1Massachusetts Institute of Technology, Cambridge, MA
2Iowa State University, Ames, IA
3Texas Instruments, Dallas, TX

Reducing power consumption through V_{DD} scaling is a major trend in nanometer CMOS circuits. In modern wireless SoCs, multiple power domains operate below 1.2V and draw less than 10mA of current. Currently, these domains are powered from a 1.8V rail through a low-drop-out linear regulator (LDO). The 1.8V rail is obtained from a Li-ion battery using a switching regulator with off-chip passive devices. It is highly inefficient to power circuit blocks that operate below 1.2V through LDOs. Switched-capacitor (SC) DC-DC converters are viable solutions to replace LDOs in some on-chip power domains but they currently occupy a large on-chip area [1]. Also, the voltage regulation schemes employed by current SC converters are either unsuitable in wireless systems or do not provide high efficiencies in on-chip use cases due to the dominance of bottom-plate switching losses [2]. In this paper, a completely on-chip SC DC-DC converter that uses a digital capacitance modulation scheme to achieve voltage regulation is presented. The converter occupies only 0.16mm² in total area and provides up to 8mA of current to output voltages between 0.8V to 1V from a 1.8V input while switching at 30MHz.

Figure 10.7.1 shows the G2BY3 gain setting (gain of 2/3) used to deliver load voltages between 0.8V to 1V. The signals φ₁ and φ₂ are non-overlapping phases of a clock switching at frequency f_s. The circuit is two-way interleaved to reduce input current and output voltage ripple. The load current handling capability [2] of the G2BY3 gain setting is given by

\[i_L = \frac{1440}{64} (1.2 - V_{OL}) \]

where 64C₀ is the total on-chip charge-transfer capacitance used, Q₀ is the charge delivered to the load every switching cycle and \(i_L \) is the current delivered at the load voltage of V_{OL}. It can be observed from Eq. (1) that in order to regulate the output to a specified voltage V_{OL}, while delivering a load current \(i_L \), the only available knobs are \(i_L \) or Q₀. Pulse frequency-modulation (PFM) [2] schemes change \(i_L \) to maintain regulation. While this is useful in certain digital systems, in wireless systems, where the digital load being supplied co-exists with critical analog/RF blocks, tones that cover a wide frequency range are challenging (if not impossible) to handle. Hence, a constant frequency regulation scheme is required. Constant frequency control methods often use duty cycle [1] or segmented switch width [3] modes of control to change Q₀. These control schemes do not scale switching and/or bottom-plate losses with change in load current leading to a drop in efficiency at low loads. Also, effective regulation with a wide change in load current is difficult to achieve with the abovementioned methods especially when taking process variations into account.

To overcome these problems, a digital-capacitance-modulation (DCM) mode of control is introduced, where regulation is maintained by controlling the amount of capacitance that takes part in the charge transfer process. Figure 10.7.2 shows how the capacitances are partitioned for one tile of the interleaved structure.

The charge transfer capacitance (16C₀) is broken into 5 different banks of sizes \(8x 0.25 \text{CB}, 2x 0.25 \text{CB}, 1x \text{CB}, \text{FINE} \). As the size of the charge transfer capacitors change in each bank, so do the width of the switches, such that every bank has similar charge/discharge times. The 8x 0.25 CB, 2x 0.25 CB, and 1x CB banks are enabled by the COARSE mode signals C<0:3>, respectively. The 1x CB, FINE bank remains always on. The charge-transfer capacitance in this bank is further subdivided into three capacitances of value \(G_0 / 7, \text{CB} / 7, \text{CB} / 7 \). While the \(G_0 / 7 \) capacitance is always engaged, the other capacitances are engaged only when the FINE signals \(F<0:1> \) are high.

Figure 10.7.3 shows the architecture of the SC DC-DC converter. The switch matrix contains the capacitor banks and the switches. The converter tries to maintain the feedback voltage \(V_{FB} \) within the hysteretic band \([V_{FB} - \Delta V_{FB}, V_{FB} + \Delta V_{FB}]\), where \(V_{FB} \) is a reference voltage (0.53V) and \(\Delta V \) is set to 20mV. The load voltage is set digitally by the 3-bit reference signal \(\text{REF}<0:2> \). The 2 clocked comparators COMP1 and COMP2 help maintain regulation of V_{OL} by generating the GO_DOWN or GO_UP signals when V_{FB} goes above or below the hysteretic band. These signals feed into the logic block where the MODE DECISION unit generates the FINE/COARSE and DCM/PFM signals which determine the operating mode of the converter. Following this, the ADD/SUB block suitably modifies the C<0:3>, F<0:1> signal which controls the amount of charge-transfer capacitance engaged. An extra comparator COMP3 that generates the COARSE_EN signal is used to detect sudden changes in load voltage.

The converter normally operates in the DCM mode but at very light load conditions (<500µA), it automatically switches to PFM mode control to maintain efficiency by making the DCM/PFM signal go low. The transition from DCM to PFM occurs when the logic block in Fig. 10.7.3 encounters multiple GO_DOWN signals when C<0:3> is at ‘0000’. This happens when the load output current is very low. It returns to DCM mode when the GO_UP signal goes high signifying an increase in the load current.

For fast transient response, the converter employs COARSE regulation during startup and load transients. In this mode, only C<0:3> is changed, F<0:1> is set to ‘11’, and the capacitor step size for regulation is 1C₀. Once the transients have settled, to prevent limit cycling with COARSE regulation, the converter enters FINE regulation where the capacitor step-size is reduced to 2C₀ / 7, as shown in Fig. 10.7.2. This enables the converter to settle within narrow hysteretic bands without any unwanted low-frequency oscillations.

As shown in Fig. 10.7.4, the transition from the COARSE to FINE mode occurs when there is a GO_UP signal followed by a GO_DOWN signal or when all 4-bits in C<0:3> are zero and a GO_DOWN signal occurs. The first situation happens when the load voltage transitions from falling to rising and the second case occurs when the load current is too small. The transition from the FINE to COARSE mode occurs when the COARSE_EN signal output by COMP3 goes high. This happens during sudden load increases and helps the converter to settle fast while minimizing the droop in V_{OL}. The rising edge of the COARSE_EN signal also causes C<0> to go high further reducing the settling time.

Figure 10.7.5 shows measured waveforms of the load transient response. With the comparator COMP3 enabled, the converter can transition to the COARSE mode and hence settles within 120ns when the load current changes from 270µA to 7.6mA. With COMP3 disabled, it takes 1.2µs for the converter to settle, with a more pronounced droop in V_{OL}.

Figure 10.7.6a shows the measured efficiency of the converter with change in V_{OL} while delivering a load current of 5mA. The converter provides above 60% efficiency over the load voltage range from 0.8V to 1V, which is much higher than that of LDOs and other completely on-chip SC converters [4]. Figure 10.7.6b shows the efficiency with change in \(i_L \) while delivering a 0.9V output. The DCM mode of control helps to keep the efficiency constant over a wide range of load current. At light loads, the PFM mode control sets in to reduce switching losses and improve efficiency.

Figure 10.7.7 shows the die micrograph and performance summary of the 45nm CMOS test chip. The active area of the SC converter which includes the charge-transfer and load capacitors is only 0.16mm². All the capacitors used are obtained using gate-oxide capacitors.

References:
Figure 10.7.1: A two-way interleaved G2BY3 gain setting to provide voltages below 2/3rd of the input voltage (1.8V). The total on-chip charge-transfer capacitance used is 334pF (=64C0), and the load capacitance is 700pF.

Figure 10.7.2: Binary-weighted partitioning of the charge transfer capacitors and switches for digital capacitance modulation. C<0:3> turns ON or OFF the coarse blocks. F<0:1> controls the finer splitting of the 1C0 capacitor.

Figure 10.7.3: Architecture of the switched-capacitor DC-DC converter system. COMP3 compares Vl with a reference voltage Vl_OFF which is generated on-chip and is designed to be 100mV less than the required Vl.

Figure 10.7.4: Flowchart showing the events leading to transition between FINE/COARSE modes of regulation and DCM/PFM modes of control. ‘N’ can be set to 4 or 8.

Figure 10.7.5: Measured load transient performance of the SC converter with COMP3 (a) enabled and (b) disabled for a load current change from 270µA to 7.6mA. The converter is in PFM mode when DCM/PFM is low and in COARSE mode when FINE/COARSE is low.

Figure 10.7.6: Efficiency of the switched-capacitor DC-DC converter with (a) change in load voltage while delivering a load current of 5mA (b) change in load current while delivering a load voltage of 0.9V from a 1.8V input supply.
Figure 10.7.7: Die micrograph of the switched capacitor DC-DC converter identifying the area consumed by the active blocks. The table shows a summary of the key features of the converter.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>45nm CMOS</td>
</tr>
<tr>
<td>Active Area</td>
<td>0.16mm²</td>
</tr>
<tr>
<td>Switching Frequency</td>
<td>30MHz</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>1.8V</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>0.8V – 1V</td>
</tr>
<tr>
<td>Maximum Load Current</td>
<td>8mA</td>
</tr>
<tr>
<td>Peak Efficiency</td>
<td>69%</td>
</tr>
<tr>
<td>Charge Transfer Capacitance</td>
<td>534pF</td>
</tr>
<tr>
<td>Load Capacitance</td>
<td>700pF</td>
</tr>
<tr>
<td>Capacitor Type</td>
<td>Gate-oxide</td>
</tr>
</tbody>
</table>