Direct Top-Quark Width Measurement at CDF

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.105.232003</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Feb 06 16:34:21 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/62563</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Direct Top-Quark Width Measurement at CDF

0031-9007/10/105(23)/232003(7) 232003-1 © 2010 The American Physical Society
We present a measurement of the top-quark width in the lepton + jets decay channel of $t \bar{t}$ events produced in $p \bar{p}$ collisions at Fermilab’s Tevatron collider and collected by the CDF II detector. From a data sample corresponding to 4.3 fb$^{-1}$ of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of the hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different top-quark widths (Γ_t) and deviations from nominal jet energy scale (Δ_{JES}) to perform a simultaneous fit for both parameters, where Δ_{JES} is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of $\Gamma_t < 4.4$ GeV for a top-quark mass of 172.5 GeV/c2, which are consistent with the standard model prediction.

DOI: 10.1103/PhysRevLett.105.232003 PACS numbers: 14.65.Ha, 12.15.Ff, 13.85.Qk

The top quark is the heaviest known elementary particle, whose large mass results in the largest decay width and hence the shortest lifetime of the quarks in the standard model (SM). A precise measurement of the top-quark width Γ_t is a good test of the standard model, whose prediction at the Born level [1] is affected by the quantum chromodynamics (QCD) radiative corrections of order 10% [2], as well as by electroweak corrections [3,4], which are of order 1.5%. The dominant decay mode of the top quark in the SM produces a W boson and a bottom quark (b). At leading order the total top-quark width is given by $\Gamma_t^0 = |V_{tb}|^2 G_F m_t^3/(8 \pi \sqrt{2})$, where V_{tb}, G_F, and m_t are the Cabibbo-Kobayashi-Maskawa matrix element, Fermi coupling constant and the top-quark mass, respectively. If we take $|V_{tb}|$ to be unity, the next-to-leading order calculation [1,2] with QCD and electroweak corrections predicts Γ_t, at 1.3 GeV at a top-quark mass of 172.5 GeV/c2 [5] and this corresponds to a lifetime of 5×10^{-25} s.

A deviation from the SM could indicate a significant contribution of non-SM particles. Novel top-quark decay modes motivated by the large top-quark mass include decay to a charged Higgs $t \rightarrow b + H^+$ [6–9], decay to its
supersymmetric scalar partner stop plus neutralinos [10,11], and flavor-changing neutral current (FCNC) top-quark decays [12]. Therefore, the direct measurement of \(\Gamma_t \) is a general way to constrain such processes. The first direct measurement of \(\Gamma_t \) was carried out with an integrated luminosity of 1 fb\(^{-1}\) of CDF data in the lepton + jets channel [13] and set an upper limit on \(\Gamma_t < 13.1 \) GeV at 95% confidence level (CL), while the result of a recent analysis from the D0 experiment at the Tevatron quotes an indirect top-quark width measurement of \(\Gamma_t = 1.99^{+0.05}_{-0.02} \) GeV [14]. In this report of the second direct measurement of \(\Gamma_t \), we increase the CDF data set to 4.3 fb\(^{-1}\) in the lepton + jets channel, apply a kernel density estimation (KDE) technique [15,16] to make templates, determine the jet energy scale (JES) calibration \textit{in situ}, and use new methods for setting and incorporating systematic effects. We set a two-sided bound on the top-quark width at 68% CL for the first time.

CDF II [17] is a general-purpose detector located at one of the two collision points along the ring of the Tevatron accelerator. A silicon microstrip tracker and a cylindrical drift chamber in a 1.4 T magnetic field serve as a charged particle tracking system. Electromagnetic and hadronic calorimeters are used to measure the energies of electrons and jets. Outside the calorimeters lie drift chambers which can detect muons. We employ a cylindrical coordinate system for the detector where \(\theta \) and \(\phi \) are the polar and azimuthal angles, respectively, with respect to the proton beam, and pseudorapidity \(\eta = -\ln \tan(\theta/2) \). Transverse energy and momentum are defined as \(E_T = E \sin \theta \) and \(p_T = p \sin \theta \), respectively, where \(E \) and \(p \) are energy and momentum.

Top quarks decay almost exclusively to a W boson and a \(b \) quark through the weak interaction in the SM. We identify \(t\bar{t} \) events in the lepton + jets channel, where one \(W \) boson decays to a charged lepton and neutrino, and the other \(W \) boson decays to two quarks. The \(t\bar{t} \) candidate events used in this analysis are collected by triggers that identify at least one high-\(p_T \) lepton. Offline these events are selected by requiring a high-\(E_T \) electron or high-\(p_T \) muon (\(E_T \) or \(p_T > 20 \) GeV), large missing transverse energy \(E_T \) (\(E_T > 20 \) GeV) due to the undetected neutrino from the leptonic \(W \) decay, and at least four hadronic jets. Jets are reconstructed with the \textsc{jetclu} [18] cone algorithm using a cone radius of \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4 \). To determine if a jet comes from a \(b \) quark, the \textsc{secvtx} [19] algorithm, which makes use of the transverse decay length of a \(b \) quark inside a jet (\(b \) tag), is applied. At least one jet must be identified as \(b \) tagged. We divide the candidate events into those with one \(b \)-tagged jet and those with two or more \(b \)-tagged jets in order to improve the usage of statistical information, since these two kinds of events have different signal-to-background ratios. When an event has one \(b \)-tagged jet (\(b \) jet), we require this event to have exactly four jets each with \(E_T > 20 \) GeV; when an event contains two or more \(b \) jets, three jets are required to have \(E_T > 20 \) GeV, the fourth must have \(E_T > 12 \) GeV, and the event is allowed to have extra jets. More details about event selection criteria can be found in Ref. [20].

Monte Carlo (MC) simulated signal samples are created for a fixed top-quark mass of 172.5 GeV/c\(^2\) by the \textsc{pythia} version 6.216 [21] event generator and have different values of \(\Gamma_t \), between 0.1 GeV and 30 GeV, as well as various values of \(\Delta_{\text{JES}} \), which is the difference between the JES effects in MC simulation and data and has a range from \(-3.0\sigma_c \) to \(+3.0\sigma_c \), where \(\sigma_c \) is the CDF JES fractional uncertainty [22]. The overall rate of background events with one \(W \) boson and additional jets (\(W + j \)ets), the dominant background process, is determined using data after subtracting off the rate of events coming from QCD multijet production (non-\(W \) events), and separating out a MC based estimate for electroweak processes (EWK) such as diboson (\(W W, WZ, ZZ \)) and single-top production. The fractions of \(W+j \)ets events with heavy flavor quarks (\(Wc, Wc\bar{c}, Wb\bar{b} \) events) are determined from MC simulated samples. The rate with which events with a \(W \) boson and light flavor quarks contain a misidentified \(b \) jet is determined using data samples triggered by the presence of jets.

Table I summarizes the background compositions, and the selection criteria for determining the background rates are described in Ref. [23]. Diboson backgrounds are modeled with \textsc{pythia} version 6.216 [21] and \(W + j \)ets by \textsc{alpgen} version 2.10' [24], with jet fragmentation modeled by \textsc{pythia} version 6.325 [21]. Single-top production events are generated by \textsc{madevent} [25] and their fragmentation is modeled with \textsc{pythia} version 6.409 [26].

We use a template method to extract \(\Gamma_t \). Two observables, the reconstructed top-quark mass (\(m_{t}^{\text{rec}} \)) and the invariant mass of the two jets from the hadronically decaying \(W \) boson (\(m_{jj} \)), are built for each data event or MC simulated event (both signal and background). With the assumption that the leading (highest \(E_T \)) four jets in the detector come from the four primary quarks of \(t\bar{t} \) events in the lepton + jets channel, there are 12 possible assignments of jets to quarks in each event. The neutrino transverse momentum is calculated from the imbalance of the transverse momentum of decaying products, jets and lepton, with unclustered energy taken into account, which is

<table>
<thead>
<tr>
<th></th>
<th>Single (b) tag</th>
<th>Double (b) tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W + j)ets</td>
<td>85.6 ± 21.8</td>
<td>9.8 ± 2.9</td>
</tr>
<tr>
<td>Non-(W)</td>
<td>24.5 ± 20.6</td>
<td>2.4 ± 1.8</td>
</tr>
<tr>
<td>EWK</td>
<td>10.2 ± 0.8</td>
<td>2.4 ± 0.2</td>
</tr>
<tr>
<td>Total background</td>
<td>120.2 ± 30.0</td>
<td>14.6 ± 3.4</td>
</tr>
<tr>
<td>Observed events</td>
<td>542</td>
<td>214</td>
</tr>
</tbody>
</table>

Table I. The sources and expected numbers of background events in the lepton + jets channel, and the number of events observed for single \(b \)-tag and double \(b \)-tag samples after event selection, \(\chi^2 \) cut, and boundary cuts.
the energy in the calorimeter not associated with the lepton or one of the four leading jets. We use a χ^2-like kinematic fitter [27] to fit the top-quark mass for each assignment, assuming the mass equality of the top and antitop quarks, and take m_{reco} from the assignment that has the lowest χ^2. Events with $\chi^2 > 9.0$ are removed from the sample to reject poorly reconstructed events. We also apply boundary cuts on m_{reco} (110 GeV/$c^2 < m_{\text{reco}} < 350$ GeV/c^2) and m_{jj} (50 GeV/$c^2 < m_{jj} < 115$ GeV/c^2 for single b-tag events and 50 GeV/$c^2 < m_{jj} < 125$ GeV/c^2 for double b-tag events) and normalize the probability density functions (PDF) in these regions. The di-jet mass m_{jj} is calculated as the invariant mass of two non-b-tagged jets which provides the closest value to the world average W boson mass of 80.40 GeV/c^2 [28]. The estimated number of background events and observed number of events from a data set corresponding to an integrated luminosity of 4.3 fb$^{-1}$ after event selection, χ^2 cut, and boundary cuts are listed in Table I. After event reconstruction, we use the MC simulated models of signal and background processes to build two-dimensional PDF’s that give the probabilities from a MC generator, the parton distribution functions, and multiple hadron interactions, details of which can be found in the ordering parameter for MC simulated samples that appears in Ref. [31] is defined here as $\Delta \chi^2 = \chi^2_{\text{input}} - \chi^2_{\text{min}}$ where $\chi^2 = -2 \log(L)$ (different from the χ^2 mentioned in event reconstruction), χ^2_{min} is the minimal χ^2 value and χ^2_{input} is the χ^2 at the real value of parameters Γ_i and Δ_{JES} of the MC simulated sample. We project the likelihood function L onto the Γ_i axis [32]. For each value of Γ_i we run 6000 pseudoexperiments that generate a distribution of $\Delta \chi^2$ from which we calculate a critical value $\Delta \chi^2_c$ so that 95% of the pseudoexperiments have a $\Delta \chi^2$ falling in the interval [0, $\Delta \chi^2_c$]. With MC simulated samples of 21 different top widths Γ_i we get a profile of $\Delta \chi^2(\Gamma_i)$. When analyzing the data we obtain $\Delta \chi^2(\Gamma_i)_{\text{data}} = -2 \log(L) + 2 \log(L_0)$, where L_0 is the maximum likelihood value of data fitting, then $\Delta \chi^2(\Gamma_i)_{\text{data}}$ is compared with $\Delta \chi^2(\Gamma_i)$ and the accepted interval of Γ_i is all points such that $\Delta \chi^2(\Gamma_i)_{\text{data}} < \Delta \chi^2_c(\Gamma_i)$. From the above method we obtain a purely statistical upper limit on Γ_i at 95% CL, $\Gamma_i < 6.7$ GeV and a two-sided limit of 0.5 GeV $< \Gamma_i < 3.9$ GeV at 68% CL.

We examine systematic effects by comparing MC simulated experiments in which we float parameters within their uncertainties. As seen from Table II, the dominant systematic effects come from jet energy resolution and color reconnection (CR) [33,34], which is a rearrangement of the underlying color structure of an event from its simplest configuration. For the jet energy resolution effect, we compare jet energy resolution between data and MC simulated samples using one photon + one jet events and smear jet energy with the difference between data and MC simulated samples. We study the effect of CR by using PYTHIA version 6.4 with different tunes (with and without CR) and evaluate the difference. The systematic effect due to JES is very small because we perform an in situ JES calibration. Other smaller systematic effects include those due to the MC generator, the parton distribution functions, and multiple hadron interactions, details of which can be found in Table II. Summary of changes in measured Γ_i due to systematic effects.

<table>
<thead>
<tr>
<th>Systematic Sources</th>
<th>$\Delta \Gamma_{\text{top}}$ (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy resolution</td>
<td>1.1</td>
</tr>
<tr>
<td>Color Reconnection</td>
<td>0.9</td>
</tr>
<tr>
<td>Generator</td>
<td>0.4</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.3</td>
</tr>
<tr>
<td>Parton distribution functions</td>
<td>0.3</td>
</tr>
<tr>
<td>Multiple Hadron Interaction</td>
<td>0.3</td>
</tr>
<tr>
<td>Gluon-gluon fraction</td>
<td>0.3</td>
</tr>
<tr>
<td>Initial and/or final state radiation</td>
<td>0.2</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.2</td>
</tr>
<tr>
<td>b-jet energy</td>
<td>0.2</td>
</tr>
<tr>
<td>Background shape</td>
<td>0.1</td>
</tr>
<tr>
<td>Total systematic effect</td>
<td>1.6</td>
</tr>
</tbody>
</table>

![FIG. 1 (color online). (a) Probability density functions of m_{reco} from double b-tag events for MC simulated samples of different values of Γ_i; (b) PDF’s of m_{jj} from double b-tag events for MC simulated samples of different values of Δ_{JES}.](232003-5)
an upper limit of the function we apply the Feldman-Cousins approach and find to 1.6 GeV and is centered at 0. With this new likelihood function with a Gaussian PDF that has a width equal of 2.0, and 4.5. Systematic effects are not included here. (b) Overlap of the two-dimensional data fit onto the projections of the two-dimensional likelihood function with different top-quark widths. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on the overlap of the two-dimensional data fit from the two-dimensional likelihood function with systematic effects is 1.6 GeV. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on different top-quark widths. To incorporate systematic effects into the limit(s) on \(\Gamma_t \), we use a convolution method for folding systematic effects into the likelihood function [36,37]. We convolve the likelihood function with a Gaussian PDF that has a width equal to 1.6 GeV and is centered at 0. With this new likelihood function we apply the Feldman-Cousins approach and find an upper limit of \(\Gamma_t < 7.6 \) GeV at 95% CL assuming a top-quark mass \(M_{\text{top}} = 172.5 \text{ GeV}/c^2 \), which is consistent with the standard model. We also quote 0.3 GeV < \(\Gamma_t < 4.4 \) GeV at 68% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) [38,39], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

FIG. 2 (color online). (a) Contours of the two-dimensional negative log likelihood function from the data fit. The three different contours represent different values of \(-\log(L)\): 0.5, 2.0, and 4.5. Systematic effects are not included here. (b) Overlap of the \(\Delta \chi^2(\Gamma_t) \) profile and the data fit that comes from projection of the two-dimensional data fit onto the \(\Gamma_t \) axis, the intersection of which gives a limit(s) on \(\Gamma_t \). Systematic effects are included in the plots, both for 68% and 95% CL.

Refs. [5,35]. The total change of measured \(\Gamma_t \) due to these systematic effects is 1.6 GeV. We studied the dominant systematic uncertainties by varying top-quark width, and found no significant dependence of systematic effects on different top-quark widths.

In conclusion, a top-quark width measurement in the lepton + jets channel is presented. Using a data set corresponding to an integrated luminosity of 4.3 fb\(^{-1}\) collected by CDF and an \textit{in situ} JES calibration, we set an upper limit \(\Gamma_t < 7.6 \) GeV at 95% CL assuming a top-quark mass \(M_{\text{top}} = 172.5 \text{ GeV}/c^2 \), which is consistent with the standard model. We also quote 0.3 GeV < \(\Gamma_t < 4.4 \) GeV at 68% CL, which corresponds to a lifetime of \(1.5 \times 10^{-25} \text{ s} < \tau_t < 2.2 \times 10^{-24} \text{ s} \). For a typical quark hadronization time scale of \(3.3 \times 10^{-24} \text{ s} \) (corresponding to 200 MeV) [38,39], our result supports top-quark decay before hadronization.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

\[\Delta \chi^2(\Gamma_t) \text{ at } 95\% \text{ CL} \]

\[\Delta \chi^2(\Gamma_t) \text{ at } 68\% \text{ CL} \]

\[\text{CDF II (4.3 fb} \text{)} \]
\[\text{Visitor from Kansas State University, Manhattan, KS 66506, USA.}\]
\[\text{Visitor from University of Manchester, Manchester M13 9PL, United Kingdom.}\]
\[\text{Visitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.}\]
\[\text{Visitor from Muons, Inc., Batavia, IL 60510, USA.}\]
\[\text{Visitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.}\]
\[\text{Visitor from National Research Nuclear University, Moscow, Russia.}\]
\[\text{Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from IFIC(CSIC-Universitat de Valencia), 56071 Valencia, Spain.}\]
\[\text{Visitor from Universidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile.}\]
\[\text{Visitor from University of Virginia, Charlottesville, VA 22906, USA.}\]
\[\text{Visitor from Yarmouk University, Irbid 211-63, Jordan.}\]
\[\text{On leave from J. Stefan Institute, Ljubljana, Slovenia.}\]
\[\text{Visitor from University of Michigan, Ann Arbor, MI 48109, USA.}\]
\[\text{Visitor from Cornell University, Ithaca, NY 14853, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79409, USA.}\]
\[\text{Visitor from University of California, Santa Cruz, CA 95064, USA.}\]
\[\text{Visitor from Texas, Austin, TX 78712, USA.}\]
\[\text{Visitor from Stony Brook University, Stony Brook, NY 11794, USA.}\]
\[\text{Visitor from Texas A\&M University, College Station, TX 77843, USA.}\]
\[\text{Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from University of Texas, Austin, TX 78712, USA.}\]
\[\text{Visitor from University of California, Santa Cruz, CA 95064, USA.}\]
\[\text{Visitor from University of Texas, Austin, TX 78712, USA.}\]
\[\text{Visitor from Stony Brook University, Stony Brook, NY 11794, USA.}\]
\[\text{Visitor from Texas A\&M University, College Station, TX 77843, USA.}\]
\[\text{Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from University of Texas, Austin, TX 78712, USA.}\]
\[\text{Visitor from Stony Brook University, Stony Brook, NY 11794, USA.}\]
\[\text{Visitor from Texas A\&M University, College Station, TX 77843, USA.}\]
\[\text{Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from University of Virginia, Charlottesville, VA 22906, USA.}\]
\[\text{Visitor from Yarmouk University, Irbid 211-63, Jordan.}\]
\[\text{On leave from J. Stefan Institute, Ljubljana, Slovenia.}\]
\[\text{Visitor from University of Michigan, Ann Arbor, MI 48109, USA.}\]
\[\text{Visitor from Cornell University, Ithaca, NY 14853, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79409, USA.}\]
\[\text{Visitor from University of California, Santa Cruz, CA 95064, USA.}\]
\[\text{Visitor from Texas, Austin, TX 78712, USA.}\]
\[\text{Visitor from Stony Brook University, Stony Brook, NY 11794, USA.}\]
\[\text{Visitor from Texas A\&M University, College Station, TX 77843, USA.}\]
\[\text{Visitor from University of Notre Dame, Notre Dame, IN 46556, USA.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from Texas Tech University, Lubbock, TX 79609, USA.}\]
\[\text{Visitor from Universidad de Oviedo, E-33007 Oviedo, Spain.}\]
\[\text{Visitor from University of Virginia, Charlottesville, VA 22906, USA.}\]
\[\text{Visitor from Yarmouk University, Irbid 211-63, Jordan.}\]
\[\text{On leave from J. Stefan Institute, Ljubljana, Slovenia.}\]