CMOS photonic processor-memory networks

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1109/PHOTWTM.2010.5421931">http://dx.doi.org/10.1109/PHOTWTM.2010.5421931</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/61782">http://hdl.handle.net/1721.1/61782</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
CMOS Photonic Processor-Memory Networks

Vladimir Stojanović, Ajay Joshi, Cristopher Batten, Yong-Jin Kwon, Scott Beamer, Sun Chen and Krste Asanović

“Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139
b Boston University, Boston, Massachusetts
c University of California, Berkeley, California
Email: vlada@mit.edu

Abstract: This paper presents a monolithically integrated dense WDM photonic network for manycore processors, optimized for loss and power footprint of optical components, which can achieve up to 10x better energy-efficiency and throughput than electrical interconnects.

2009 Optical Society of America
OCIS codes: (200.4650) Optical interconnects; (250.5300) Photonic integrated circuits;

1. Introduction

This paper builds on recent advances [1] in building high-throughput, energy-efficient photonic networks for core-to-DRAM communication in manycore processor systems. To sustain the performance scaling in these systems, the increase in core count has to be followed by the corresponding increase in energy-efficiency of the core, the interconnect, and bandwidth density [2,3]. Due to pin-density, wire-bandwidth and power dissipation limits, electrical DRAM interfaces are not expected to supply sufficient bandwidth with reasonable power consumption and packaging cost, and similar issues also limit energy-efficiency and bandwidth density of global on-chip wires. With potential for energy-efficient modulation/detection and dense wavelength division multiplexing (DWDM), silicon-photonic interconnect technology is well suited to alleviate the bottleneck, however its application has to be carefully tailored to both the underlying process technology and the desired network topology.

2. Monolithic CMOS photonic network design

Recently developed infrastructure for photonic chip design and post-fabrication processing methodology [4,5] enabled for the first time monolithic integration of polysilicon and silicon-based photonic devices in a standard bulk CMOS and thin BOX SOI fabrication flows commonly used for processors. Based on this technology and the tight interaction between design of photonic interconnect components (waveguides, ring-resonators, modulators, photodetectors, waveguide crossings) and network topology, in [1] we have proposed an efficient hybrid electro-optical core-to-DRAM shared memory network (local meshes to global switches – LMGS) shown in Fig. 1, which provides a near ten-fold improvement in throughput compared to optimized electrical networks projected to 22 nm process node and a 256 core processor. To provide a balance between the bandwidth and latency/link utilization, the traffic from several tiles is aggregated via local electrical meshes into a point-to-point dense WDM interconnect with wavelength addressing to a part of a DRAM space. External buffer chip receives the optical signals and arbitrates requests from several core groups to the same DRAM module. This relatively simple interconnect results in significantly reduced number of optical components in the network compared to, for example, high-radix optical crossbar [6], minimizing the thermal tuning costs as well as losses along the optical path. To relax the loss specifications on integrated photonic devices within a required optical power envelope, Fig. 2, in this paper we introduce the improved physical layout of the network that follows a U-shape, minimizing the waveguide crossing losses present in previous template [1]. Balancing the mesh bandwidth with degree of tile aggregation and optical bandwidth enables efficient utilization of raw energy-efficiency advantage of photonic over electrical interconnect (both across die and die-to-die), as shown in Fig. 3.

Acknowledgements

We would like to acknowledge all the members of the MIT photonic team, including J. Orcutt, A. Khilo, M. Popović, C. Holzwarth, B. Moss, H. Li, M. Georgas, J. Leu, F. X. Kärtner, J. L. Hoyt, R. J. Ram, and H. I. Smith. This work was supported by DARPA awards W911NF-08-1-0134 and W911NF-08-1-0139.

References


---

Fig. 1. Photonic network template for core-to-DRAM communication: LMGS network, 64 tiles (4 cores per tile), 64 waveguides (for tile throughput = 128 b/cyc), 256 modulators per group, 256 ring filters per group, total rings > 16K with 0.32W on thermal tuning.

Fig. 2. Optical power requirement contours for core-to-DRAM LMGS network

---

Fig. 4. Power and performance for various LMGS network configurations assuming (a) electrical interconnect with grouping, (b) electrical interconnect with grouping and overprovisioning and (c) photonic interconnect with grouping and overprovisioning. Link widths chosen such that network does not exceed power budget of 20 W.